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Statics and dynamics of magnetocapillary bonds
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When ferromagnetic particles are suspended at an interface under magnetic fields, dipole-dipole interactions
compete with capillary attraction. This combination of forces has recently given promising results towards
controllable self-assemblies as well as low-Reynolds-number swimming systems. The elementary unit of these
assemblies is a pair of particles. Although equilibrium properties of this interaction are well described, the
dynamics remain unclear. In this paper, the properties of magnetocapillary bonds are determined by probing
them with magnetic perturbations. Two deformation modes are evidenced and discussed. These modes exhibit
resonances whose frequencies can be detuned to generate nonreciprocal motion. A model is proposed that can
become the basis for elaborate collective behaviors.
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I. INTRODUCTION

The deformation of a liquid surface by identical floating
particles [1] makes them attract each other [2,3]. A practical
way to avoid clustering consists in using particles possessing
a large magnetic moment �m [4,5]. If �m is perpendicular to
the interface, the dipole-dipole interaction is repulsive [6]
and opposes the capillary attraction. The combination of a
repulsive magnetic interaction with the attractive capillary
interaction creates a pair potential possessing a minimum. Two
particles will then settle at an equilibrium distance creating a
magnetocapillary bond, which is the building block for larger
stable structures [4,7]. Indeed, the energy scale associated with
this magnetocapillary interaction can be much larger than
the thermal energy for a wide range of submillimeter-sized
particles. Particle size is bounded from below by the capillary
attraction, which decreases as particles become smaller. At
room temperature, the size at which thermal energy becomes
strong enough to break free from the capillary interaction is
3.4 μm in diameter, as can be estimated from the potential
given in Eq. (1). However, one could generate a stronger capil-
lary attraction by using confined geometries [8,9] or other body
forces other than gravity [1]. To allow remote tuning of the
bond properties, it has been proposed to use particles with large
magnetic susceptibility χ in an external magnetic induction
�B [10]. In this case �m = χV �B/μ0 (with V the volume of the
bead), meaning that varying the magnetic induction allows one
to control the strength and direction of the magnetocapillary
interaction [5]. Adding an oscillating horizontal field deforms
these aggregates [10], which are observed to swim at low
Reynolds number [11] by spontaneously changing their shape
in a nonreciprocal way and, what is more, swimming direction
can be remotely controlled [12].

The aim of the present paper is to study experimentally
the fundamentals of the magnetocapillary bonds and their
vibration modes. First, we present their potential energy and
their static equilibrium distances. Then, their two normal vibra-
tions (stretching and swinging) are evidenced experimentally
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and modeled in a perturbative way. Finally, we show that
the detuning of their resonance frequencies can be exploited
for creating nonreciprocal cycles at low Reynolds number.
Although particles of a few hundred microns in diameter are
used, if the system is downscaled, resonance of the swinging
mode can still be achieved. This means that similar dynamics
could be reproduced with smaller colloidal particles [13].

II. MAGNETOCAPILLARY PAIR POTENTIAL

We consider two floating beads of diameter D possessing
identical magnetic moments �m = mx �ex + mz �ez, �ex and �ez

being the horizontal and vertical unitary vectors, respectively,
as defined in Fig. 1(a). Their center-to-center vector is defined
by �d = d �er and the orientation of the pair relatively to �ex is
θ . Their interaction can be modeled by a pair potential U

composed of the sum of an attractive term due to capillarity
Uc and a magnetic dipole-dipole Um term that can be either
attractive or repulsive depending on θ [10,12].

Reasoning similar to that in [2] will be used to express the
capillary interaction energy Uc. Solving the Laplace equation
for a single sphere gives the interfacial shape ζ (d) ∝ K0(d/lc),
where lc = √

γ /ρf g is the capillary length and K0 is the
modified Bessel function of the second kind and order zero.
If d � D, the superposition approximation can be used to
express Uc, meaning that the total interfacial deformation
is the sum of the independent deformations caused by each
particle [14]. As will be shown in the discussion of Fig. 4, this
approximation is in good agreement with the experiment for
d > 2D. We find

Uc = −�K0(d/lc), (1)

with � = 2πγ q2 being a typical capillary energy scale. The
capillary charge of a particle q is a length that characterizes the
interface deformation needed to compensate for the buoyancy
of the particle. It depends explicitly on the bead volume, the
density of the bead, the density of the liquid, the capillary
length, and the wetting contact angle [2,3]. If none of the fluids
has strong magnetic properties, the magnetic dipole-dipole
potential is

Um = μ0
[
m2

z + m2
x(1 − 3 cos2 θ )

]
4πd3

, (2)
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FIG. 1. Pair potential. (a) Notation. Two beads are placed at a
water surface and submitted to a constant induction �B = Bx �ex + Bz �ez

as well as a small oscillating induction �β. Distance d and angle θ

characterize the system. (b) Magnetocapillary potential. Interaction
potential U = Uc + Um in polar coordinates (d,θ ), as given by
Eq. (3), for typical parameters of the experiment (D = 500 μm and
Bz = 3 mT). Darker zones indicate potential wells. On the left half,
vertical induction �Bz generates an isotropic repulsion when Mθ = 0,
which leads to a finite equilibrium distance deq ≈ 2.5 mm. On the
right half, cylindrical symmetry is broken when Mθ �= 0, due to the
addition of a horizontal field Bx = 0.7 mT. Here Mθ is the orthoradial
magnetocapillary number introduced in Eq. (3). It is proportional
to B2

x .

with μ0 the void permeability. If the distances are nondimen-
sionalized by the capillary length (d̃ = d/lc), the shape of pair
potential U = Uc + Um is determined by two dimensionless
magnetocapillary numbers Md and Mθ such that

U = �

[
−K0(d̃) + Md

d̃3
+ Mθ

d̃3
sin2 θ

]
, (3)

where Md = μ0(m2
z − 2m2

x)/4π�l3
c is the radial magneto-

capillary number and Mθ = 3μ0m
2
x/4π�l3

c the orthoradial
magnetocapillary number.

While the magnetic terms of U are dominating at both
short and long distances, it has a stable minimum provided
Md < 1.11. Thus, it forms a potential well around θ = 0 and
the equilibrium distance deq. It can be shown that d̃eq = deq/lc
depends only on Md following the equation

d̃4
eqK1(d̃eq) = 3Md. (4)

If Mθ = 0, the potential is axisymmetric and every orientation
θ is equivalent for the pair. Figure 1(b) shows the interaction
potential U in polar coordinates, with one bead at the axis
origin, for typical values of the experiment. Because the
potential is mirror symmetric around the 90◦ axis, the two
halves of the graph are chosen to represent two cases. Case
Mθ = 0 is on the left, with a minimum of energy at a given
distance deq. On the right, the addition of a horizontal induction
Bx of order 10−3 T (Mθ �= 0) breaks axisymmetry and creates
an equilibrium orientation at θ = 0. Typical values for the
experiment are Bz ≈ 5 × 10−3 T and Bx ≈ 2 × 10−3 T, which
give a ratio Mθ/Md ≈ 0.8.

Using a perturbative analysis of U , the stiffness of the
potential well can be obtained for its two principal directions
(radial kd and orthoradial kθ )

kd = �

l2
c d̃

[6K1(d̃) − 2d̃K0(d̃)], (5)

kθ = 4
�M2

θ

l2
c d̃

5
. (6)

In the case of two identical beads of mass W1 = W2 = W ,
the reduced mass is W/2. The added mass for a fully
immersed sphere oscillating with small amplitudes is Wadded =
0.5 Wρf /ρs . For steel spheres on water, we have ρs/ρf ≈ 8,
so Wadded ≈ W/16. We will therefore consider that the mass
of entrained fluid is negligible.

Two frequencies can thus be associated with the magneto-
capillary well: a radial frequency

ωd = 2πfd =
√

2kd/W ≈ 2

lc

√
Uc(d̃eq)

W
+ 9Md�

Wd̃5
eq

, (7)

assuming d � D, which corresponds to a stretching mode,
and an orthoradial frequency

ωθ = 2πfθ =
√

2kθ/W = 2Mθ

lc

√
2�

Wd̃5
eq

, (8)

which corresponds to a swinging mode. At low Reynolds, the
attenuation is due to the viscosity of the ambient fluid, so the
attenuation time is

τ = W

C
∼ W

ηD
, (9)

where C is the damping coefficient. We have CStokes = 3πηD

in the case of a fully immersed sphere [15,16]. If fdτ � 1
or fθτ � 1, we can force harmonic resonances, even in the
Stokes regime. This is of interest as frequency can thus be
changed to adjust the phase.

III. EXPERIMENTAL SETUP

In order to study the vibrations of magnetocapillary bonds,
we will use the following experimental setup: A large Petri
dish is filled with water and placed at the center of a
three-axis earth-field-compensating Helmholtz coil system.
Two identical submillimeter chrome steel beads (diameter
D = 397, 500, or 793 μm, density ρs = 7830 kg/m3, and
relative magnetic susceptibility χ > 300) are disposed at
the water-air interface. The capillary charges of the beads,
calculated for a contact angle of 90◦, are 6, 12, and 45 μm for
the respective diameters 397, 500, and 793 μm. In the presence
of a constant magnetic induction �B = Bx �ex + Bz �ez, the beads
settle at an equilibrium distance deq. For vibration experiments,
a small oscillating induction �β = β(t)(cos α �ex + sin α �ey) is
added. Angle α can be varied to produce different oscillating
behaviors. The kinematics of the system is fully described by
the bead’s center-to-center distance d and its rotation angle θ

as defined in Fig. 1(a).
For obtaining the desired magnetic properties, we chose

chrome steel spheres (alloy AISI 52100). The bulk material
is ferromagnetic and has a large susceptibility χ , which
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FIG. 2. Characterization of the system. (a) Beads magnetization.
Magnetic field H induces a magnetization m in a 500-μm bead
with negligible hysteretic behavior. Here H is successively increased
from 0 (1), decreased (2), and increased back to 0 (3). Values of
H are typical of the experiment. The inset shows a larger cycle up
to saturation magnetization, with the same units. (b) Equilibrium
distance. The dimensionless equilibrium distance d̃eq as a function
of the radial magnetocapillary number Md . The color map shows
distance deq over diameter D. The solid line corresponds to theoretical
prediction without an adjustable parameter, obtained by numerically
solving Eq. (4). Symbols represent different bead diameters.

depends on applied magnetic field H = B/μ0 such that
χ (H ) > 300 [17]. However, a finite ferromagnetic body in a
magnetic field produces a demagnetization effect. An effective
susceptibility χeff takes this effect into account, which for a
sphere has the form χeff = χ/(1 + χ/3) [18]. For χ � 3, the
sphere will thus behave like an isotropic superparamagnetic
particle of susceptibility χeff = 3. In Fig. 2(a) we plot the
experimental magnetization curve m(H ). Indeed, no hysteresis
is observed and the slope gives χeff 	 3, as expected. A
small magnetization remains at zero field, of the order of
100 A m−1, which is negligible for the fields used herein
(typically 5000 A m−1).

IV. RESULTS

Equilibrium distance deq has been measured for three
diameters D and various values of radial magnetocapillary
number Md , changed by varying both Bx and Bz. As shown
in Fig. 2(b), the equilibrium distance calculated from the
interaction potential, as defined in Eq. (4), is in good agreement
with experimental values for large distance deq compared to
diameter D. Indeed, for deq/D � 2 (light-colored points in the
graph), the superposition approximation no longer holds in the
determination of capillary potential Uc [19]. In this case, the
attraction is stronger. These low-deq/D points are also more
broadly distributed for a given Md , which might be due to a
stronger influence, at short range, of anomalies in the contact
line.

In order to characterize the properties of the magneto-
capillary well, a horizontal oscillating induction �β(t) with
magnitude β(t) = β sin(2πf t) and angle α is added. A small
oscillation amplitude β 
 | �Bx | is chosen so that the system
remains close to its equilibrium configuration. Perturbative
analysis gives two oscillation modes in the radial and orthora-
dial directions that we will excite independently. Two values of
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FIG. 3. Resonance spectrum. (a) Amplitude. Frequency response
of distance d and angle θ for typical values of the experimental
parameters (D = 500 μm and Mθ/Md ≈ 0.8). Radial oscillation of
amplitude �d happens for α = 0◦, while orthoradial oscillation of
amplitude �θ happens for α = 90◦. Error bars are smaller than the
symbols, with a typical error of 0.2 μm on the bead center. Data have
been fitted with a resonance curve [see Eq. (10)], represented by solid
lines. (b) Phase. Theoretical prediction for the phase in both cases,
given by Eq. (11). The color map indicates the phase difference �ψ .

angle α corresponding to both directions will thus be studied:
α = 0◦ (radial) and α = 90◦ (orthoradial).

In Fig. 3(a), oscillation amplitudes of distance d and angle
θ are represented as a function of frequency. Each point was
obtained by identifying the geometric center of each bead,
averaged over ten oscillation periods, in order to reach subpixel
precision. Two independent oscillation modes can indeed be
excited: a radial mode of amplitude �d for α = 0◦, for which
d oscillates around deq and θ = 0 (stretching mode), and
an orthoradial mode of amplitude �θ for α = 90◦, called a
swinging mode, for which θ oscillates around 0 and d = deq.
Both modes exhibit a resonance, with distinct resonance
frequencies fd > fθ in this example.

Steady-state solution of a forced damped harmonic oscil-
lator is usually defined as the real part of a complex number
z(t) = R(ω)eiωt with function R(ω) = A(ω)e−iψ(ω). If F0/W

is the driving force per unit mass, we have the following
expressions for amplitude A(ω) and phase ψ(ω), respectively:

A(ω) = F0/W√(
ω2

0 − ω2
)2 + 4ω2/τ 2

(10)

and

ψ(ω) = arctan

(
2ω

τ
(
ω2

0 − ω2
))

, (11)

with angular frequency ω = 2πf , resonance frequency ω0 =
2πf0, and damping time τ . Data in Fig. 3(a) are very well
fitted by the function A(ω), with fit parameters F0/W , ω0,
and τ . The resonance curves correspond to underdamped
harmonic oscillators as the quality factor Q = ω0τ/2 ranges
between 0.6 and 3.8. The resonance frequencies in all our
experiments range between 0.5 and 5.2 Hz. Finally, the time
scale τ given by the fit corresponds to an average viscous
damping coefficient C that grows linearly with bead diameter
D and is close to a Stokes damping CStokes = 3πηD such
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FIG. 4. Resonance frequencies. Comparison between measured
resonance frequency fexpt and theoretical prediction fth for several
values of induction fields Bx , Bz, and β as well as several bead
diameters. Two orientations α of �β are explored that correspond to
radial and angular oscillations, respectively, α = 0◦ on the left and
α = 90◦ on the right. Theory and experiment agree well, with the
exception of distances deq/D � 2 in the case α = 0◦, corresponding
to light-colored points in the left graph.

that C/CStokes = 0.86 ± 0.04. This seems consistent with the
viscous damping of a partially immersed sphere [15,16].
The dispersion of the values can be due to the interaction
between the spheres, as well as slight variations of the wetting
conditions. Note that this average value of C excludes radial
oscillations for which deq/D � 2, which are discussed below.
Figure 3(b) represents the corresponding phases ψ . Because
radial and orthoradial resonance frequencies are distinct, a
phase difference �ψ can arise between modes. Close to
resonance frequencies, we have �ψ ≈ π/2.

Radial and orthoradial resonance frequencies fd and fθ ,
respectively, are determined for different sets of parameters
Bx , Bz, β, and D. Figure 4 compares experimental values
fd,expt and fθ,expt with theoretical predictions fd,th and fθ,th

as defined in Eqs. (7) and (8). The case α = 0◦ shows good
agreement for large values of deq/D, but theory gives overall
an overestimation of frequency fd for distances deq/D � 2.
This evidences the limits of validation of the superposition
approximation in the capillary potential Ucap. Furthermore,
the points corresponding to deq/D � 2 are more broadly
distributed for a given value of fd,th. This might be due
to irregularities in the contact line, caused by hysteresis or
imperfections on the spheres. This effect would only be
visible at short range, where reproducibility is reduced. In
the case α = 90◦, by contrast, theory and experiment agree
well. Indeed, linear regression gives fd,expt ≈ fd,th down to
about 1%. Because distance d is constant in the orthoradial
case, capillarity does not act as a spring force, which explains
why this limit of validation is not observed.

V. DISCUSSION

Controlling the phase difference between degrees of free-
dom is the key ingredient for generating significant nonrecip-
rocal deformations, which are necessary for low-Reynolds-
number propulsion [20]. Indeed, to propel itself, a body
immersed in a fluid must produce a net flow over a time period.
This means that low-Reynolds-number swimmers must find a
way around the time-reversal properties of Stokes flows, either

by using the medium to break symmetry [21] or by undergoing
nonreciprocal, i.e., non-time-reversible, deformations [11,20].
Such deformations can be obtained in a magnetocapillary
assembly by applying time-dependent magnetic induction
fields [11]. Note that the field itself can be time reversible,
as the system spontaneously breaks time-reversal symmetry
through magnetocapillary interactions [12].

In this work we evidenced that for magnetocapillary bonds,
even if the fluid is in a Stokes regime, the Reynolds number
is not the only parameter driving the dynamics of this system;
the system inertia has to be taken into account. Indeed, the
quality factor Q = ω0τ/2 can be over unity, meaning that
the system is underdamped, granted that the stiffness of the
potential and the particle mass are high enough. This is of
interest for creating phase differences between stretching and
swinging of the bonds. Each mode possesses a quality factor
Q, which gives the shape of the resonance curve, and the
ratio of the frequency to the resonance frequency ξ = ω/ω0

allows one to distinguish between the well known regimes of a
forced harmonic oscillator. First, assuming Q > 1 (for Q < 1,
the same discussion can be made using 1/Q instead of Q), if
ξ < 1/Q the oscillator follows the forcing in a quasistatic way,
in phase. Then, if Q > ξ > 1/Q, the dynamics is limited by
the viscous dissipation and the oscillation of the system is in
quadrature with the forcing. Finally, if ξ > Q, the oscillator is
limited by inertia and oscillates in phase opposition with the
forcing.

The stretching and swinging modes of the magnetocapillary
bond are generally detuned (fd �= fθ ). They can both be
excited simultaneously using intermediate angles α (0◦ and 90◦
produce pure radial and orthoradial oscillations respectively).
If the resonances are sufficiently separated, i.e., fd/fθ < 1/Q

or fd/fθ > Q, the excitation frequency can be chosen so that
one mode oscillates in quadrature and the other oscillates
in phase or in phase opposition with the excitation as was
shown in Fig. 3. Therefore, the system can follow simple
nonreciprocal Lissajous curves (ellipses) in the plane (θ,d/D),
whose shape depends on control parameters f and α. Figure 5
represents six cycles for α = 45◦. For each cycle, ten periods
of the oscillating induction are represented. For frequencies
below both resonances, i.e., f < fd and f < fθ , in-phase
oscillations produce reciprocal deformations. When frequency
is increased, cycles appear as oscillations get out of phase.
Around resonance frequencies, the phase difference is close to
π/2. At frequencies higher than both resonances, i.e., f > fd

and f > fθ , cycles disappear as the phase difference decreases
to zero.

Further downscaling of the system could prove useful for
future applications, such as low-Reynolds-number swimming.
To determine if a phase difference is achievable at smaller
scale, we can look at the expressions of quality factors in
radial and orthoradial directions. For a constant ratio D/d we
have

Qθ = ωθτ

2
∼ DB. (12)

This means that the orthoradial q factor can be kept constant,
granted that induction field B is increased accordingly. As a
matter of fact, at the center of a Helmholtz system, we have
B ∼ 1/R, where R is the radius of the coils. If coil size is
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FIG. 5. Deformation cycles. Trajectories in plane (θ,d/D) for
ten periods of the oscillating induction with α = 45◦. Below both
resonance frequencies, in-phase oscillations produce no loop. When
the frequency is increased, loops appearing as oscillations get out
of phase. Above both resonances, cycles disappear as the phase
difference decreases to zero.

decreased along with particle diameter D, with everything else
kept constant, the orthoradial oscillator will behave similarly.
In the radial direction, however, we have

Qd = ωdτ

2
∼ qD2

d
∼ D5

d
(13)

since the capillary charge q ∼ D3. With a constant ratio D/d,
we have Qd ∼ D4, meaning that the radial oscillation is
overdamped at smaller scales. As a result, for small-scale
systems, the only way to achieve nonreciprocal cycles is
to use the orthoradial resonance frequency as the excitation
frequency.

Of course, exciting radial and orthoradial modes using
independent out-of-phase magnetic induction fields would also
generate nonreciprocal motion. However, magnetocapillary
bonds in assemblies of more than two particles are usually not
aligned, meaning that both modes are always excited. This may
explain why a single oscillating sinusoidal field can generate
efficient locomotion [11,12]. Previous theoretical work on
magnetocapillary systems [10] studied the Stokesian motion

of particles in a magnetocapillary well, finding insufficient
symmetry breaking to account for efficient low-Reynolds-
number locomotion in a three-bead system. However, the
frequency was not a relevant parameter in their work. Finally,
it is obvious from Eq. (3) that for larger deformations,
the potential becomes anharmonic. Stretching and swinging
degrees of freedom become coupled, opening a rich variety of
nonlinear behavior.

VI. CONCLUSION

We demonstrated that magnetocapillary bonds can be
created along liquid interfaces. Magnetocapillary numbers
Md and Mθ determine the interdistance and orientation of
the bond, respectively. Then, we proved theoretically and
experimentally that such bonds possess two vibration modes, a
radial stretching mode and an orthoradial swinging mode, that
can be excited independently. These modes exhibit a resonance
when excited, even though the system is in the Stokes regime.
This means that bead inertia must be taken into account and that
frequency is an essential control parameter of the bond. Indeed,
depending on which frequency is applied to the system, it can
experience out-of-phase radial and orthoradial deformations.
This allows one to generate a breaking of time reversibility,
which is required for low-Reynolds-number locomotion. If
this system were to be downscaled, similar dynamics would
occur at the orthoradial resonance frequency.

While this paper focused on near equilibrium dynam-
ics, nonlinear behaviors and coupling certainly matter for
low-Reynolds-number propulsion. Studying the response of
magnetocapillary bonds to finite perturbations would be the
next logical step. Further work should also determine how to
combine several pairs of particles in larger systems. Indeed,
magnetocapillary bonds constitute versatile building blocks
that can be combined to create elaborated microstructures.
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