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Inertial particles are often observed to be trapped, temporarily or permanently, by recirculation cells which
are ubiquitous in natural or industrial flows. In the limit of small particle inertia, determining the conditions
of trapping is a challenging task, as it requires a large number of numerical simulations or experiments to test
various particle sizes or densities. Here, we investigate this phenomenon analytically and numerically in the case
of heavy particles (e.g., aerosols) at low Reynolds number, to derive a trapping criterion that can be used both in
analytical and numerical velocity fields. The resulting criterion allows one to predict the characteristics of trapped
particles as soon as single-phase simulations of the flow are performed. Our analysis is valid for two-dimensional
particle-laden flows in the vertical plane, in the limit where the particle inertia, the free-fall terminal velocity,
and the flow unsteadiness can be treated as perturbations. The weak unsteadiness of the flow generally induces
a chaotic tangle near heteroclinic or homoclinic cycles if any, leading to the apparent diffusion of fluid elements
through the boundary of the cell. The critical particle Stokes number Stc below which aerosols also enter and exit
the cell in a complex manner has been derived analytically, in terms of the flow characteristics. It involves the
nondimensional curvature-weighted integral of the squared velocity of the steady fluid flow along the dividing
streamline of the recirculation cell. When the flow is unsteady and St > Stc, a regular motion takes place due to
gravity and centrifugal effects, like in the steady case. Particles driven towards the interior of the cell are trapped
permanently. In contrast, when the flow is unsteady and St < Stc, particles wander in a chaotic manner in the
vicinity of the border of the cell, and can escape the cell.
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I. INTRODUCTION

The settling of inertial particles in plane two-dimensional
flows characterized by quasisteady recirculation cells is a
situation of wide interest in natural or industrial flows. These
cells can be due for example to the presence of obstacles of
any kind, to temperature gradients, density gradients, or wind
on water flows (see, for example, Stommel [1], Chen and
Fung [2], Fung [3], Maxey and Corrsin [4], Cerisier et al. [5],
to cite but a few). They are characterized by well-defined scales
and shapes, and their lifetime is much larger than their turnover
time. They have been shown to play a key role in the dynamics
of inertial particles, that is tiny objects which do not follow
exactly the fluid motion, like aerosols, sediments, or even
biological objects like plankton [1]. Particles which penetrate
into these cells often perform a few rotations, then exit or get
deposited on the walls if any. They can enter under the effect
of gravity, inertia, or under the effect of any slight perturbation
occurring while the particle passes near the boundary of the
recirculation cell. This trapping process can be permanent, for
example, if particles get deposited on walls, or temporary if
particles exit the cell.

In most situations, theoretical issues related to the complex
dynamics of inertial particles can be investigated with a
reasonable accuracy by means of numerical computations
or analytical models (see, for example, the review paper by
Cartwright et al. [6]). The former generally requires heavy
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computing resources, and consists in solving the Navier-Stokes
equation (for the fluid motion) coupled to Lagrangian or
Eulerian models for the dispersed phase. In most cases, such
computations are time consuming, even if particles do not
affect the flow. The prediction of the degree of contamination
of recirculation cells by inertial particles, which requires
numerous computations with varying parameters, is therefore
a challenging task. In this paper, we combine analytical and
numerical methods to derive an analytical expression for the
critical Stokes number (and therefore the critical size or mass)
of particles which are likely to contaminate a given cell. This
method is valid if the flow field can be written as a steady mean
flow plus any small time-dependent perturbations.

The work is presented in three steps. First, we consider the
transport equations and derive an analytical criterion allowing
one to determine the conditions under which inertial particles
cross the separatrix, that is the limiting streamline between
the cell and the rest of the flow domain (Sec. II). It is
then used to predict particle capture in a simple analytical
flow (Sec. III). Finally, the criterion is applied to accurate
numerical solutions of the Navier-Stokes equations, coupled
to a Lagrangian particle tracking algorithm, in Sec. IV.

II. ASYMPTOTIC ANALYSIS OF SEPARATRIX CROSSING

The structure of steady plane incompressible flows is
the classical structure of 2D volume preserving dynamical
systems, where the Hamiltonian corresponds to the stream
function [7]. These flows are therefore composed of sad-
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dle or elliptic stagnation points, the former being joined
by streamlines, and the latter being surrounded by them.
The recirculation cells are the elliptic stagnation points
and the closed streamlines around them. The “boundaries”
of the cells are formed by limiting streamlines joining
stagnation points, and forming homoclinic or heteroclinic
cycles. These cycles are separatrices playing a key role in
the momentary or permanent trapping of inertial particles.

Let L be the typical length scale of the flow (e.g., the
overall scale of a recirculation cell), and let U be the typical
velocity of the flow. The nondimensional motion equation
of non-Brownian spherical particles with a small Reynolds
number and a density ρp much larger than the fluid density ρf

reads

dv
dt

= 1

St
(u − v) + 1

Fr
ĝ, (1)

where v is the velocity of the center of mass of the particle,
St = D2ρpU/(18μL) is the Stokes number (where μ is the
dynamic viscosity of the fluid), Fr = U 2/(gL) is the Froude
number, and ĝ is the unit vector in the direction of gravity.
The generalization of this theory to particles with a density
of the order of that of the fluid, like sediments in water,
is among the perspectives of this work. Also, particle-wall
interactions, either by direct contact, electrostatic forces, or
hydrodynamic interactions, will be neglected. We will assume
that particles can slip on the walls, if any. Throughout the paper
we will consider that particles have a finite but small inertia,
that is

0 < St � 1.

The flow is composed of a steady component u0 plus a small
unsteady component εu1 (with 0 < ε � 1). This unsteady
term can be due to some noise, or to ambient turbulence with
a weak turbulence intensity.

We exploit the fact that St � 1 and look for a solution of
Eq. (1) of the form

v = u0 + St v1 + O(St2). (2)

In addition, we assume that even though unsteadiness, inertia,
and sedimentation are small perturbations, none of these
effects dominates the other two. Therefore, St is of the order of
the amplitude of the unsteady component, that is St = O(ε),
and the free-fall velocity St/Fr is also of the order of the
unsteady component εu1. In particular, the Froude number
Fr is held fixed as ε and St tend to zero. Approximation (2)
manifests the fact that if particles are sufficiently small, their
velocity v(t) is always close to the steady fluid velocity u0(x)
at the particle position x(t), and gravity and inertia as well as
flow unsteadiness can be treated as perturbations [8]. Under
these conditions we obtain a reduced dynamical equation for
inertial particles (see also Refs. [9,10]):

ẋ(t) = v(t) � u0(x) + εu1(x,t) + St

Fr
ĝ − St (u0 · ∇)u0, (3)

plus quadratic combinations of ε and St. This equation will be
used below.

We now consider a separatrix streamline (also denoted
as dividing streamline) of the steady flow u0 joining two
saddle stagnation points A and B, with the flow from A to

FIG. 1. Sketch of the stagnation points A and B of the steady
flow u0, joined by a separatrix streamline [panel (i)]. Vector n is the
unit vector perpendicular to u0, such that (u0,n) is counterclockwise
about the z axis. Some examples which will be treated in this paper:
circular cell (ii), cavity flow (iii), and backward facing step (iv).

B (Fig. 1). In the following, the separatrix will be simply
denoted by AB. The dynamics near AB can be investigated
by using classical methods originally developed for separatrix
maps [11–13]. We consider a solution x(t) of the complete
perturbative equation (3), and determine the variations of
the unperturbed stream function ψ0[x(t)] [defined by u0 =
∇ × (ψ0 ẑ)] along this perturbed trajectory. Also, we will
consider the “undisturbed stream function seen by the particle,”
that is the variation of ψ0 at discrete times τn and τn+1, where
τn and τn+1 are two consecutive times when the trajectory x(t)
passes closest to the stagnation points A and B, respectively:

�ψ
p

0 = ψ0[x(τn+1)] − ψ0[x(τn)]. (4)

Using Eq. (3) this quantity reads

�ψ
p

0 =
∫ τn+1

τn

∇ψ0 ·
(

εu1(x,t) + St

Fr
ĝ − St (u0 · ∇)u0

)
dt.

(5)

The sign of �ψ
p

0 contains direct information about the
behavior of the particle near the heteroclinic cycle containing
AB: a constant sign will indicate that the particle penetrates
(or exits) the cell once and for all, whereas oscillating signs
correspond to a chaotic motion: particles cross the separatrix
AB in a complex manner (see Chirikov [13], Guckenheimer
and Holmes [14], and Del Castillo-Negrete [15]).

The variation of the undisturbed stream function �ψ
p

0 is
calculated as follows. We consider a Cartesian coordinates
system (x,y) in the plane of the flow, with unit vector x̂ in the
horizontal direction, and unit vector ŷ directed upward (that
is, ŷ = −ĝ). Let tn ∈]τn,τn+1[ be the time when x(t) passes
nearest to some reference point C on separatrix AB (with C

not equal to A nor B). By writing that x(t) � q(t − tn), where
q(t) is an exact solution of the unperturbed dynamics on AB

with q(0) = C, we are led to

�ψ
p

0 � �ψ
f

0 + St

Fr
(AB × ĝ) · ẑ − St〈|u0|2〉c, (6)

053116-2



CRITICAL STOKES NUMBER FOR THE CAPTURE OF . . . PHYSICAL REVIEW E 93, 053116 (2016)

where AB is the displacement vector joining A and B, and

�ψ
f

0 = ε ẑ ·
∫ +∞

−∞
q̇ × u1(q(t),t + tn) dt, (7)

is the variation of stream function for fluid points, and

〈|u0|2〉c = ẑ ·
∫ +∞

−∞
q̇ × q̈ dt (8)

is related to centrifugal effects and will be discussed below.
In these calculations we have introduced the unit vector
ẑ = x̂ × ŷ, which is perpendicular to the plane of the flow.
Also, (AB × ĝ) · ẑ = −(AB × ŷ) · ẑ = −AB · x̂, and will be
denoted as −xAB in the following.

These results have been obtained by making use of the fact
that, by definition of q, we have q̇ = u0 and q̈ = (u0 · ∇)u0.
Also, the dynamics of q(t) is very slow near the stagnation
points A and B, so that integrals over [τn − tn,τn+1 − tn]
have been replaced by integrals over [−∞,∞] [12,13].
The coefficient 〈|u0|2〉c is the effect of the curvature of
separatrix AB on the dynamics of inertial particles. Indeed,
the local curvature is R−1 = ẑ · q × q̈/|q̇|3 so that 〈|u0|2〉c is
exactly zero for straight separatrices, and is strictly nonzero
for separatrices with a constant curvature. Inertial particles,
experiencing a centrifugal force along curved separatrices,
tend to drift towards the exterior of the recirculation cell,
and this effect brings a constant contribution into �ψ

p

0 . The
coefficient 〈|u0|2〉c can be rewritten as a curvilinear integral
along the separatrix:

〈|u0|2〉c =
∫ +∞

−∞
|q̇|3 dt

R(t)
=

∫ B

A

|u0|2 ds

R(s)
, (9)

where s is the arc length, and we made use of the fact that
|q̇|dt = |dq| = ds. The last integral is a curvature-weighted
integral of the undisturbed squared fluid velocity, and this is
why we have chosen to denote it by the bracket 〈·〉c. Note that
this integral is not always positive, as the curvature is a signed
quantity: when nonzero, R−1 is positive for counterclockwise
streamlines, and negative otherwise. Under these conditions
Eq. (6) leads to

�ψ
p

0 � �ψ
f

0 − St

Fr
xAB − St 〈|u0|2〉c. (10)

Equation (10) shows that flow unsteadiness, gravity, and
curvature bring additive contributions into �ψ

p

0 . A positive
�ψ

p

0 means that particles moving in the vicinity of separatrix
AB will drift, during the time interval [τn,τn+1], towards the
left of the streamline [i.e., towards n̂; see Fig. 1(i)]. Negative
contributions correspond to particles drifting towards its right-
hand side (i.e., towards −n̂). The flow unsteadiness brings a
varying sign. The contribution of gravity has the sign of −xAB

and, since particles are heavier than the fluid here, it always
corresponds to particles driven downward. The curvature-
weighted integral of the squared velocity 〈|u0|2〉c is positive
(negative) if AB forms a counterclockwise (clockwise) curve.
In both cases it corresponds to a centrifugal effect.

Finally, let ε α denote the peak value of the variation of
stream function of perturbed fluid points trajectories along the
separatrix:

ε α = max−∞<tn<∞
∣∣�ψ

f

0 (tn)
∣∣.

A sufficient condition for the sign of �ψ
p

0 to remain constant
for all n is

St > Stc = ε α

|xAB/Fr + 〈|u0|2〉c| , (11)

where α only depends on the structure of the flow and manifests
the effect of unsteadiness. The curvature-weighted integral
〈|u0|2〉c also is independent of the particle characteristics. It
only depends on the geometry of the separatrix AB and on the
steady velocity distribution along this streamline.

All variables in the results above have been set nondimen-
sional by using some flow length scale L and velocity U . The
dimensional counterpart of Eq. (11) is

τp > τpc = δ

|g XAB + 〈|U0|2〉c| , (12)

where τp = St × L/U is the response time of the inertial
particle; XAB is the dimensional x coordinate of vector
AB; U0 is the dimensional undisturbed fluid velocity vector;
δ = ε α × UL has the dimension of a diffusion coefficient
(m2/s). It is the flux of fluid points within the stochastic zone
near separatrix AB, due to the flow unsteadiness (see, for
example, Beigie et al. [16,17] and Solomon et al. [18]). Note
that this quantity is not related to inertial particles and only
depends on the structure and on the unsteadiness of the fluid
flow.

The criterion in Eq. (12) can also be written as D > Dc,
where Dc is the critical diameter of the particle:

Dc =
(

18
μ

ρp

τpc

)1/2

. (13)

This expression will be used in the next sections, and compared
to numerical simulation results.

Structure of invariant manifolds. To understand further the
physical meaning of these analytical results, consider the
structure of the invariant manifolds of particle’s dynamics
(sketched in Fig. 2). Assuming that particles are allowed to
slip on the wall, separatrix AB and walls form a heteroclinic
cycle. We consider Poincaré sections of the particle dynamics:
x(tn + kT ), where k is an integer, T is the period of some
external perturbation, and tn is any arbitrary time where the
Poincaré section starts. Because the leading-order dynamics
in (3) has hyperbolic saddle points A and B, the Poincaré
map of the perturbed dynamics will also display hyperbolic
points A and B in the vicinity of the undisturbed ones, the
eigenvalues of which have the same signs as the unperturbed
ones provided the perturbation is small enough. Therefore,
an unstable invariant manifold Wu emerges from A and a
stable manifold converges towards B. The two manifolds,
which coincided with the separatrix streamline in the steady
case, no longer coincide in the unsteady dynamics in general.
The existence of intersection points between both manifolds
is related to the existence of zeros in �ψ

p

0 (tn) (see, for
example, Ref. [14]). If �ψ

p

0 (tn) is strictly negative for all tn,
then manifolds do not intersect each other and take the form
sketched in Figs. 2(a) and 2(c) (in the case of the cavity and
of the backward-facing step with AB towards positive x). Any
low-St particle, injected sufficiently close to A, will be driven
towards the interior of the cell and never exit. This happens
in the steady case, or in the unsteady case with St > Stc. In
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FIG. 2. Sketch of the invariant manifolds of the dynamics of
particles in the cavity flow (a),(b) and in the backward facing step flow
(c),(d), when particles are assumed to slip on the walls. In the steady
case, or in the unsteady case with St > Stc (that is D > Dc), manifolds
do not intersect and take the form (a) and (c) if gravity dominates
inertial curvature effects: the motion is regular and particles entering
the cell cannot exit. In the unsteady case with St < Stc (that is
D < Dc), manifolds take the form (b) and (d): the motion is chaotic;
some particles can enter and exit the cell in a complex manner. Case
(e) corresponds to a regular motion when centrifugal effect dominates.
Panel (f) is a sketch of a trajectory wandering in the stochastic zone
near the separatrix.

contrast, if �ψ
p

0 (tn) has simple zeros when tn varies, then the
manifolds will have an infinite number of intersection points
[Figs. 2(b) and 2(d)]: particles injected near A can have a
chaotic dynamics near the heteroclinic loop, and enter and
exit the cell in an unpredictable manner. This kind of behavior
happens in the unsteady case when St < Stc.

Note that the regular behavior can also happen when
centrifugal effects dominate gravity and unsteadiness. Indeed,
if AB is clockwise (〈|u0|2〉 < 0) and −〈|u0|2〉 dominates
both the unsteady term �ψ

f

0 and the gravity term xAB/Fr,
then �ψ

p

0 (tn) is always positive: particles will be centrifuged
away irrespective of their Stokes numbers, provided it is
small enough. In this regime, sketched in Fig. 2(e), any
particle injected close enough to the heteroclinic cycle will
be centrifuged away.

III. APPLICATION TO AN ANALYTICAL FIELD
AND VALIDATION OF THE NUMERICAL APPROACH

The method, and its applicability to numerical velocity
fields, is first tested by means of an elementary analytical

velocity field:

ψ(x,y,t) = ψ0(x − ε sin ωt,y) � ψ0(x,y)

+ v0(x,y)ε sin ωt + O(ε2), (14)

where the steady (nondimensional) stream function ψ0 is taken
to be

ψ0(x,y) = y(x2 + y2 − 1), (15)

and v0(x,y) = −∂ψ0/∂x is the corresponding vertical veloc-
ity. This steady flow is sketched in Fig. 1(ii): it consists in a pair
of half-circular cells with a unit radius. The perturbed stream
function ψ corresponds to a periodic rigid-body translation of
the flow (15) in the horizontal direction.

We first consider the upper dividing streamline, that is the
upper half circle AB in the half plane y > 0. Gravity is along
−y: it pushes particles within the cell, and is opposed to
centrifugal effects. By inserting the analytical expression of
u0(x,y) into Eq. (9), and setting x = sin φ and y = cos φ, the
curvature-weighted integral is readily calculated. We obtain
〈|u0|2〉c = −2π , the negative sign being due to the fact that
the upper dividing streamline is clockwise. Moreover, for this
simple flow, a solution q = (qx(t),qy(t)) of the unperturbed
dynamics on AB can be readily obtained, and we get

qx(t) = tanh 2t, qy(t) = 1

cosh 2t
. (16)

By inserting these functions into (7) we obtain an exact
expression for �ψ

f

0 , and

�ψ
p

0 (tn) � π

2

ω2 ε

cosh(πω/4)
sin ωtn + 2St

(
π − 1

Fr

)
, (17)

where we have used xAB = 2. Therefore, in the steady case
(ε = 0), �ψ

p

0 (tn) is of the sign of (π − 1
Fr

) for all tn: this
means that, if Fr < 1/π gravity drives inertial particles inside
cell irrespective of the (small) Stokes number St. In contrast,
if Fr > 1/π centrifugal effects dominate and particles slip
on the arc AB and slowly drift away from it: any low-St
particle coming from the upstream region “bounces” on the
cell. This last situation corresponds to the case where the
unstable manifold Wu emerging from A is towards the exterior
of the cell and never intersects Ws [as sketched in Fig. 2(e)
for the step]. Note that a peculiar case emerges if Fr = 1/π :
here gravity and centrifugal effect balance each other and
�ψ

p

0 (tn) is an oscillating function, whatever the (small) Stokes
number is.

For the lower dividing streamline AB of the circular cell,
i.e., the half-circle AB in the plane y < 0, we have 〈|u0|2〉c =
+2π , and we get

�ψ
p

0 (tn) � −π

2

ω2 ε

cosh(πω/4)
sin ωtn − 2St

(
π + 1

Fr

)
. (18)

Hence the critical Froude number does not exist here, and both
gravity and centrifugal effects push the particles out of the cell,
downward.

In the unsteady case (ε �= 0), formulas (17) and (18) imply
that the undisturbed stream function seen by the particle
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FIG. 3. Continuous lines: critical Stokes numbers St+c (solid line)
and St−c (dashed line), for the circular separatrices of the analytical cell
flow (14), obtained from the theoretical expressions (19). Symbols:
the critical Stokes numbers obtained from numerical simulations of
a large number of particle trajectories in the same flow discretized
on a mesh. Numerical values of the parameters in these simulations:
ρp/ρf = 1000, Fr = 0.1, and ε = 0.05.

oscillates with tn if

St < St±c (ω) = π

|π ± 1/Fr|
ω2 ε

4 cosh(πω/4)
, (19)

the ± sign corresponding to the upper (+) and lower (−)
separatrix respectively. The curves St+c (ω) and St−c (ω) have
been plotted in Fig. 3 when Fr = 0.1 (< 1/π ) and ε = 0.05:
they have a maximum when ω � 2.63, and decay rapidly
when ω increases above this value. These curves will be
compared to numerical results below. Finally, the theory can
be applied to the horizontal separatrix of the cellular flow
(with A playing the role of B and vice versa), and we readily
obtain �ψ

p

0 (tn) = 2 St/Fr for all n. This means that, for such
a horizontal perturbation, only gravity matters and drives the
particles towards the lower half-cell during their motion from
B to A.

Because we want to determine the critical Stokes number
of inertial particles advected by numerical velocity fields, we
have performed numerical computations of particle trajectories
using a discretization of the analytical velocity field (14).
Typical clouds with various diameters are shown in Fig. 4. We
then have checked whether or not particles have an irregular
dynamics around the dividing streamlines, for various ω’s
between 0 and 12, and recorded the corresponding critical
Stokes number below which this happened. This Stc has then
been compared to the theoretical expression (19) in Fig. 3.
We observe that the agreement is good, so that the asymptotic
analysis can be applied to numerical velocity fields also.

The application of the asymptotic theory to numerical fields
requires that the positions of points A and B, and the curvature-
weighted integral 〈|u0|2〉c, be determined from the discrete
velocity field. In the case of the cellular flow investigated in this
section, separatrix AB has been determined approximately by
calculating a fluid point trajectory in the steady velocity field

FIG. 4. Test case: typical clouds of particles transported in the
vicinity of the unsteady cell flow (14), and initially injected near
point A, with y > 0. Six particle diameters are used, corresponding
to six different values of the Stokes number. All Stokes numbers
are supercritical for the lower separatrix (that is, St−c < St). Hence
particles that reach the lower circular separatrix AB are too inertial
to reenter the cell. Numerical values of the parameters in these
simulations: ρp/ρf = 1000, Fr = 0.1, and ε = 0.05.

(ε = 0), injected very close to point A. The curvature-weighted
integral 〈|u0|2〉c is then computed. For our finest mesh we
obtain 〈|u0|2〉c � −6.28, which agrees reasonably with the
expected value −2π .

Note however that the computation of 〈|u0|2〉c done in
this section could also be performed from any velocity
field obtained by solving the Navier-Stokes equations with
a numerical solver. Then, the behavior of particles near the
separatrix can be predicted by simply applying formula (11),
or its dimensional counterpart (12), without doing any inertial
particle tracking. This is done in the next section, in the case
of a cavity flow and of a backward-facing step.

IV. APPLICATION TO NUMERICAL VELOCITY FIELDS

To illustrate further these results and show their applica-
bility to numerical solutions of the Navier-Stokes equations,
we consider the classical examples sketched in Figs. 1(iii)
and 1(iv). We claim that the behavior of particles can be
analyzed by calculating the various terms of Eq. (10), rewritten
here in dimensional form (keeping the same symbols for
stream functions):

�ψ
p

0 � �ψ
f

0 − g τp XAB − τp 〈|U0|2〉c. (20)

Numerical method. For both the cavity and the backward
facing step, numerical simulations using a finite-volume
algorithm have been performed on a structured mesh using
Gauss integration and linear interpolations. The prediction-
correction PISO algorithm has been used [19]. Time stepping
is done by means of a Crank-Nicolson scheme, and a CFL
number (Courant-Friedrichs-Lewy) below 0.1 is used in all
cases. Particles are calculated by means of linear interpolation
coupled to a Euler time-stepping method. They are allowed
to slip on the walls, so that the separatrix streamline and the
wall form a heteroclinic loop. For each geometry, two runs
have been performed. First, a steady boundary condition has
been used, together with a moderate Reynolds number, to
obtain a steady velocity field with streamlines of the form
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of those sketched in Fig. 1. Then, the separatrix and the
curvature-weighted integral 〈|U0|2〉c have been computed, and
injected into formula (12). This equation also requires one
to determine the flux δ. This quantity, which is only flow
dependent, can be estimated after a run involving fluid points
only, since the variation of stream function is also the flow rate
between the two corresponding streamlines. In the vicinity of
any point C of the separatrix we have

δ = max
tn

∣∣�ψ
f

0 (tn)
∣∣ ∼ |ψ0(M) − ψ0(N )|,

where M and N denote the intersection between the border
of the stochastic zone and the line normal to separatrix AB at
C [see Fig. 2(f)]. A first-order expansion of ψ0(M) − ψ0(N )
leads to

δ ∼ d |U0(C)|, (21)

where d = |MN | is the thickness of the stochastic layer at C.
By measuring the thickness d from fluid point simulations,
we estimate the flux of fluid points δ from formula (21), and
the critical response time τpc, or diameter Dc from Eqs. (12)
and (13). We have checked that the exact position of C on the
separatrix does not affect the resulting δ, as expected. These
predictions have then been compared to those obtained by
tracking a large number of particles injected near A, and by
checking whether separatrix crossing occurred.

Cavity flow. We first consider the flow above a two-
dimensional open cavity sketched in Fig. 1(iii). This flow has
been widely investigated, in various contexts [20–22]. The
upstream flow has an imposed parabolic velocity profile with
a cross-sectional average velocity U 0

∞ = 0.13 m/s. The depth
and width of the cavity are L = 0.01 m and W = 0.02 m,
respectively. The corresponding Reynolds number, based on
the viscosity of air at 20 ◦C, is Re = U 0

∞L/ν ≈ 90, which
corresponds to a moderate value. The flow is steady and
characterized by a separatrix streamline AB separating open
streamlines (above the cavity) from closed streamlines (in the
cavity). We have chosen to introduce some unsteadiness by
imposing a pulsatile velocity upstream of the cavity:

U∞(t) = U 0
∞(1 + ε sin ωt), (22)

with ω = 26.2 rad/s, which corresponds to a period of the
order of the convective time over the cavity, and ε = 0.05. The
question of interest here is to determine under which conditions
aerosols released outside (near point A) can be captured
within the cavity, and remain there either permanently or
temporarily. By computing a Lagrangian fluid point trajectory
near AB we get 〈 |U0|2 〉c � 2.5 × 10−4 m2/s2 � gXAB =
g W � 0.2 m2/s2, so that gravity dominates and Eq. (20) reads

�ψ
p

0 � �ψ
f

0 − g τp XAB. (23)

We therefore conclude that, in the steady case [�ψ
f

0 (tn) = 0
for all n], the structure of the manifolds is similar to the one
sketched in Fig. 2(a), and particles injected sufficiently close
to A drop regularly in the cell and cannot exit. This behavior
persists in the unsteady case provided τp > τpc given by

τpc � δ

g W
. (24)

FIG. 5. Critical diameter obtained from the asymptotic theory
(solid line: cavity; dashed line: backward-facing step). Symbols
indicate the diameters obtained by tracking a large number of inertial
particles (circles: cavity; triangles: backward-facing step). Numerical
values of the parameters: ω = 26.2 rad/s; ε = 0.05.

In contrast, particles such that τp < τpc, injected close enough
to the separatrix, will have a chaotic dynamics and wander in
and out. The flux of fluid points along the stochastic zone δ has
been obtained by measuring the thickness d of the stochastic
zone around the separatrix AB, and using formula (21). We
obtain δ � 5.0 × 10−5 m2/s. This leads to a critical response
time τpc � 2.5 × 10−4 s. To check these predictions we have
computed inertial particle trajectories with varying density
ratios ρp/ρf . We then have controlled whether particles can
exit the cavity or not. The critical diameter below which
this happens has been plotted versus the density ratio [Fig. 5
(circles)]. The analytical Dc [obtained from Eqs. (24) and (13)]
has been plotted on the same graph (solid line); we observe that
the agreement is satisfactory. The systematic overestimation of
the theoretical diameter, compared to the numerical one, might
be due to the numerical determination of the thickness of the

FIG. 6. Typical clouds of particles moving in the vicinity of the
cavity flow. The thick line is the dividing streamline AB of the steady
flow. Colors indicate particles’ diameter D, in microns. All particles
are injected near A, and their density is ρp = 100 kg/m3. Those for
which D > Dc = 26.5 microns have a regular dynamics and cannot
exit. Other parameters: U 0

∞ = 0.13 m/s, cavity size 1 cm × 2 cm,
ω = 26.2 rad/s, and ε = 0.05.
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FIG. 7. Typical clouds of particles moving in the vicinity of
the backward facing step. The thick line is the dividing streamline
AB of the steady flow. Colors indicate particles’ diameter D, in
microns. All particles are injected near A, and their density is ρp =
100 kg/m3. Those for which D > Dc = 34.5 microns (red particles)
drop in the cell and are trapped permanently. They have a regular
dynamics. Those for which D < Dc (blue) have a chaotic dynamics
near the heteroclinic cycle and can exit in a complex manner.
Other parameters: U 0

∞ = 0.17 m/s, vertical step size L = 0.01 m,
ω = 25.2 rad/s, and ε = 0.05.

stochastic layer d. Indeed, by measuring d from fluid points
simulations, we slightly overestimate the actual thickness.
Therefore, the theoretical critical diameter is overestimated
too. Snapshots of particle clouds with diameters D ∈ [1,50]
microns are shown in Fig. 6 in the case where ρp = 100 kg/m3.
All particles are injected near A. The most inertial particles
(in red), for which D > Dc = 26.5 microns, drop in the cavity
and remain there permanently.

Backward-facing step. A similar analysis has been done
with the backward-facing step flow sketched in Fig. 1(iv).
This flow has been widely investigated numerically or ex-
perimentally [23–26]. It is an interesting configuration where
centrifugal and gravity effects act in opposite directions
if the step is downward. Indeed, we have gXAB > 0 and,
because the dividing streamline is clockwise, 〈|U0|2〉c < 0.
In our simulations, the upstream flow is horizontal with a
cross-sectional average velocity U 0

∞ = 0.17 m/s. The vertical
size of the step is L = 0.01 m and the Reynolds number is
Re = U 0

∞L/ν ≈ 115. Here also, for such a moderate Reynolds
number, the flow is steady. Also, XAB = 0.057 m. The gravity
term appearing in Eq. (20) is gXAB � 0.56 m2/s2 and the cur-
vature term is 〈 |U0|2 〉c � −0.00145 m2/s2. Gravity therefore
dominates the dynamics of particles near the separatrix: in the
steady case the structure of the manifolds is similar to the one
sketched in Fig. 2(c), and particles injected very close to A drop
regularly in the cell and cannot exit. This behavior persists in
the unsteady case provided τp > τpc given by Eq. (12). In these
simulations also unsteadiness is forced by imposing a pulsatile
inlet velocity [Eq. (22)]. The corresponding critical diameter
is plotted in Fig. 5 (triangles). The flux δ has been obtained
by computing fluid points trajectories near the separatrix, and
measuring the thickness of the stochastic zone. Then, by using

formula (21), we get δ � 2.5 × 10−4 m2/s. The corresponding
critical diameter is shown on the same graph (dashed line).
Figure 7 shows particle clouds with various diameters between
32 and 38 microns.

V. CONCLUSION

The analysis presented in this study faithfully predicts
the behavior of low-Reynolds number heavy particles in the
vicinity of the boundary of recirculation cells. It concerns the
limit of vanishing Stokes numbers, that is particles with a
finite but small inertia. For such particles, separatrix crossing
depends on the competition between three mechanisms,
namely flow unsteadiness, streamline curvature, and gravity.
The former effect always contributes to separatrix crossing
and chaotic dynamics (if the separatrix is part of a homoclinic
or heteroclinic cycle). The other effects can either contribute
to separatrix crossing or be opposed to it, according to the
geometry of the unperturbed flow. The criterion which has
been derived in the present study enables one to predict the
various situations. It has been first confronted to numerical
results involving an analytical flow discretized on a grid. Then,
the criterion has been applied to numerical solutions of the
Navier-Stokes equations, and we obtained satisfactory results.

Note that the method can be applied to a wide variety of
two-dimensional unsteady flows, even if the unsteadiness is
more complex than the periodic time dependence considered
here. In particular, the method should work also for multimodal
perturbations, or even turbulent flows, provided the turbulence
intensity is weak (i.e., the typical scale u′ of velocity fluctua-
tions is much smaller than the scale U of the average velocity).
The only contribution of the flow unsteadiness to separatrix
crossing is contained in the flux δ, which can be measured
accurately from simulations of fluid point trajectories and
Poincaré sections near the separatrix.

The generalization of the asymptotic analysis to particles
that are not much heavier than the fluid is the next step of this
work. In this case additional contributions of the hydrodynamic
force must be taken into account: pressure gradient of the
undisturbed flow, added mass, history force, and drag and lift
due to the inertia of the displaced fluid. Even though the exact
expression of the last two forces is still under debate, they
are known to affect the complex dynamics of the particles
(see, for example, Guseva et al. [27] for a detailed analysis
of the effect of the history force). The generalization of the
asymptotic analysis to such particles would be useful for the
prediction of tiny objects in water flows.
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