
PHYSICAL REVIEW E 93, 053111 (2016)

Analytical scalings of the linear Richtmyer-Meshkov instability when a shock is reflected
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When a planar shock hits a corrugated contact surface between two fluids, hydrodynamic perturbations are
generated in both fluids that result in asymptotic normal and tangential velocity perturbations in the linear
stage, the so called Richtmyer-Meshkov instability. In this work, explicit and exact analytical expansions of the
asymptotic normal velocity (δv∞

i ) are presented for the general case in which a shock is reflected back. The
expansions are derived from the conservation equations and take into account the whole perturbation history
between the transmitted and reflected fronts. The important physical limits of weak and strong shocks and the
high/low preshock density ratio at the contact surface are shown. An approximate expression for the normal
velocity, valid even for high compression regimes, is given. A comparison with recent experimental data is done.
The contact surface ripple growth is studied during the linear phase showing good agreement between theory and
experiments done in a wide range of incident shock Mach numbers and preshock density ratios, for the cases in
which the initial ripple amplitude is small enough. In particular, it is shown that in the linear asymptotic phase,
the contact surface ripple (ψi) grows as ψ∞ + δv∞

i t , where ψ∞ is an asymptotic ordinate different from the
postshock ripple amplitude at t = 0+. This work is a continuation of the calculations of F. Cobos Campos and
J. G. Wouchuk, [Phys. Rev. E 90, 053007 (2014)] for a single shock moving into one fluid.
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I. INTRODUCTION

Since the middle of the last century much interest has
been devoted to the study of the hydrodynamic perturbations
that are created behind corrugated shock fronts [1–4]. We
focus on the Richtmyer-Meshkov instability (RMI), which
generally evolves after a planar shock hits a corrugated contact
surface between two fluids. It has received considerable
attention, either because of its importance in the success of
the implosion of thermonuclear targets in inertial confinement
fusion (ICF), in shock tube research and in the interaction
with turbulent flows in general, or more recently, because
of its inherent implications in the study of matter at high
energy densities (HEDP) [5–37]. Anytime a planar shock
front collides with a contact surface separating two fluids with
different thermodynamic properties, a shock is transmitted and
a shock or rarefaction wave is reflected back in the first fluid.
We refer to Fig. 1, where an incident shock (not shown) has
impinged with velocity Di onto a contact surface located at
x = 0, at t = 0. It came from the right and has compressed
fluid b from ρb0 to ρb1. The fluid velocity behind the incident
shock is U1. The material surface separates two ideal gases
a and b that are initially at rest in the laboratory frame. The
pressure in front of the incident shock is p0, and p1 is its
value behind. We assume ideal gases with adiabatic exponents
γa and γb. The sound speed of the uncompressed fluid b is
cb0 = √

γbp0/ρb0. If we define the incident shock strength as
zi = (p1 − p0)/p0, the incident shock Mach number Mi is
given by [1]

Mi = Di

cb0
=

√
1 + γb + 1

2γb

zi . (1)

To the left of the contact surface, the other fluid has initial
density ρa0. We define the initial density ratio between both
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gases as R0 = ρa0/ρb0. At t = 0+, when the incident shock
has completely disappeared, a transmitted shock travels to
the left inside fluid a and a reflected shock or rarefaction
moves to the right inside fluid b. In this work, we will only
study the cases in which another shock is reflected back into
fluid b. For a rarefaction to be driven back, the values of the
initial parameters have to be chosen differently [9] and will
not be considered in this work. For given values of γa , γb, and
Mi , there is a minimum value of the preshock density ratio
Rm

0 , such that a shock is reflected only if R0 > Rm
0 . If the

contact surface is corrugated with perturbation wavelength λ

and initial ripple amplitude ψ0, as indicated in Fig. 1, pressure
and velocity perturbations are generated behind the rippled
transmitted and reflected fronts. These perturbations consist of
irrotational fluctuations in the form of evanescent sound waves
and of vorticity or entropy perturbations which are frozen to
the fluid elements for inviscid fluids [5,7,29,32–34]. In fact,
due to the conservation of tangential velocity at the corrugated
fronts, transverse velocity perturbations are generated inside
the compressed fluids which account for vorticity generation
in their bulks. This effect is stronger for stronger shocks and/or
very compressible fluids [11,15,29]. For ideal gases, the shock
ripples will decrease to zero when the shocks separate from
the contact surface a distance greater than λ, which makes
the pressure perturbations fade away in time. Hence, for a
sufficiently long time after the incident shock refraction, the
pressure perturbation field in the compressed fluids tends to
zero. Therefore, the fluid acceleration vanishes in time and a
quiescent velocity field emerges at both sides of the material
surface. The velocity field attains its maximum value at the
x = 0 surface and decays spatially at both sides. Very near the
interface, the decay is mainly exponential, exp(−k|x|), where
k = 2π/λ and |x| is the normal distance to the contact surface.
However, far from the interface, the spatial decay of the
velocity profile is controlled by the vorticity field generated by
the rippled fronts [7,11] and, therefore, it shows an oscillatory
decay with an envelope that vanishes with normal distance
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FIG. 1. A planar incident shock (not shown) has compressed fluid
b from density ρb0 to ρb1 with pressure p1. At t = 0, the incident
shock arrives at the corrugated contact surface (x = 0). At t > 0+
a corrugated reflected shock moves to the right with velocity Dr +
ψ̇r (t). The transmitted shock moves into fluid a, to the left, with
velocity Dt + ψ̇t (t). Tangential velocities δvya and δvyb evolve at
both sides of the contact surface. At the same time, the material
surface ripple grows with normal velocity U + δvi .

as (kx)−3/2 [11,15,38]. At the contact surface, the normal
velocity reaches the value δv∞

i and the asymptotic tangential
velocities at both sides are δv∞

ya and δv∞
yb. The three velocities

are not independent and are related in a specific way that is a
function of the shock compression. In order to have bounded
velocity perturbation fields far from the contact surface, we
must require [11,15]∣∣δv∞

i

∣∣ − ∣∣δv∞
ya

∣∣ = Fa,∣∣δv∞
i

∣∣ − ∣∣δv∞
yb

∣∣ = Fb, (2)

where Fa and Fb are weighted averages of the vortic-
ity generated behind the rippled shock waves in each
fluid [11,15,17,39]. These two equations are the analogs of
Eq. (42) of [39] and are the natural boundary conditions to be
imposed at the contact surface when matching the asymptotic
velocity fields of both fluids. The values of Fa and Fb are
dependent on the whole perturbation evolution since t = 0+
and are a function of the incident shock strength as well as on
the fluid compressibilities and initial density ratio [15,39].
Their exact values must be obtained by solving a set of
coupled functional equations, which so far has resisted a closed
analytical solution written with a finite number of terms, as
explained in [15,39]. Despite the complexities in getting exact
numerical values of Fa and Fb, these quantities can be studied
in different important physical limits by means of adequate
Taylor expansions, or approximate expressions obtained by
truncation of the iteration process involved in the solution of
the corresponding equations. The aim of this work is to show
accurate Taylor expansions in some important physical limits
and an approximate expression of the asymptotic velocity
at the contact surface approximately valid in a wide range
of incident Mach numbers. Furthermore, a detailed study of
the temporal evolution of the contact surface corrugation is
presented over the time interval in which the perturbation
evolves linearly. Recent experiments done with shock tubes
spanning an interesting range of incident shock Mach numbers,
preshock density ratios, and initial corrugation to wavelength

ratios are analyzed with the theoretical tools provided in this
work. The calculations shown here are an extension of the
model published in Ref. [39]. Along this work we normalize
the normal velocity, as suggested by [8], in units of kψ0Di

and define ui = δv∞
i /(kψ0Di). Each different physical limit

will result in a corresponding expansion for the dimensionless
normal velocity at the contact surface. We thus have

ui = a1(Mi − 1) + a2(Mi − 1)2 + a3(Mi − 1)3

+ a4(Mi − 1)4 + O[(Mi − 1)5], Mi − 1 � 1,

ui = b0 + b1

M2
i

+ O

(
1

M4
i

)
, Mi � 1,

ui = c0 + c1
(
R0 − Rm

0

) + c2
(
R0 − Rm

0

)2 + c3
(
R0 − Rm

0

)3

+ c4
(
R0 − Rm

0

)4 + O
[(

R0 − Rm
0

)5]
, R − Rm

0 � 1,

ui = d0 + d1

R
1/2
0

+ d2

R0
+ d3

R
3/2
0

+ d4

R2
0

+O

(
1

R
5/2
0

)
, 1 � R0 < ∞, (3)

where Rm
0 is the minimum value of the preshock density

ratio that warrants a shock reflected inside fluid b, for given
values of γa , γb, and Mi . The coefficients appearing in
the previous equations are calculated by expansion of the
functional equations as Taylor series of the corresponding
small parameter. The limits of very compressible fluid a and
highly incompressible fluid b could also be studied on the same
grounds, but we have found that the corresponding expansions
would show a very small convergence radius. Therefore, a
study of the growth rate in those limits would require a deeper
analysis of the singularities of the background profiles in the
complex plane, giving rise to quite involved calculations, and
are left for future research.

This work is structured as follows: In Sec. II, the zero order
profiles that relate the postshock quantities to Mi , R0, γa , and
γb are briefly discussed in the physical limits mentioned above,
as they will be necessary later to get expansions such as those
shown in Eq. (3). In Sec. III, the perturbation model derived in
Ref. [15] is succinctly reviewed. The vorticity and asymptotic
velocity fields are shown. The temporal evolution of the contact
surface ripple [ψi(t)] is analyzed and an asymptotic formula
of the form ψi(t) ∼= ψ∞ + δv∞

i t is obtained. An irrotational
formula for δv∞

i and a more accurate expression for the normal
velocity ui are compared in Sec. IV. The Taylor expansions of
the asymptotic velocities in different important physical limits
are shown in Sec. V. In particular, differences between the
estimates of ui given here and older approximations provided
by impulsive formulations are analyzed when discussing the
weak shock limit. A comparison with recent simulations and
experiments is given in Sec. VI, where the observed values of
ψ∞ and δv∞

i are compared with the predictions of the model
presented in this work. A summary is given in Sec. VII.

II. ZERO ORDER PROFILES

In order to develop the analytical expansions shown above
for the late time asymptotic velocities, we need to briefly
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discuss the postshock values of the physical quantities in both
compressed fluids. We start with the quantities behind the
incident shock. The incident density ratio ρb1/ρb0, the incident
sound speed ratio cb1/cb0, and the incident dimensionless bulk
velocity U1/cb0 are, respectively,

ρb1

ρb0
= 2γb + (γb + 1)zi

2γb + (γb − 1)zi

= (γb + 1)M2
i

(γb − 1)M2
i + 2

,

cb1

cb0
=

√
1 + zi

Ri

=
√(

2γbM
2
i − γb + 1

)[
(γb − 1)M2

i + 1
]

(γb + 1)Mi

,

U1

cb0
= zi

γb

√
1 + γb+1

2γb
zi

= 2

γb + 1

(
Mi − 1

Mi

)
. (4)

As shown in Fig. 1, the reflected shock travels with velocity
Dr and the transmitted front with Dt in the laboratory frame.
The fluid velocity in the space between both refracted fronts
is U . The final density of fluid b is ρbf and its pressure
is pf . The sound speed behind the reflected front is cbf =√

γbpf /ρbf . The pressure between the reflected front and
the transmitted shock is equal to pf . The density of fluid a

behind the transmitted front is ρaf . The sound velocity of the
uncompressed fluid a is ca0 = √

γap0/ρa0 and its compressed
value is caf = √

γapf /ρaf . Following [40], we define the
relative pressure jumps at the reflected and transmitted shocks:

zr = pf − p1

p1
, zt = pf − p0

p0
. (5)

Behind the reflected and the transmitted shock waves we have,
respectively, the upstream (Mr , Mt ) and downstream (βr , βt )
Mach numbers:

Mr =
√

1 + γb + 1

2γb

zr , Mt =
√

1 + γa + 1

2γa

zt ,

βr =
√

2γb + (γb − 1)zr

2γb(1 + zr )
=

√
(γb − 1)M2

r + 2

2γbM2
r − γb + 1

,

βt =
√

2γa + (γa − 1)zt

2γa(1 + zt )
=

√
(γa − 1)M2

t + 2

2γaM
2
t − γa + 1

. (6)

We also have

ρbf

ρb1
= 2γb + (γb + 1)zr

2γb + (γb − 1)zr

= (γb + 1)M2
r

(γb − 1)M2
r + 2

,

ρaf

ρa0
= 2γa + (γa + 1)zt

2γa + (γa − 1)zt

= (γa + 1)M2
t

(γa − 1)M2
t + 2

,

cbf

cb1
=

√
1 + zr

Rr

=
√(

2γbM2
r − γb + 1

)[
(γb − 1)M2

r + 1
]

(γb + 1)Mr

,

caf

ca0
=

√
1 + zt

Rt

=
√(

2γaM
2
t − γa + 1

)[
(γa − 1)M2

t + 1
]

(γa + 1)Mt

,

U1 − U

cb1
= zr

γb

√
1 + γb+1

2γb
zr

= 2

γb + 1

(
Mr − 1

Mr

)
,

U

ca0
= zt

γa

√
1 + γa+1

2γa
zt

= 2

γa + 1

(
Mt − 1

Mt

)
. (7)

We define the postshock density ratio and the postshock sound
speed ratio at the contact surface as

R = ρaf

ρbf

= ρaf

ρa0

ρb1

ρbf

ρb0

ρb1
R0,

N = caf

cbf

= caf

ca0

cb1

cbf

cb0

cb1

√
γa

γbR0
. (8)

The reflected and transmitted shock strength parameters
zr and zt are related to the incident shock strength (zi),
preshock density ratio (R0), and fluid compressibilities (γa ,
γb) through continuity of pressure and normal velocity at the
contact surface. We have

zt = zi + (1 + zi)zr , (9)

zi√
2γb + (γb + 1)zi

− cb1

cb0

zr√
2γb + (γb + 1)zr

= 1√
R0

zt√
2γa + (γa + 1)zt

. (10)

Recently, the solutions of the above equations have been
successfully compared with numerical simulations either in
the weak or strong shock limits and in the high/low preshock
density contrast at the contact surface in [24–27].

As discussed in Ref. [9], we can go continuously from
the case in which a shock is reflected to the case in which
a rarefaction wave is driven inside fluid b, just by changing
the ratio of initial densities at the material surface, for given
values of γa , γb, and Mi . In fact, if R0 → ∞, the situation
resembles that of a rigid wall and a shock is always reflected
back. This case has been studied in [39]. If we start decreasing
the initial density ratio, a shock is still being reflected until,
for some value of R0 = Rm

0 , there is no reflected shock. In this
case, it is zr = 0, a situation that is called total transmission.
The mathematical hypersurface (in the space {R0,γa,γb,zi})
that describes total transmission can be determined by simply
asking zr = 0 in Eqs. (9) and (10). For values R0 < Rm

0 a
rarefaction is reflected back and a shock will be driven back if
R0 > Rm

0 . It is easy to see that

Rm
0 = γb(γb + 1)M2

i

γa − γb + γb(γa + 1)M2
i

. (11)

From the above equation we see that if γa < γb, for a given
value of the incident Mach number (Mi), a shock will be
reflected only from a light to heavy interaction (ρb0 < ρa0),
in accordance with [8,9]. On the contrary, if γa > γb, a shock
is also reflected for a light to heavy interaction (ρa0 < ρb0)
and sometimes for a heavy to light interaction. If γa = γb, it is
Rm

0 = 1. The value of Rm
0 will be useful later when studying

the instability growth at a low preshock density ratio.
The solution of Eqs. (9) and (10) does not seem to be easily

expressed in closed analytical form for arbitrary values of
the preshock parameters, and it is much easier to solve them
numerically in order to compute the postshock quantities in
both fluids. Up to date, no analytical solution to the above
equations has been reported in the literature. For very weak
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shocks, the postshock quantities of the compressed fluids can
always be expanded in powers of Mi − 1. From Eqs. (9)
and (10), we can write for Mr , in the limit zi � 1,

Mr = 1 + mw1
r (Mi − 1) + O[(Mi − 1)2], (12)

and these coefficients are used in the intermediate calculations
necessary to obtain the coefficients a1, a2, a3, a4 of Eq. (3). As
they are rather involved functions of their arguments, they are
not explicitly shown here. See the Supplemental Material [41]
for retrieving the coefficients of the expansion. Similarly, the
other zero order quantities such as Mt can be expanded in
powers of Mi − 1 and the corresponding coefficients will be
functions of those in Eq. (12).

An expansion in powers of 1/Mi can be sought for very
strong shocks. In fact, it can be written as

Mr = ms∞
r + ms1

r

M2
i

+ O

(
1

M4
i

)
. (13)

See the Supplemental Material [41] for the values of ms∞
r and

ms1
r , which are necessary to calculate the coefficients b0 and

b1 of Eq. (3). In particular ms∞
r is the root of a fourth degree

polynomial which can always be expressed in closed analytical
form. In the limit R0 − Rm

0 � 1, an expansion of the form is
tried:

Mr = 1 + mm1
r

(
R0 − Rm

0

) + O
[(

R0 − Rm
0

)2]
, (14)

the coefficients of which are shown in the corresponding
Supplemental Material [41]. Analogously, in the limit R0 � 1,
the expansion

Mr = mld∞
r + mld1

r√
R0

+ O

[
1

R0

]
(15)

is sought. Equations (12), (13), (14), and (15) will be used
when studying the asymptotic velocities in different limits
(weak or strong shocks, high or low preshock density ratio).

III. LINEARIZED EQUATIONS

In this section we show the linearized equations that
describe the perturbed shock dynamics and the achievement
of the asymptotic velocity profiles in both fluids within the
limits of validity of a linear theory. A brief account of known
results, already shown in previous works, is necessary here
in order to follow the discussion of the following sections,
while keeping the repeated material to a minimum. As usual,
our contact surface has a corrugation with wavelength λ and
amplitude ψ0 � λ and we study the perturbation problem in
a system comoving with the compressed fluids. As a result
of the incident shock-contact surface interaction, a tangential
velocity shear is generated at t = 0+, when the incident shock
has completely disappeared and the reflected and transmitted
fronts are generated. As widely discussed since the first work of
Richtmyer [5–9,11,13–17,20–24,29,32–35], the conservation
of tangential momentum across the corrugated fronts is
responsible in generating a tangential velocity perturbation
downstream. The values of the initial tangential velocities are
given by [5,15]

δv0
ya = −Ukψt0, δv0

yb = (U1 − U )kψr0, (16)

where the initial corrugations of the transmitted and reflected
shocks are [10,11,15]

ψt0 =
(

1 − Dt

Di

)
ψ0, ψr0 =

(
1 + Dr

Di

)
ψ0. (17)

Due to the lateral mass flows induced by the above
tangential velocities, pressure gradients are created in both
fluids once the shocks start to separate from the surface. As
a result, sound waves are generated in the space between
the rippled shock fronts and the material surface. The shock
ripples oscillate in time and besides acoustic fluctuations,
vorticity and entropy perturbations will be also generated.
For nondissipative fluids, vorticity and entropy will remain
frozen to the fluid elements. As the shocks separate away their
ripple amplitudes will decay in an oscillatory fashion and the
pressure fluctuations created at the shock wave fronts will
also decay in time. Therefore, after some characteristic time
[on the order of the maximum between λ/(Dr + U1 − U ) and
λ/(Dt − U )] the wave fronts regain planarity and the pressure
perturbation fields vanish. Then, a steady state velocity field
slowly emerges in both fluids. The maximum value of the
perturbation velocities is achieved at the material surface itself.
As highlighted in Eq. (2), these velocities are interrelated and
are dependent on the whole perturbation history (0+ < t <

∞) through the quantities Fa and Fb, which are a weighted
average of the shocks’ pressure perturbations. This means that
any consistent analytic model that tries to calculate the contact
surface velocities has to consider the dynamical evolution of
the pressure fluctuation fields in both compressed fluids, at
least for shocks of moderate to high strength [39]. In order to
solve the dynamical equations in both fluids, it is better to use
nondimensional quantities which we define below. We use the
incident shock speed Di to normalize the velocities. For fluid
m, where m = a or b, we write pressure, density, and normal
and tangential velocity perturbations:

δpm

ρmf Dicmf

= kψ0p̃m(x,t) cos ky,

δρm

ρmf

= kψ0ρ̃m(x,t) cos ky,

(18)
δvxm

Di

= kψ0ṽxm(x,t) cos ky,

δvym

Di

= kψ0ṽym(x,t) sin ky.

The dimensionless initial tangential velocities are written as
ṽ0

ya and ṽ0
yb.

A. Solution of the fluid equations for the pressure perturbations
downstream from each rippled wave front

The fluid equations must be solved in both compressed
fluids since t = 0+. For the sake of simplicity, the index m

that identifies each fluid is omitted in this subsection. We
define the dimensionless variables x̃ = kx and τ = kcmf t . The
equations of motion in each fluid lead us to the homogeneous
wave equation for the pressure perturbations:

∂2p̃

∂τ 2
= ∂2p̃

∂x̃2
− p̃. (19)
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As usual in previous works, we make the coordinate trans-
formation suggested by Zaidel [2,3], and extensively used
in [15,29,32,33,39]. We change from the Cartesian coordinates
x,t to the new variables r,χ by means of the transformation

x̃ = r sinh χ, τ = r cosh χ. (20)

A surface defined by χ = constant represents a planar front
moving between the contact surface and the corresponding
shock front along the trajectory: x̃ = τ tanh χ . The shock
fronts have “constant” values of their χ coordinates. Due to
this fact, the coordinate r at each shock front is proportional
to time. The fluid equations can be combined into a coupled
set of equations in the variables r,χ :

r
∂2p̃

∂r2
+ ∂p̃

∂r
+ rp̃ = ∂h̃

∂χ
,

h̃ = 1

r

∂p̃

∂χ
. (21)

It is clear that Eqs. (21) are equivalent to (19). There
are two ways to present the solution of Eqs. (21): by
separation of variables as in [10] or by means of Laplace
transforms [10,15,21,29]. Both approaches are useful for us in
this work and are briefly reviewed.

1. Solution of the pressure wave equation
by separation of variables

The system of coordinates χ,r allows us to use the method
of separation of variables, because each shock front has a
constant value of the χ coordinate. We can easily arrive at a
solution for p̃ and h̃ of the form [10]

p̃(χ,r) =
∞∑

j=0

D2j+1(χ )J2j+1(r),

h̃(χ,r) =
∞∑

j=0

E2j+1(χ )
(2j + 1)J2j+1(r)

r
, (22)

where

D2j+1(χ ) = π2j+1 cosh(2j + 1)χ + ω2j+1 sinh(2j + 1)χ,

E2j+1(χ ) = ω2n+1 cosh(2j + 1)χ + π2j+1 sinh(2j + 1)χ.

(23)

The set of coefficients π2j+1 and ω2j+1 have to be determined
with the initial and boundary conditions at the shocks and
contact surface. There is a set of such coefficients for each
fluid, and hence, they compose a set of four denumerable arrays
of infinite coefficients. They can be calculated with the aid of
the mathematical formalism outlined in [10]. The functions
J2j+1 in Eqs. (22) are the ordinary Bessel functions. With
the solution given in Eqs. (22) we have complete information
of the temporal evolution of the pressure perturbations and
hence of all the perturbation quantities. However, in order to
get the important quantities Fa and Fb for any shock strength
or other important physical limits, it will be convenient to
solve the pressure wave equation by means of the Laplace
transform. This is because the quantitiesFa andFb are actually
proportional to particular values of the Laplace transforms
(in time) of the pressure fluctuations at each shock. The

quantities Fm could be, of course, calculated with Eqs. (22),
but convergence of the series is very slow for moderate to
strong shocks. With this scope in mind, we review next the
procedure involving Laplace transformations.

2. Solution of the pressure wave equation by Laplace transforms

For any quantity of interest φ(χ,r) we define its Laplace
transform integrating the variable r in the form [2,3,15,21,29]

�(χ,s) =
∫ ∞

0
φ(χ,r) exp(−sr) dr. (24)

We define s = sinh q, and transform Eqs. (21) in the domain
of the variables χ,q. It can be seen after some algebraic
manipulations that the Laplace transforms of the pressure
perturbations p̃ and h̃ [defined in Eq. (22)] can be expressed
as

P̃ (χ,q) = F1(q − χ ) + F2(q + χ )

cosh q
,

H̃ (χ,q) = F1(q − χ ) − F2(q + χ ), (25)

for some adequate functions F1 and F2, which are determined
by considering the linearized Rankine-Hugoniot equations at
each shock front together with the continuity of pressure and
normal velocity at the contact surface plus initial conditions.
The procedure to obtain approximate or more accurate ex-
pressions of the pressure amplitudes F1 and F2 is reviewed
in Appendix A. From them, we obtain P̃a,b in each fluid
and, formally speaking, we get the pressure perturbations in
the space-time domain of the variables x̃,τm with a standard
inverse Laplace transformation (m = a,b). Formally speaking,
the pressure perturbations in real-time domain, at any position
(χm,rm), would be expressed by an integral in the complex
plane:

p̃(χm,rm) = 1

2πi

∫ c+i∞

c−i∞
P̃ (χm,sm) exp(smrm) dsm, (26)

where the real number c is chosen to the right of all the
singularities of the integrand and i is the imaginary unit
(i2 = −1). For the problems involving RM-like flows, the
above integral will reduce to a sequence of real integrals
along the branch cuts, usually located on the imaginary axis,
generated because of the multivaluedness of the function√

s2
m + 1 in each fluid, appearing in the auxiliary functions φ

defined in Appendix A. This technique has been successfully
employed in [17,29,32–34] to study the interaction of isolated
shock fronts with isotropic turbulent flows. For the case of two
fluids in this work, the results obtained from Eq. (26) agree
with the alternative approach given by the series of Bessel
functions [Eqs. (22) and (23)]. Our purpose here is to use
the information provided by Eqs. (A5) in order to calculate the
quantities Fa and Fb with approximate expressions and also to
obtain adequate expansions in different physical limits as well
as to follow the dynamical evolution of the linear perturbations
in time, when necessary. The solution of the pressure functions
Fm1 and Fm2 would require iterating a finite number of times, as
explained in Appendix A. The exact number of iterations used
(n = 0,1,2,3, . . . ) would depend on the level of compression.
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B. Velocity perturbations: Asymptotic velocity field

When the shocks have separated from the contact surface, a
steady velocity field remains and we define the velocity vector
�v = (ṽx,ṽy). Vorticity is only generated at the shock fronts. In
the system of reference comoving with the compressed fluids,
the vorticity is frozen to the fluid particles, and therefore it
is a steady state vector field that does not change in time,
in the absence of viscosity. Thus, the velocity field can be
decomposed as the sum of two parts: one that corresponds
to the steady state vorticity distribution ( �̃vrot ) and the other
corresponding to the irrotational motion induced by the
pressure sound waves ( �̃vac) [29,32,33]:

�̃v(x,y,t) = �̃vrot (x,y) + �̃vac(x,y,t). (27)

When the shocks are far enough from the contact surface, the
contribution from the pressure field vanishes and, hence, the
irrotational component of the velocity decreases to zero, and
only the rotational component remains as a steady velocity
distribution. The rotational part of the velocity distribution is
written here in the following way:

�̃vrot = (u(x) cos ky,v(x) sin ky). (28)

The differential equations satisfied by the functions u(x) and
v(x) are shown in Appendix B. The asymptotic velocities at
both sides of the material surface (at x = 0) are not indepen-
dent, but are related to each other through the compressible
evolution in both fluids [see Eq. (2)]. The difference between
the absolute values of the normal and tangential velocities, at
each side, is a precise functional of the pressure perturbations
behind the corresponding rippled front. In fact, after some
algebra, we write, according to Eq. (B9),

|ui | − |via| = −�a sinh χt P̃ (qa = −χt ) = Fa,

|ui | − |vib| = �b sinh χrP̃ (qb = χr ) = −Fb, (29)

where Fm is the dimensionless form of Fm [Eqs. (2)]. The
quantities �a and �b are given in Eqs. (B4) of Appendix B.
The relationships outlined in Eqs. (29) are the same as Eq. (42)
of [39] for a single fluid. In the problem considered here, we
still need a third equation, which is obtained integrating the y

component of the linearized momentum equation at the contact
surface in the interval 0+ < t < ∞, as shown in [10,11,15].
We obtain

R
(
via − ṽ0

ya

) = vib − ṽ0
yb. (30)

Combining the last three equations we get

ui = ṽ0
yb − Rṽ0

ya

R + 1
+ RFa − Fb

R + 1
,

via = − ṽ0
yb − Rṽ0

ya

R + 1
+ Fa + Fb

R + 1
, (31)

vib = ṽ0
yb − Rṽ0

ya

R + 1
+ R(Fa + Fb)

R + 1
.

The asymptotic velocities at the contact surface are the sum of
two terms: the first one is dependent on the initial transverse
velocities generated at t = 0+ and the second term takes into
account the whole perturbation history and can be seen as a
functional of both vorticity fields. In fact, Fa and Fb are a

weighted measure of the concentration of vorticity spread in
the bulk of both fluids.

C. Calculation of Fa and Fb

As was shown in [39], a relatively simple and quite accurate
formula for the asymptotic tangential or normal velocities in
a single fluid can be obtained from the functional equation
satisfied by the Laplace transform of the shock pressure
perturbations. The same is true in the case of two fluids
as briefly discussed in [15]. In any case, the bulk vorticity
parameters (Fa and Fb) are always required. After some
algebra with the boundary conditions at the interface and
using the expressions of the Laplace transforms of the pressure
perturbations [Eq. (25)] we can write the following exact
expressions [15], which will be needed for future discussion:

Fa =
[

1 + M2
t

M2
t − 1

4(Dt − U )

Ui

]−1[
ṽ0

ya − 2Fa1(−2χt )
]
,

Fb =
[

1 + M2
r

M2
r − 1

4(Dr + Ui)

U1 − Ui

]−1[
ṽ0

yb − 2Fb2(2χr )
]
.

(32)

The main difficulty to calculate Fa and Fb lies in getting
accurate enough estimates of the pressure functions Fa1(−2χt )
and Fb2(2χr ). As shown in previous works and briefly sketched
in Appendix A, the functions Fm1 and Fm2 can be calculated
by iteration over a system of coupled functional equations. We
thus get a hierarchy of improved estimations: F

[n]
m1 and F

[n]
m2 ,

with n � 0. The number of steps n used would be dependent on
the range of the preshock parameters we explore. It is chosen
to ensure at least three digits in the final results. For most of
the cases found in actual experiments or in simulations, the
initial functions are enough (that is, n = 0). Of course, with
only F

[0]
a1 and F

[0]
b2 , the accuracy will decrease when we go to

stronger shocks or higher density ratios, or deal with situations
where one or both fluids are highly compressible. These cases
will be discussed in the next section. Without iteration, a first
approximate estimate of the vorticity averages Fa and Fb is

F [0]
a =

[
1 + M2

t

M2
t − 1

4(Dt − U )

Ui

]−1[
ṽ0

ya − 2F
[0]
a1 (−2χt )

]
,

F
[0]
b =

[
1 + M2

r

M2
r − 1

4(Dr + Ui)

U1 − Ui

]−1[
ṽ0

yb − 2F
[0]
b2 (2χr )

]
,

(33)

where the functions F
[0]
a1 and F

[0]
b2 are shown in Appendix A.

When computing, for example, F
[0]
a1 (−2χt ) with the aid of

the second of Eq. (A7), care must be taken of using the correct
value of qb for that equation: qb = sinh−1(−N sinh 2χt ). On
the other hand, to compute F

[0]
b2 (2χr ) with the first of Eq. (A7),

we must be careful in order to consider the correct value of
qa inside that equation: qa = sinh−1[(sinh 2χr )/N]. Higher
orders of iteration can be easily obtained. We use the functions
obtained in Eqs. (A7) as seed values and substitute them on
the right hand sides of Eqs. (33). In this way, a new set of
functions called F

[1]
a1 , F

[1]
b2 is obtained. Using them as seed

functions, a new iteration order F
[2]
a1 , F [2]

b2 can be obtained, and
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�Mi �1�3

a � 1.1 , b � 7 �5 , R0 �5

Mi �1
� �

�

�

�

�

�

�

FIG. 2. Dependence of the bulk vorticity parameters Fa and Fb

on the incident shock Mach number (Mi) for the given pair of
gases. The vorticity parameters are normalized with their values at
high compression (F ∞

a = −0.1174, F ∞
b = 0.0157). The weak shock

scaling is indicated with a dashed line.

so on. This is the procedure to get improved values F [n]
a and

F
[n]
b of the vorticity parameters. We have iterated almost five

times to get three or more significant digits in the asymptotic
velocities (the exact number strongly depends on the range
of parameters under study) and those results are used here as
reference values for comparison.

In Fig. 2 we show the quantities Fa and Fb normalized with
their values at high compression, achieved for very strong
shocks. The calculations have been done with 5 iterations
and the gases are γa = 1.1 and γb = 7/5. The preshock
density ratio is R0 = 5. For very strong shocks, the bulk
parameters saturate and their values are F∞

a = −0.1174 and
F∞

b = 0.0157. It can be shown, using the formulas developed
before, that Fa,Fb ∼ (Mi − 1)3, in the weak shock limit. This
scaling is easily recognized in the log-log plot of Fig. 2.
Usually, it is Fa � Fb. Besides, Fa and Fb have, in general,
opposite sign. This is due to the mechanism of tangential
velocity generation behind each rippled front which makes
the initial tangential velocities to be of opposite sign, except
at freeze-out [17,42–44]. The dependence of Fa,b as functions
of the preshock parameters is important, because it indicates
the quantitative difference between the normal and tangential
velocity at both sides of the interface ripple, in each fluid [see
Eq. (29)], telling us how much the velocity field departs from
a potential solution.

In Fig. 3 we show the velocity and vorticity space profiles
for a particular case: the incident shock Mach number is Mi =
5 and the fluids have γa = 1.1, γb = 1.182. The preshock
contact surface density ratio is R0 = 5. These values have
been chosen for the sake of simplicity in manipulating the
series of Bessel functions involved in the calculations. As
caf = cbf for this case, convergence is quite fast. The normal
and tangential velocities as well as the vorticity profile are
solutions of the equations shown in Appendix B. To obtain
the vorticity density map, we need the temporal evolution

of the shocks’ pressure perturbations. Two approaches have
been used for this purpose. On one side, the coefficients of
the series of Bessel functions shown in Eqs. (22) and (23)
have been calculated following [11]. On the other hand, an
inverse Laplace transformation, using Eqs. (25) and (26) and
the results of Appendix A were used. Both approaches give the
same results. In Fig. 3(a) we show the normal velocity profiles
at both sides of the contact surface. It is seen that on the side of
the reflected shock, the normal velocity is approximately well
described by a decaying exponential near the material surface
and later it shows a gentle phase inversion, due to the presence
of vorticity in that fluid. On the side of fluid a, the normal
velocity profile shows more oscillations in space, as vorticity
is usually stronger. The exponential function is, in general,
not a good approximation for the velocity perturbations on the
side of the transmitted shock. In Fig. 3(b) we show the profile
of the asymptotic tangential velocity. For the conditions of
Fig. 3, an exponential approximation is better on side b than
on fluid a. The exponential approximation on side b, where
the reflected shock traveled, is only good for 0 � |x|/λ � 0.3
or 0 � k |x| � 2. If we made δvx ∼ ui exp(−kx) inside fluid
b, incompressibility would require δvy ∼ ui exp(−kx). If we
made a zoom inside the denser fluid, near the material surface,
we would see that an exponential approximation to the normal
velocity is only valid within an extremely short distance
from the contact surface: 0 � |x|/λ � 0.01, or equivalently,
0 � k|x| � 0.06. But using an exponential function to describe
the spatial variation of δvx inside a would give a wrong
estimate of the tangential velocity in that fluid. In fact, if
inside fluid a we made δvx ∼ ui exp(kx), we must require,
because of mass conservation, δvy ∼ −ui exp (kx), which
evidently does not describe the lateral mass flow associated
with δvy at the left of the contact surface. A potential flow
model is a poor description for the velocity inside the denser
fluid, in the conditions of Fig. 3. As will be discussed in
Fig. 9, the normal and tangential velocities are very different
at the contact surface, for this case, on the side of fluid a,
invalidating a potential and incompressible flow model in that
region of space. On the contrary, on side b, the tangential
and normal velocities at the contact surface do not differ too
much and hence an irrotational approximation works better,
albeit not very far from the interface, where the vorticity
field actually controls the spatial variations, as discussed
in [7]. This behavior is a consequence of the distribution
of vorticity generated by the rippled shock fronts. As the
fronts moved away from the contact surface, the oscillations
of their ripples amplitudes gave rise to a rotational steady
state velocity field. Of course, in the very weak shock limit
(Mi − 1 � 1), vorticity would be negligible in both gases and
potential flow models for the asymptotic velocity fields would
work reasonably well at both sides of the contact surface.
Coming back to Fig. 3(c), we show the vorticity density
map together with the streamlines associated to the velocity
field. We can also track the zero crossings of the normal and
tangential velocities in the vorticity density plot. On side b less
vorticity is generated, as the reflected shock is generally weak
in comparison to the incident shock. This fact is manifested
not only by the magnitude of the vorticity itself, but also in the
size of the vortices. The first vortex inside fluid b occupies a
longitudinal extension of approximately one wavelength. On
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FIG. 3. Spatial profiles of the asymptotic normal velocity (a), tangential velocity (b), and a density map of the vorticity field (c) on which
the streamlines have been superposed. The fluid parameters are shown inside the plot.

the contrary, inside fluid a, the amount of vorticity is larger
and we can count up to almost four vortices within the same
distance. We can visually track the maxima of u(x) as zeros of
v(x) when comparing Fig. 3(a) with Fig. 3(b). Besides, we can
also easily identify the zeros of the vorticity functions ga(x)
and gb(x) in Fig. 3(c). The important quantities Fa and Fb

are particular spatial averages of the vorticity profiles shown
here. We can guess from the pictures shown that there can be
significant amount of kinetic energy spread inside the fluids,
in the form of rotational energy, associated with the vortices
generated by the rippled fronts. Some interesting questions
arise, as for example, how does this rotational kinetic energy
scale with the four preshock parameters and how much of
that energy is contained in the first two vortices, nearest to
the contact surface? These questions will be addressed in
a future work. Besides, the distribution of bulk vorticity at
both sides of the contact surface may be important during
nonlinear evolution of the ripple amplitude. In fact, as recent
simulations indicate [25,26], there is only significant motion
very near the interface in the nonlinear stage, probably inside
the vortical structures generated by the rippled shock fronts
during the period of linear growth [26]. Therefore, a precise
quantification of the energy stored in them might be useful for
the development of future nonlinear models.

D. Contact surface ripple growth

Experimental and simulation data are usually presented as
plots of the interface ripple as a function of time. Recently,
several simulations and experiments performed with gases
have been reported and the data were shown as plots of ψi(t),
the interface corrugation, as a function of time [25–27,36,37].
In this subsection we present the predictions of our linear
theory for the late time behavior of ψi(t), within the interval
of time during which linear theory is valid. A comparison with
experiments and simulations will be presented in Sec. VI.

It is not difficult to see, using the tools of [11,15] and using
the results of the previous paragraph, that the time evolution
of the contact surface ripple can be followed since t = 0+, if
we know the evolution of the pressure perturbations in each
compressed fluid. The pressure perturbations can be calculated
either by solving for the series of Bessel functions shown
in Eqs. (22) and (23), as explained in [10], or calculating
the inverse Laplace transforms of the functions P̃ and H̃ ,
after suitable approximations for the functions Fb2 and Fa1

have been chosen, as explained in Appendix A. In any case,
the results would be the same, independently of the method
chosen to follow the dynamics of the perturbations. Increasing
the Mach number would imply considering a larger number of
terms inside the Bessel series expansion or iterating more times
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when computing the functions Fa1 and Fb2. The contact surface
ripple can be followed in time with the help of the pressure
perturbation function defined by the series of Bessel functions
[Eq. (22)]. The dimensional contact surface velocity as a
function of time (t � 0+), using the results of [10], is given by

δvi(t) = kψ0Diui

∫ kcbf t

0+
J0(τ ) dτ + kψ0Di

∞∑
n=0

ωb
2n+1

×
[
J2n+1(kcbf t) + 2

n−1∑
k=0

J2k+1(kcbf t)

]
, (34)

and the amplitude of the contact surface ripple, as a function
of time, is

ψi(t) = ψ∗
0 +

∫ t

0+
δvi(t

′) dt ′, (35)

where

ψ∗
0 =

(
1 − U

Di

)
ψ0 (36)

is the postshock value of the compressed contact surface
ripple amplitude at t = 0+.

It can be seen with the help of the Laplace transforms of
the pressure perturbations that for very large times, the surface
ripple grows asymptotically in the form

ψi(t � t1) ∼= ψ∞ + δv∞
i t, (37)

where δv∞
i is the dimensional value of the asymptotic linear

growth rate, and ψ∞ is an asymptotic ordinate whose value is
theoretically given by

ψ∞ = ψ∗
0 − Di

cbf

[F
′
b1(0) − F

′
b2(0)]ψ0, (38)

where the prime to the right of the functions Fb1 and Fb2

indicates the derivative with respect to the argument. The
characteristic time t1 indicated inside the argument of ψi in
Eq. (37) marks the onset of the transition to the asymptotic
stage within linear theory, and is also a fundamental quantity
that must be evaluated as a function of the four preshock
parameters. The analysis of the dependence of t1 on γa , γb, R0,
and Mi is left for future research. A qualitative interpretation
of ψ∞ can be given after some algebra with Eq. (35). In fact, if
we add and subtract δv∞

i inside the time integral, and consider
very large times (t → ∞), we obtain

ψ∞ − ψ∗
0 =

∫ ∞

0+

[
δvi(t) − δv∞

i

]
dt. (39)

We show the result implied by the above equation as the shaded
area between the curves given by δvi(t) and δv∞

i in Fig. 4(a).
If we define the dimensionless time τd = kδv∞

i t and plot
the difference [ψi(t) − ψ∞]/ψ0 as a function of τd , all the
RM cases for which there is a reflected shock will collapse
into a single straight line of slope 45◦, for sufficiently large
time, according to Eq. (37). This universal asymptotic behavior
is shown in Fig. 4(b) for different choices of the mentioned
quantities. For the cases shown in Fig. 4(b) we have chosen
some of the experiments described in Sec. VI, as they en-
compass a wide range of initial density jumps, Mach numbers,
and fluid compressibilities. Each curve [ψi(t) − ψ∞]/ψ0 joins

1
0 Di

d i

d t

k Di t

�

(a)

(b)

FIG. 4. (a) Temporal evolution of the contact surface rip-
ple velocity for γa = 1.0935, γb = 7/5, R0 = 5.25, and Mi =
2.86. The horizontal dashed line shows the asymptotic velocity
δv∞

i /(kDiψ0). (b) Temporal evolution of the contact surface ripple
corrugation [ψi(τd ) − ψ∞]/ψ0 as a function of the dimension-
less time: τd = kδv∞

i t . Different choices of γ , R0, and Mi are
shown together. The markers correspond to different experiments
in [36] and [37]: (1) magenta star: He/SF6,R0 = 39,Mi = 1.95;
(2) green circle: He/SF6,R0 = 39,Mi = 1.41, (3) blue triangle:
air/SF6,R0 = 5.23,Mi = 1.45, (4) orange diamond: He/SF6,R0 =
39,Mi = 1.09353, (5) red square: (He + Ar)/Ar,R0 = 1.817,Mi =
1.90.

the universal asymptotic line τd at a different characteristic
time, which we call τd1 [related to the characteristic t1 used
in Eq. (37)]. In fact, the value of τd1 is certainly a function
of the four preshock parameters: γa , γb, R0, and Mi . We
see that τd1 is different for each case. In fact, for the cases
shown in Fig. 4(b), we can roughly estimate τd1

∼= 3 for case
(1), τd1

∼= 2 for case (2), τd1
∼= 1.5 for case (3), τd1

∼= 1 for
case (4), and τd1

∼= 0.3 for case (5). Nevertheless, as will be
evident when we discuss the experiments of [36,37] in Sec. VI,
the value of τd1 might be also influenced by the ratio ψ0/λ,
because of nonlinear effects [37]. Besides, any real experiment
will leave the asymptotic line depicted in Fig. 4(b) at a larger
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characteristic time τd2 due to nonlinearity, an ingredient that is
obviously missing in Fig. 4(b). In an ideal situation in which the
initial amplitude may be made arbitrarily small in comparison
to λ, it would be τd2 → ∞ as we make ψ0 → 0. We see that up
to the value of τd ∼ 6 shown in Fig. 4(b), there are still small
amplitude residual oscillations of the material surface ripple.
They are essentially due to the late time sonic reverberations
between the transmitted shock front and the contact surface
and are stronger for the case with larger preshock density ratio,
which corresponds to the case He/SF6, with R0 = 39 (Atwood
number AT = 0.95) and two values of incident Mach number:
Mi = 1.41 and 1.95. These two cases take longer to enter into
the theoretical asymptotic line in Fig. 4(b), because of the high
density contrast at the contact surface and the high compress-
ibility of the SF6. These oscillations will be vanishingly small
at larger times. As will be seen in the next section, the linear
growth rate scales as 1/

√
R0 for a large density difference.

Therefore, for very large preshock density ratios a finite value
of τd would imply a very large dimensional time, as δv∞

i would
be very small. To follow the surface ripple growth in these cases
would imply adding a huge number of terms inside the series of
Bessel functions [Eq. (22)] at the risk of increasing round-off
errors. The complete temporal evolution of the surface ripples
shown in Fig. 4(b) has been calculated with the help of the
series indicated in Eq. (22), where we have used n = 60. The
corresponding calculations to get the series coefficients are
explained in [10]. This behavior will be discussed again in
connection in Sec. VI with the experiments of [36,37].

Further, we realize that the value of ψ∞, given by Eq. (38),
is governed by the whole compressible evolution of the pertur-
bations (since t = 0+). Its value depends on the derivative of
Fb1 − Fb2 evaluated at qb = 0. This last fact makes it difficult
to compute the asymptotic ordinate accurately, without enough
iterations inside the functional equations that govern the
pressure perturbations at the shock fronts. In Appendix C
we explicitly show an iteration procedure to get accurate
estimates of ψ∞. The importance of the quantity ψ∞ lies in
the fact that it can be discerned experimentally as will be
shown in Sec. VI, thus possibly becoming a useful diagnostic
parameter in experiments where the equation of state (EOS) or
constitutive properties of the compressed material might not
be completely known in advance [19,22,30].

IV. APPROXIMATE FORMULAS FOR THE
ASYMPTOTIC VELOCITIES

Normal asymptotic velocity: Irrotational approximation
and high compression limit

The perturbed normal velocity at the contact surface, when
the shocks are far enough in both fluids, is [Eqs. (31)]

ui = ṽ0
yb − Rṽ0

ya

R + 1
+ RFa − Fb

R + 1
. (40)

The first term is the contribution from the initial velocity shear
deposited at the interface at t = 0+, just after the incident
shock refraction. It is originated by the tangential velocities
behind each rippled front in the compressed fluids. For very
weak shocks, it is the only important contribution to the value
of ui . As it is obtained by neglecting the contribution from the

FIG. 5. Dependence of the relative difference between the exact
growth rate and the irrotational approximation as a function of the
incident shock Mach number.

bulk vorticities, we call it the irrotational term and write

uirrot = ṽ0
yb − Rṽ0

ya

R + 1
. (41)

We recall here that uirrot, written in the previous equation, can
also be obtained by reformulating the impulsive model, consid-
ering that the fluid elements suffer two different accelerations.
Behind the transmitted front, fluid a is accelerated from 0 to U

and behind the reflected shock, fluid b is accelerated from U1

to U . This approach has been developed in [10] and the result
is exactly the same as uirrot above.

We discuss in this section the goodness of an irrotational
approximation to the asymptotic linear velocity in different
domains of the space of parameters. We have at our disposal
the exact solution ui (obtained with the desired accuracy
through a convenient number of iterations inside the functional
equations) and the irrotational approximation provided by
the same equations of fluids, the term named uirrot above.
As uirrot can also be obtained with the reformulation of the
impulsive model given in [11], the analysis that comprises
Figs. 5, 6, 7, and 8 below can be seen as the analysis of the
goodness of a potential flow model if it were used to calculate
the perturbation normal velocity at the contact surface ripple.
At the end of this section we present another approximate
value for ui , which consistently takes into account the true
rotational nature of the perturbation fields left by the rippled
shocks, and hence gives more accurate predictions, even at
high compressions.

In Figs. 5, 6, 7, and 8, we compare the prediction of uirrot

with the complete solution obtained by iterating Eqs. (A5)
until three significant digits are obtained for ui (generally, five
iterations is more than enough in all the cases). In Fig. 5, two
sets of γ values are chosen: γa = 5/3, γb = 7/5 on one side,
and γa = 1.1, γb = 7/5. The exact solution ui is compared
to uirrot as a function of Mi for three values of the preshock
density ratio: R0 = 2,10,50. For the less compressible case
(γa = 5/3), we see that the irrotational approximation is a
good estimate of the normal velocity for the whole range of
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FIG. 6. Dependence of the relative difference between the exact
growth rate and the irrotational approximation as a function of the
preshock density ratio.

Mach numbers shown, and the relative error stays at most
around 20% for the strongest incident shock. The situation
is different for the second set of gases, where γa = 1.1 and
γb = 7/5. The irrotational approximation gives a relative error
which stays below 20% only for Mi < 1.5. At larger incident
Mach number, the difference increases drastically.

In Fig. 6, the same two sets of gases are chosen but ui

is compared against uirrot as a function of R0 for different
values of Mi = 1.1,3,15. For the weakest incident shock,
agreement between the irrotational and complete solution is
almost perfect in the whole range of preshock densities studied,
for both sets of gases (with different compressibilities on the
side of the transmitted shock), except for R0 − 1 � 1 in the
less compressible case, due to freeze-out, where the normal
velocity is exactly zero [17,43]. As stronger shocks are con-

FIG. 7. Dependence of the relative difference between the exact
growth rate and the irrotational approximation as a function of the
isentropic exponent γa .

FIG. 8. Dependence of the relative difference between the exact
growth rate and the irrotational approximation as a function of the
isentropic exponent γb.

sidered, the disagreement worsens for the larger density ratios.
This difference is more important as more compressible is the
fluid on which the transmitted shock travels. Each curve shown
in Fig. 6 ends to the left at the point R0 = Rm

0 that marks the
boundary between a reflected shock or a reflected rarefaction.
The cases with γa = 5/3 have Rm

0 < 1 and the cases with
γa = 1.1 have Rm

0 > 1. For the less compressible set of gases
(where γa = 5/3 > γb = 7/5), the relative error stays below
25% even for the strongest shocks and at high density ratio.
Besides, for this case, we have found a characteristic value of
the preshock density ratio at which the relative error is zero,
and increases again when decreasing R0 still further towards
the density ratio at which freeze-out occurs. At the freeze-out
condition, the relative error grows unbounded [17,44]. For the
more compressible case (γa = 1.1 < γb = 7/5), the relative
error stays above 50% even for moderately strong shocks
(Mi = 3) in the whole density range. As mentioned before,
there is a curious behavior of the relative difference ui − uirrot

as a function of R0 for the cases in which freeze-out is expected
(γa > γb). We see that when R0 decreases, there is a value at
which ui = uirrot, because the bulk vorticity term RFa − Fb is
exactly zero. This happens for all three Mach numbers studied
in Fig. 6 at some value of R0 near freeze-out. In particular,
for the green dashed line (Mi = 3) we find that the bulk term
vanishes at R0 ∼ 1.450 . . . . This is a surprising result, but it
does not mean that the velocity fields are irrotational, because
Fa,b are different from zero (Fa ∼ 4.499 · · · × 10−4, Fb ∼
4.453 × 10−4, and R = 1.00689 · · · < R0 = 1.451 . . . ). The
vanishing of the bulk vorticity term occurs because Fa changes
sign as R0 decreases. In fact, for the same case as before,
we find that Fa = 0 at R0 ∼ 1.466 . . . . It is worth adding
that for these situations, Fa ∼ Fb. As a consequence, there
will be small regions of the parameter space, always in the
vicinity of freeze-out conditions, in which uirrot < ui . This
peculiar behavior is quite surprising, because it is opposed to
the image we have had of the role of the bulk vorticity term.
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a �5 �3, b �7 �5, R0 �3
a �1.1, b �7 �5, R0 �3

ui
vib

Mi

FIG. 9. Functional dependence of the velocity ratios |ui/via | and
ui/|vib| as a function of the incident shock Mach number Mi .

This phenomenon is left for future study. For other regions
of the space of parameters, which are not near freeze-out, we
usually have |Fa| � |Fb| and therefore, it is ui < uirrot.

In Fig. 7 the comparison is done as a function of γa for
given values of γb = 7/5 and the preshock density ratio,
R0 = 3, for several values of the incident shock Mach number
(Mi = 1.1,3,15). Of course, it might be impossible to find
substances in nature that behave as ideal gases with isentropic
exponents larger than 5/3. Nevertheless, there are situations
of very incompressible materials that can be modeled by using
large γ values. In any case, the aim of this comparison is
to perceive the general trend as one of the fluids becomes
less compressible. The agreement between ui and uirrot is
excellent for Mi = 1.1 in the whole interval shown, due to the
negligible generation of vorticity inside fluid a. However, for
higher values of the incident Mach number, the approximation
fails, except in a very narrow zone centered in the interval
1.5 < γa < 2.5. For completeness, in Fig. 8 the comparison
between ui and uirrot is done as a function of γb with given
values of γa = 1.1, R0 = 3 and is plotted for the same values
of Mi . As in Figs. 5 and 6, the same distinguishing behavior is
observed here when changing the value of γa . The difference
increases when γa = 1.1. For very weak shocks (Mi = 1.1),
the relative error is negligible in any case.

There is another criterion to decide whether an irrotational
assumption is acceptable and comes from the comparison
between the asymptotic tangential velocities at both sides of
the material interface with the normal velocity. In Figs. 8, 9, 10,
and 11, we show the values of |ui/via| and |ui/vib| as a
function of the four parameters, as we did with the normal
velocity relative difference in Figs. 5–8. As expected, for
situations in which bulk vorticity generation is not important,
the absolute values of both tangential velocities are very similar
and their values agree quite well with the normal velocity. This
similarity is a signature of an almost irrotational velocity field
in both fluids. In Fig. 9, the difference between both velocities
increases at high Mach number for each pair of gases. Another
perspective of the comparison is shown in Fig. 10, where the

� � � � �

� � � �

R0

FIG. 10. Functional dependence of the velocity ratios |ui/via| and
ui/|vib| as a function of R0.

tangential velocities are plotted against R0 for Mi = 5 and the
same sets of gases as in Fig. 9. We see that the tangential
velocities are almost equal to the normal velocity inside fluid
b, because little vorticity is generated there. This is not true
inside fluid a. We recognize a similar behavior to that in Fig. 6,
when the preshock density reaches the freeze-out value or
the minimum allowed value to have a shock reflected. For
the case γa = 5/3, γb = 7/5, Mi = 3, we see that the ratio
|ui/via| reaches a maximum for R0

∼= 1.2. This behavior is
noteworthy, because it indicates that the transverse velocity in
fluid a reaches a minimum. In fact, if we make a zoom near
R0 = 1.2 we obtain approximately |ui | ∼ 10−2, |vib| ∼ 10−2,
and |via| ∼ 10−6. This means that when decreasing R0 to
reach the freeze-out boundary to the left, the asymptotic
transverse velocity inside fluid a also decreases and reaches
a minimum, which is not zero. This is probably related to
the change of orientation of δv0

ya , a necessary condition to
achieve freeze-out [17,44]. In fact, δv0

ya < 0 if R0 � 1.382 . . .

� � � �

� � �

a

FIG. 11. Functional dependence of the velocity ratios |ui/via| and
ui/|vib| as a function of γa .
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b

� � � �

� � �

FIG. 12. Functional dependence of the velocity ratios |ui/via| and
ui/|vib| as a function of γb.

and δv0
ya > 0 if R0 � 1.382 . . . . On the contrary, vib does not

show this curious behavior, probably because δv0
yb is never

zero when we change R0. As is easily noticed, the situation just
described can never occur in a purely irrotational velocity field.
These conclusions emphasize the richness of the perturbed
flows generated behind rippled shocks.

In Fig. 11 we compare via and vib as a function of γa for
R0 = 3 and Mi = 5, for two values of γb = 7/5 and 5/3. An
irrotational assumption is acceptable for γa � 2 inside fluid b.
Finally, in Fig. 12 the ratios |ui/vim| are shown as a function
of γb for specific choices of the other parameters: γa = 5/3
and γa = 7/5 for R0 = 3 and Mi = 5. We easily realize that
for the situations in which compressibility is not important
(γb � 1), the velocity ratio tends to unity. As an important
result, after looking at the dependencies shown in Figs. 5–12,
we can conclude that an irrotational assumption for the velocity
fields is perhaps more adequate inside fluid b, but not when
compression is important in the other fluid. The potential flow
hypothesis is even less justifiable inside fluid a, except for the
regimes in which compressibility is not important.

Having shown that the irrotational approximation is of lim-
ited usefulness for arbitrary values of the preshock parameters,
except for very weak shocks, it is is worth examining the
possibility of using an approximate formula for ui that can be
extended beyond the domain of validity of uirrot. This is done
by using the functions shown in Eqs. (33) which depend on the
seed functions F

[0]
a1 and F

[0]
b2 of Eqs. (A7). In this form, we can

write an approximate normal velocity that incorporates rough
information of the bulk vorticity profile, and which we call
u

[0]
i :

u
[0]
i = ṽ0

yb − Rṽ0
ya

R + 1
+ RF [0]

a − F
[0]
b

R + 1
. (42)

In Fig. 13(a) we compare ui with u
[0]
i for γa = 5/3,

γb = 7/5, and two values of R0 = 2 and 5 as a function of the
incident shock Mach number. The same is done in Fig. 13(b)
where γa = 1.1. For the first case, we see that u[0]

i gives a good
estimate of the normal velocity in the whole range studied

ui

Mi
a � 1.1 , b � 7 �5

�
�
� �

�b�

ui

Mi
a � 5 �3 , b � 7 �5

�
�
� �

�a�

FIG. 13. Comparison between the exact value of ui (obtained
with at least five iterations) and the approximate formula Eq. (42)
(without iterations) for (a) γa = 5/3 and (b) γa = 1.1.

here: 1 � Mi � 10. The difference between them is not very
dependent on the values of R0. However, for the second case,
when fluid a is more compressible, there is a small difference in
the strong shock regime, which increases if R0 increases. The
general trend observed is that for high compression situations,
more iterations are needed and the starting value u

[0]
i might

not be accurate enough. Each iteration round improves in
taking into account the effect of the reverberation of sound
waves between the rippled fronts and the contact surface. The
reverberations become more important as R0 increases because
as the density of fluid a increases, the relative velocity of the
transmitted shock with respect to the contact surface decreases.
Therefore, both surfaces are interacting for a longer period of
time which makes it necessary to consider more iterations in
the functional equations written in Eqs. (A5).

V. APPROXIMATE VALUES OF THE ASYMPTOTIC
VELOCITY IN DIFFERENT PHYSICAL LIMITS

A. Weak shock limit (Mi − 1 � 1)

1. Taylor expansion of the normal ripple velocity

When the incident shock Mach number is very near unity,
the irrotational term gives a good estimation of the normal and
tangential velocities. But as the shock intensity increases, the
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bulk vorticity term becomes important. With this objective in
mind, we expand ui in powers of Mi − 1. We therefore expand
uirrot and also the bulk term composed by the parameters Fa

and Fb. Instead of expanding the functional equations, it is
more convenient to follow the strategy used in [39] in the
same limit. In fact, we realize from Eq. (29) that we formally
need the Laplace transforms P̃t (−χt ) and P̃r (χr ). We write
Eq. (29) here again, as it is necessary for our discussion:

Fa = −�a sinh χt P̃t (qa = −χt ),

Fb = −�b sinh χrP̃r (qb = χr ). (43)

We notice by taking the Laplace transform in the domain of the
variable r in Eq. (22) that we can always write the following
formal series for any of the fluids (m = a or m = b) [39]:

P̃m(s) =
∞∑

n=1

p̃
(2n+1)
m0

s2n
, (44)

only valid within its circle of convergence in the complex
plane. The coefficient p̃

(2n+1)
m0 is the (2n + 1)th derivative of

the pressure perturbation (with respect to the coordinate r)
evaluated at t = 0+. The explicit analytical dependencies
of the first and third initial derivatives are shown in the
Supplemental Material [41], for the purpose of completeness.
It is easy to see that higher derivatives would soon become very
involved functions of the pre- and postshock flow quantities.

We expand Eq. (40) up to order (Mi − 1)4 and obtain, after
some algebra,

ui
∼= a1(Mi − 1) + a2(Mi − 1)2 + a3(Mi − 1)3

+ a4(Mi − 1)4 + O[(Mi − 1)5], Mi − 1 � 1. (45)

We only show here the coefficients a1 and a2:

a1 =
(

R0 − 1

R0 + 1

)
8yF

(γb + 1)(yF + 1)
,

a2 = 4Pw(γa,γb,R0)

γaγb(γb + 1)2(R0 + 1)2(yF + 1)3
, (46)

where yF = √
γb/(γaR0) is the same quantity as the parameter

y defined by Fraley after his Eq. (48) in Ref. [7]. The
polynomial Pw is

Pw(γa,γb,R0) = 8γ 2
a R0(R0 + 1)yF − 8γ 2

a R0(3R0 − 1)y2
F

− γ 2
a R0

(
23R2

0 + 40R0 − 15
)
y3

F

− 2γ 2
a R0

[
2(γa + 1)R3

0 − 7R2
0 − 2(γa − 1)R0 − 5

]
× y4

F − γ 2
a R0

(
7γaR

3
0 − 33R2

0 − 7γaR0 + 1
)
y5

F

− 2γ 3
a R2

0

(
R2

0 − 1
)
y6

F + γ 3
a R2

=
(
R2

0 − 1
)
y7

F . (47)

The coefficients a3 and a4 involve increasingly larger ex-
pressions. See the Supplemental Material [41] for the weak
shock expansion coefficients. We see that a1 is proportional
to the ratio (R0 − 1)/(R0 − 1). The proportionality with
(R0 − 1)/(R0 − 1) does not hold if we increase the shock
strength such that the second term, proportional to (Mi − 1)2,
becomes important. The coefficient a1 is zero when R0 = 1,
independently of the values of γ at both sides of the contact
surface. If R0 = 1 and γa �= γb, the coefficient a2 is not
zero, and therefore, the asymptotic velocity is proportional

to (Mi − 1)2 in the weak shock limit for different fluids with
equal preshock densities. However, for equal γ ’s in that case,
a2 is zero, as it should be. It is noted that retaining up to the
second coefficient a2, no information is present in it about the
bulk vorticity profiles. The coefficients a1 and a2 correspond
to the Taylor series expansion of the irrotational component
of the asymptotic velocity [Eq. (41)]. It is adequate here to
compare with the expansion shown in Ref. [7] in the same
limit. Fraley derived a second order expansion in the parameter
ε = (p1 − p0)/p1. It is related to our parameter zi through
zi = ε/(1 − ε). Besides, Fraley normalized the asymptotic
velocity at the material interface with respect to kψ0U , where
U is the zero order velocity of the material surface, defined in
Eq. (7). We can compare his results with ours by expanding the
corresponding expressions in powers of ε. We expand Eq. (45),
but using U instead of Di to normalize the growth rate, and get

δv∞
i

kψ0U
∼= R0 − 1

R0 + 1
+ aF1ε + aF2ε

2

+ aF3ε
3 + O(ε4), ε � 1, (48)

where the coefficient aF1 is given by

aF1 = γaR
2
0QF

2γ 3
a y4

F (yF + 1)2R2
0(R0 + 1)2

(49)

and the polynomial QF is given by

QF (γa,γb,R0) = 2(R0 + 1) − 2(3R0 − 1)yF

− 2(R0 + 2)(3R0 − 1)y2
F − (

R0 − 1 − γaR0

− 5R2
0 + R3

0 + γaR
3
0

)
y3

F − (
R0 + 1 − γaR0

− 9R2
0 − R3

0 + γaR
3
0

)
y4

F + γaR0
(
R2

0 − 1
)
y5

F

+ γaR0
(
R2

0 − 1
)
y6

F . (50)

We have only shown the coefficient aF1 in the last equation.
The coefficients aF2 and aF3 can be calculated using the
expansions shown previously. Fraley had only shown an
expansion up to the second term (which is linear in ε after
normalizing by kψ0U ). The coefficient he showed does not
agree with our aF1. Retaining up to aF1 does not include
bulk vorticity effects and its extrapolation for stronger shocks
would not be correct. We see that the first term of Eq. (48)
is just the preshock Atwood number, in agreement with
Fraley and with Richtmyer’s prescription for the impulsive
model [5,7]. In fact, the impulsive model formula is

δvimp = U

(
R0 − 1

R0 + 1

)
kψ0, (51)

which is, formally speaking, the lowest order contribution
to the growth rate in powers of Mi − 1. Richtmyer arrived
at this result by generalizing the Rayleigh-Taylor growth
rate for the case of a very high gravity acceleration acting
for a vanishingly small amount of time. He also suggested
extending this result, for stronger shocks, using the postshock
values of the density ratio at the interface (R = ρaf /ρbf ) as
well as the postshock value of the initial ripple amplitude:

δv∗
imp = U

(
R − 1

R + 1

)(
1 − U

Di

)
kψ0. (52)
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�a�

�b�

�c�

�d�

�e�
ui

Mi �1
a � 5 �3 , b � 7 �5 , R0 � 3

FIG. 14. Comparison between the exact normal velocity ui as a
function of the shock strength with the different terms of the expansion
shown in Eq. (45). Curve (a) represents the first, linear term: a1(Mi −
1), curve (b) includes up to the second power: a1(Mi − 1) + a2(Mi −
1)2, curve (c) up to the third: a1(Mi − 1) + a2(Mi − 1)2 + a3(Mi −
1)3, curve (d) up to the fourth term: a1(Mi − 1) + a2(Mi − 1)2 +
a3(Mi − 1)3 + a4(Mi − 1)4, and (e) is the exact value.

Nevertheless, this last form of the impulsive formula, even
though it may appeal to intuition because it is obtained
substituting R0 and ψ0 by their postshock values, is not
predicted by the rigorous linear theory. This fact has been
amply discussed in [43], when studying the possibility of
zero asymptotic normal growth for weak shocks. As the
shock strength increases, higher order terms of the expansion
become important and, rigorously speaking, the normal
velocity is no longer proportional either to the preshock
Atwood number or to its postshock value.

In Fig. 14 we show the normal velocity ui for a given pair
of gases (γa = 5/3, γb = 7/5, R0 = 3) as a function of Mi .
We show the exact result, obtained with the complete Eq. (40)
and the different degrees of approximation indicated in
Eq. (45). We see that very little is gained by adding successive
terms. We have included up to the fourth-order term and
the agreement with the exact solution is good for Mi � 1.3.
Adding more terms does not improve the comparison at larger
Mach numbers and the calculation cost is enormous. As
already seen in Ref. [39], the weak shock expansion series is
only useful within its circle of convergence. Our experience
is that this circle of convergence decreases very fast when
compressibility becomes important. It is not difficult to realize
this fact by noting that the series given by Eq. (44) must
be evaluated inside both fluids. Inside fluid a, the quantity
1/| sinh χt | may become a number larger that unity, indicating
that the corresponding series may be divergent. Besides, as it is

almost impossible to deduce a general analytical trend for the
derivatives p̃

(2n+1)
m0 , the usual convergence tests are ruled out.

Hence, we can only compare expansions such as Eq. (45) with
the exact solution for particular cases. As a general rule, we
have verified that weak shock expansions of the type discussed
here are not useful for, approximately, Mi � 1.3. A conclusive
answer regarding the exact convergence radius could be given
if the analytical solution to the postshock flow quantities
could be written explicitly. In such a situation, the function
ui could then be studied in the complex plane for complex
values of the arguments: γa , γb, R0, and Mi . The singularity
with the smallest absolute value in the complex plane would
determine the circle of convergence, as also discussed in
another context in [35]. So far, no such analytic solutions
for the postshock quantities have been reported and, therefore,
the precise calculation of the corresponding singularities still
remains an open problem and is out of the scope of the present
work.

2. Freeze-out in the weak shock limit

As mentioned in previous sections, the interaction between
the transmitted and reflected shocks with the corrugated
material surface may result in certain special situations where
the normal asymptotic velocity is zero in linear theory.
This phenomenon has been initially studied by Mikaelian in
the context of shock compression of thermonuclear targets,
aimed at reducing the initial degree of nonuniformity of the
imploding shell and named the phenomenon single interface
freeze-out [42,43]. Long before that, he used a similar name
in another context where a second shock cancels the effect
of a first shock [45]. We refer here to freeze-out as the set
of conditions for which the asymptotic normal velocity at the
contact surface ripple is exactly zero, when dealing with a
single incident shock. It was initially studied with the the
impulsive model looking for situations in which the postshock
Atwood number could be zero [42,43]. Because the impulsive
model prescription given by Eq. (52) failed, Mikaelian attacked
the problem with Fraley’s fully compressible model, using his
Taylor expansion of the growth rate. In this way, Mikaelian
obtained for the first time an approximation to the freeze-out
contour curves, showing that different γ values at both sides of
the interface is a necessary requisite [43]. Much later, the same
problem was studied again, including the effects of the vorticity
generated by the shocks inside the compressed fluids, either
for a shock or a rarefaction reflected [17,44]. Even though the
shock reflected situation was studied with some detail in [17],
an exact explicit Taylor expansion of the freeze-out contour
curves in the weak shock limit was not given in that work. This
can be easily done here, using the Taylor expansion shown in
Eq. (45). In fact, at freeze-out, the contour curve would be
defined by a formula such as

R0 = e0 + e1(Mi − 1) + e2(Mi − 1)2 + e3(Mi − 1)3 + O[(Mi − 1)4], Mi − 1 � 1, (53)

where the coefficients e0, e1, etc., are only functions of γa and γb. We substitute the above expression inside Eq. (45) and equate
to zero. It is not difficult to see that e0 = 1. Because of lack of space, we only show here the coefficients, e1 and e2. The coefficient
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e3 is a rather long expression and can be found in the Supplemental Material [41]:

e1 = −4
γa + 2γb − 3

√
γaγb

(γb + 1)
√

γaγb

,

e2 = 2

γb + 1

{ √
γa − √

γb

γa(
√

γa + √
γb)

[(
4γ 2

a − 7γaγb − 28γ 2
b − 11γ 2

b

) + (−9γa + 7γaγb + 32γaγb − 4γ 2
b

)√
γaγb

]

−γa + 2γb − 3
√

γaγb√
γaγb

}
. (54)

It can be verified that the above coefficients are zero when
γa = γb. A comparative plot between the curve given by
Eq. (53) and the exact contour curve is shown in the weak
shock limit for two different pairs of ideal gases, in Fig. 15.
Because the approximate expression is derived from the Taylor
expansion of the growth rate, the formula given by Eq. (53)
shows a similar behavior to that in Eq. (45). The approximate
expansion is only useful within its circle of convergence,
making it inappropriate at larger values of Mi , in general. There
is another interesting conclusion when examining Eq. (53): all
the freeze-out contours in the weak shock limit start at the
point (Mi,R0) = (1,1). A similar behavior has been observed
in [44] for freeze-out when a rarefaction is reflected. We
would be tempted to think that the freeze-out contours in
the weak shock limit might start nearer the boundary of total
transmission with an initial ordinate Rm

0 . That this would never
be possible can be qualitatively understood from the situation
at the contact surface at t = 0+ [see, for example, Fig. 1]. At
total transmission, the tangential velocity on side b is equal to
zero, because U1 = U and there is no reflected shock. Thus, the
contact surface ripple is continuously “bombarded” with sonic
perturbations that come from the transmitted shock but there
are no such perturbations coming from inside fluid b to balance
them. This means that the pressure perturbations emitted by

Mi

R0
� � �

� � � �

FIG. 15. Comparison between the exact freeze-out contour curve
(obtained according to formalism developed in [17]) and the Taylor
expansion shown in Eq. (53). The solid curves give the exact values of
(Mi,R0) at which freeze-out is expected for that choice of isentropic
exponents. The dashed curves represent the approximate estimates
according to the Taylor expansion of Eq. (53).

the transmitted shock are not counteracted by a similar train
of pressure waves coming from the right. As a result, there is
a net pressure gradient due to the influence of the transmitted
front, and then the asymptotic normal growth cannot be made
zero. The important conclusion of this discussion is that any
freeze-out contour that connects with the weak shock limit
will always start at the point (Mi,R0) = (1,1). We do not
know whether there are freeze-out contours that start from
a different initial point, disconnected from (Mi,R0) = (1,1).
Those regions might not be excluded a priori, for example, in
the strong shock limit (as happens for the case of a rarefaction
reflected, discussed in [14,44]), but their search is outside the
scope of the present work and is left for future research.

Besides, it is noted that if we only consider the coefficient
e1, no information on the bulk vorticity would be included,
because the Fa,b parameters are of third order in the weak shock
limit. However, the coefficient e1 contains exact information on
uirrot. Hence, a potential flow model of the RM velocity field
would only give the initial slope of the contour curve. The
contours given by Eq. (53) are accurate up to order (Mi − 1)3,
which means that the effect of the vorticity spread at both sides
of the contact surface is taken into account. It is immediate that
Eq. (53) above is equivalent to Eq. (9) of [44].

B. Strong shock limit (Mi � 1)

We now discuss the expansion of the normal velocity in
powers of 1/Mi :

ui = b0 + b2

M2
i

+ O

(
1

M4
i

)
. (55)

The coefficients of the above expansion are only shown
in the MATHEMATICA [46] files attached to this work, in
case the reader is interested in working with them (see the
Supplemental Material [41]). The analytical expressions are
rather cumbersome and are several pages long to write. The
coefficients of the expansion are calculated without iteration.
That is, the above expression is actually the expansion of
u

[0]
i . Adding the next iteration step would have resulted in

much larger expressions to be analytically handled by the
mathematical software in a reasonable amount of time. As
can be seen from Fig. 16, expanding the expression of u

[0]
i

gives reasonable accuracy from moderate to strong shocks.
Discrepancies on the order of 10% are seen when the fluid
behind the transmitted shock is highly compressible.

In Fig. 16 we show two different cases: γa = 5/3,γb =
7/5,R0 = 3 and γa = 1.1,γb = 7/5,R0 = 5.25. This last case
is taken from the experiments of [36]. We see that the
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ui 	
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FIG. 16. Comparison between the exact normal velocity ui and
Eq. (55) valid at large values of Mi .

agreement between the exact solution (solid curve) and the
expansion (dashed curve) is better when fluid a is less
compressible.

C. Small preshock density ratio (R0 − Rm
0 � 1)

It is possible to get accurate analytical expansions for
situations in which the preshock density ratio is very near
the minimum value required to have a reflected shock
(R0 − Rm

0 � 1). When R0 approaches Rm
0 the reflected shock

strength decreases towards Mr = 1. For R0 < Rm
0 we would

get a rarefaction reflected. The value of Rm
0 is given by Eq. (11).

Therefore, it looks feasible to make an expansion of the ripple’s
normal velocity in powers of R0 − Rm

0 , when this quantity
remains small enough. We expand the expression given for
u

[0]
i up to fourth order in the difference R0 − Rm

0 and obtain
an expression of the form

ui = c0 + c1
(
R0 − Rm

0

) + c2
(
R0 − Rm

0

)2 + c3
(
R0 − Rm

0

)3

+ c4
(
R0 − Rm

0

)4 + O
[(

R0 − Rm
0

)5]
, R − Rm

0 � 1.

(56)

See the Supplemental Material [41] for the analytical
expressions of the coefficients c0, c1, c2, c3, and c4. In Fig. 17
we show a comparison between retaining successive terms of
the above expression with the exact solution for two particular
cases: γa = 5/3, γb = 7/5, Mi = 2, Rm

0
∼= 0.8842 . . . and

γa = 7/5, γb = 5/3, Mi = 2, Rm
0

∼= 1.1299 . . . . The case with
γa = 5/3 shows freeze-out at a definite preshock density ratio
R0 > Rm

0 . On the other hand, no freeze-out is observed for
the case studied with γa = 7/5. As has been observed before,
when dealing with the expansion in powers of Mi − 1 in the
weak shock limit, we also see a small convergence radius in
the series implied by Eq. (56). This is probably due to the
existence of a singularity in the complex plane associated with
the dependence of ui as a function of R0. For the two cases
shown in Fig. 17, the convergence limit seems to be inside the
interval R0 − Rm

0 < 0.5. Of course, the exact determination of
this boundary as an accurate function of the other parameters

a � 5 �3 , b � 7 �5 , Mi �2, R0
m �0.8843

a � 7 �5 , b � 5 �3 , Mi �2, R0
m �1.1300

R0 �R0
m

ui

�a�

�b�

�a�
�b�

�

FIG. 17. Comparison between the exact normal velocity ui and
the Taylor expansion shown in Eq. (56) as a function of the variable
R0 − Rm

0 . Each dashed line refers to a particular order of the
expansion: blue circles represent the linear term, the green square
includes up to the quadratic term, the orange diamond includes up to
the cubic term, and the red triangle up to the quartic term.

(γa , γb, and Mi) is out of the scope of the present work. Some
years ago, Griffond has published the analysis of the growth
at low Atwood numbers in [47], where the limit R0 − 1 � 1
was considered, at the expense of dealing with fluids with
equal γ values. In our case, the theoretical model used here
allows the analysis of the perturbation growth starting at
a different point in the parameter space, approaching the
boundary of total transmission, thus considering fluids with
different compressibilities. On the other hand, the analysis
of [47] was not a Taylor expansion, like Eq. (56).

It is worth considering here again the discussion on freeze-
out, in connection with Eq. (56) above. There is an important
distinction between the expansions given by Eq. (56) and
Eq. (45). When imposing the condition ui = 0 on Eq. (45)
we have obtained the freeze-out contours given by Eq. (53) in
the weak shock limit, and all those contours invariably start at
the point (Mi,R0) = (1,1). On the contrary, no such constraint
is implied in the expansion given by Eq. (56), where the
incident shock Mach number is, in principle, arbitrary. This
leaves open the possibility of equating Eq. (56) to zero and
deriving corresponding freeze-out contours that would not be
necessarily topologically linked to the point (Mi,R0) = (1,1),
as happens in Fig. 15. Given that the condition Mi − 1 � 1
is not a constraint in Eq. (56), this procedure unveils the
opportunity of studying new regimes of freeze-out in the strong
shock limit. Of course, this possibility is left for future study
as it is well beyond the scope of this work.

D. Large initial density ratio (R0 � 1)

If R0 � 1, it is clear that ui would be vanishingly small,
because we would be reaching the rigid piston limit [39].
Therefore, we should expect a monotonic decrease of the
normal velocity as the density ratio increases too much above
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FIG. 18. Comparison between the exact normal velocity ui and
Eq. (57), valid at large values of R0.

unity. The following expansion is proposed here to study this
limit:

ui = d∞ + c1

R
1/2
0

+ d2

R0
+ d3

R
3/2
0

+ d4

R2
0

+ O

(
1

R
5/2
0

)
. (57)

We calculate the coefficients of the above expression by
expanding the quantity u

[0]
i in powers of 1/R0 (see Fig. 18).

Because of this approximation, we get d∞ �= 0. Iterating an
infinite number of times would make d∞ → 0. Despite this
approximation, the formula shown in Eq. (57) is quite accurate
for R0 � 50. Of course, for much larger values of R0 we
would need to expand u

[n]
i with larger values of the iteration

index n. The interesting conclusion is that for very large
values of R0, the normal velocity would scale as ∼1/

√
R0 ∼√

1 − AT , where AT is the preshock Atwood number. See
the Supplemental Material [41] for the analytical expressions
of the coefficients of the above series. They are extremely
large and therefore are not written here. In Fig. 17 we show
a comparison between the exact value and the expansion of
Eq. (57) for different choices of the preshock parameters: γa =
5/3,γb = 7/5,Mi = 3, γa = 7/5,γb = 5/3,Mi = 3; and we
also show three cases taken from the experiments of [36]:
γa = 1.1 and γb = 7/5 with three choices of the incident shock
Mach number: Mi = 1.13, 1.41, and 1.91. The mentioned
experiments are discussed in the next section.

VI. COMPARISON WITH SIMULATIONS
AND EXPERIMENTS

It is worth discussing here the agreement observed between
the results of this work and recently published 2D numerical
simulations and experiments with ideal gases.

A. Numerical simulations

Regarding numerical simulations, the calculations carried
out in [24–27] have compared favorably well with the zero
order parameters of the postshock flows as well with the
values inferred for the linear growth rate (the authors compared

with our value u
[5]
i , where five iterations were used for

the linear velocity). Also, the linear model used here was
compared favorably with the results of the incompressible
simulations shown recently in [35]. We will not review those
comparisons in more detail here, as a thorough discussion
has been presented in the corresponding references and, in
general, good agreement with the linear model employed
here has been proved in the regimes where linear growth is
expected. The authors studied strong shock regimes, where
3 � Mi � 10, with a preshock density ratio in the interval
4 � R0 � 39 and analyzed the influence of the initial contact
surface corrugation amplitude on the late time growth of the
instability well into the nonlinear phase. For the cases in which
ψ0/λ � 0.1, reasonable agreement between the linear theory
results and the simulations was observed.

We turn now our attention to a series of experiments
described in [36] and [37].

B. Experiments of [36] and [37]

In [36] the authors have shown experimental data for
membrane-free experiments with gases, covering an inter-
esting range of preshock density ratios (1.817 � R0 � 39),
incident shock Mach numbers from weak to moderately strong
shocks, 1.13 � Mi � 2.86, and values of the preshock ripple
amplitude/wavelength ratio in the interval 0.01 � ψ0/λ �
0.09, thus providing a formidable data set with which to
examine the linear theory, and thus put to rigorous testing
the results shown in the previous sections. However, the
experiments shown in [37] do actually use a membrane to
materialize the interface. Details of the experiments as well
as of the diagnostics can be found in Refs. [36,37] and will
not be reviewed here. We start with the experiments of [36],
studying the growth of their case 5, where a shock comes
from N2 (γb = 7/5) with Mi

∼= 2.86 and impinges against SF6

(γa = 1.0935). The preshock density ratio is R0
∼= 5.25, or

equivalently, the preshock Atwood number is AT
∼= 0.68. The

preshock ripple amplitude is ψ0
∼= (1.04 ± 0.09) cm and the

perturbation wavelength is λ ∼= (17.36 ± 0.27) cm, thus giving
ψ0/λ ∼= 0.06. The evolution of the contact surface ripple as
a function of time is shown in Fig. 19, where we plot the
difference ψi(t) − ψ∗

0 , with ψ∗
0 the postshock initial surface

corrugation [Eq. (36)]. The purple circles are the experimental
data with error bars superposed. The error has been estimated
according to the information given in [36]. The solid lines
show the temporal evolution following the results of linear
theory, as explained in [10] with the solution given as a series
of Bessel functions, using Eqs. (34) and (35). Two estimates of
the linear asymptotic velocity have been used in the complete
solution: curve (a) uses the value u

[5]
i with up to five iterations

in the functional equation system, curve (b) uses the value
u

[0]
i given by Eq. (42). We notice that in the time interval

during which linear theory is acceptable, we cannot discern
between u

[0]
i and u

[5]
i within the experimental uncertainty.

We also show the predictions of different formulations of the
impulsive model inside Fig. 19: curve (c) is calculated using the
impulsive model prescription δv∗

imp given by Eq. (52). Curve
(d) is calculated with the value uirrot given by Eq. (41), and
curve (e) is obtained with the impulsive prescription given
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FIG. 19. Comparison between case 5 of [36] and our theoretical
model. Curve (a) is calculated with Eq. (35) using u

[5]
i in Eq. (34);

(b) uses u
[0]
i ; (c) is given by Eq. (52); (d) uses uirrot given by Eq. (41);

and (e) uses Eq. (51). The red dashed line (f) is given by Eq. (37).

by Eq. (51). The dotted line superposed on the curve (a) is
the asymptotic evolution of the surface ripple predicted by
Eq. (37). This dotted line intersects the vertical axis at a value
equal to ψ∞ − ψ∗

0
∼= −0.9328 cm, which can be calculated

with Eqs. (38) and (36). The postshock initial amplitude is,
instead, equal to ψ∗

0
∼= 0.53 cm. This experiment has been also

extensively studied by means of numerical simulations in [26],
where the important role played by the transmitted shock
front has been highlighted. The simulations of [26] followed
the ripple growth well beyond the linear phase, identifying
important nonlinear features. It is noticed that the reflected
shock follows the contact surface in this experiment, as can be
seen from Figs. 8 and 9 of [26]. This experiment is analyzed
with full details of the linear calculations in Appendix C.

There are some important observations to be made here,
concerning Fig. 19. Curves (a) and (b) are obtained with the
help of Eq. (34), and follow the linear temporal evolution of
the ripple amplitude as a function of time. In order to calculate
those curves, not only a significant number of coefficients
ω2n+1 have to be obtained, but also an accurate estimate of
the asymptotic velocity ui is needed. This velocity has been
calculated at first with five iterations (u[5]

i ) and this value has
been used to draw curve (a). A simpler estimate, without
iterations [called u0

i and given by Eq. (42)], is used inside
Eq. (34) to draw curve (b). Both curves are almost indis-
tinguishable within the experimental error inside the interval
of time 0+ � t � 0.7 ms, where linear theory is acceptable.
The expression given by u

[0]
i is the simplest approximation

for the model equations used here that consistently takes into
account the effect of the bulk vorticities spread inside both
fluids. The more accurate value u

[5]
i is simply an iteration

based on u
[0]
i in order to get up to four or more exact digits.

The approximate estimate given by u
[0]
i should not be confused

with the results of previous simpler linear theories based on
an impulsive prescription. When compressible effects become
important, the formulas based on impulsive models usually
give inaccurate results and scalings because they ignore the

perturbation dynamics of the shock fronts for t > 0+. As they
cannot take into account the time variation of the shocks’
perturbation pressure, they cannot include the effects of bulk
vorticities. The predictions of the impulsive prescriptions have
been shown in this work when discussing the very weak shock
limit in Sec. V: in Eq. (41) for a double-gravity acceleration
impulsive model [11], and in Eqs. (51) and (52) (as initially
proposed in [5]). These simpler analytical results are shown
here as curves (c), (d), and (e) in Fig. 19, where it is seen that
they cannot track the temporal evolution of the contact surface
ripple. In fact, impulsive models predict a linear asymptotic
ripple growth of the form ψi

∼= ψ∗
0 + δvimp t , which is different

from the asymptotic expression discussed here, and given by
Eq. (37): ψi

∼= ψ∞ + δv∞
i t , which is evidenced as the red

dashed line indicated with (f) in that figure. Not only the
velocity estimate δvimp is different from δv∞

i , but also the the
postshock ripple amplitude at t = 0+, given by ψ∗

0 , differs
from the exact asymptotic ordinate ψ∞. Obviously, these
differences would tend to zero as we approach the limit of very
weak shocks (Mi − 1 � 1), as already discussed in Sec. V. In
fact, from Eq. (39), it is easy to see that ψ∞ ∼ ψ∗

0 only if the
time integral becomes negligible, which would only happen
when δvi(t) ∼ δv∞

i in most of the time integration interval,
that is, for extremely weak shocks. Impulsive prescriptions
would never predict ψ∞ �= ψ∗

0 , because of the assumption
δvi(t) ∼ δv∞

i H(t), with H(t) = 1 if t > 0+ and 0 otherwise,
H being the Heaviside function.

We proceed with the other experiments in Fig. 20. In
Fig. 20(a) we show the experiments at a lower value of the
preshock density ratio R0 = 1.817 where a mix of Ar and
He is used as the light gas and pure Ar is the heavier gas.
Two scenarios are shown, (1) and (2), which correspond to
Mi = 1.3 and Mi = 1.9, respectively, indicated with a blue
square and a red circle. The solid line is the theoretical
prediction using the series of Bessel functions and the value
u

[0]
i has been used, which is indistinguishable from u

[5]
i for

these experiments, due to the relatively low values of the shock
Mach number and low compressibility of the monoatomic
gases. As before, the dotted lines represent the asymptotic
behavior (in linear theory) of the material surface ripple,
according to Eq. (37). These lines intersect the vertical axis
at the value ψ∞ given by Eq. (38). For case 1 we get
ψ∞ ∼= 0.182 cm, and for case 2 we have ψ∞ ∼= 0.099 cm.
The postshock surface ripples are, respectively, ψ∗

0 = 0.21 cm
and ψ∗

0 = 0.14 cm. In Fig. 20(b) we show cases 6, 7, and 8,
where a shock comes from He towards SF6 and the preshock
density ratio is R0 = 39. Three Mach numbers are considered
as indicated in Fig. 20(b). We plot ψi(t) as a function of time,
as in Fig. 20(a). The dotted lines are as before, and we have
obtained ψ∞ = 0.771 cm for case 6, ψ∞ ∼= −0.21 cm for case
7, and ψ∞ ∼= −0.785 cm for case 8. We see that the initial
transient phase since t = 0+ is well described using the series
of Bessel functions, until nonlinearity becomes dominant and
the data continue growing with a different law. In Fig. 21 we
show the analog of Fig. 4 in which we plot k[ψi(t) − ψ∞] as a
function of kδv∞

i t , to stress the fact that all the curves should
asymptotically collapse into a single line of slope 45◦, within
the limit of validity of linear theory. We use δv∞

i = kψ0Diu
[0]
i .

It is evident that each experiment has a small window of linear
evolution which depends on the value of ψ0/λ. The smaller
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FIG. 20. (a) Temporal evolution of the contact surface ripple for
cases 1 and 2 of [36]. The solid lines are calculated with Eq. (35)
using u

[0]
i in Eq. (34). The dashed lines are given by Eq. (37). (b)

Same as (a) for cases 6, 7, and 8 of [36].

this ratio, the longer will last the linear behavior predicted by
Fig. 4. In Fig. 21, each experiment leaves the linear asymptotic
scaling at a different time, strongly dependent on the value
of ψ0/λ as discussed in [23–27], marking the beginning of
nonlinear growth. We notice in Fig. 21(b) that their case 5
follows the asymptotic law Eq. (37) inside the dimensionless
time interval 0.4 � kδv∞

i t � 1.6. Case 6 shows the similar
trend inside the interval 0.4 � kδv∞

i t � 1.7. Cases 7 and 8
show a smaller interval of agreement with Eq. (37). Finally,
we show in Fig. 22 the comparison with the experiments
of [37], where the gases are air and SF6. They showed two
experiments with the same preshock density ratio (R0

∼= 5.23),
or equivalently an Atwood number AT

∼= 0.679, and an
incident shock Mach number (Mi

∼= 1.45). The wavelength is
λ = 8 cm and two different values for ψ0: 0.306 cm and 0.918
cm. The ψ0/λ values are 0.027 and 0.083, respectively. The
second experiment with larger initial amplitude is therefore
marginally nonlinear. The plot shows kψi(t) − kψ∞ as a
function of the dimensionless time kδv∞

i t . The time window

Mix �Ar, R0 1.817
�a�

Mi �1.90

Mi �1.30

� � �

He � SF6, Mi �1.41, R0 �39

He � SF6, Mi �1.13, R0 �39

He � SF6, Mi �1.95, R0 �39

N2 � SF6, Mi �2.86, R0 �5.25

� � �
�b�

FIG. 21. (a) Plot of k[ψi(t) − ψ∞] as a function of kδv∞
i t for

case 1 of [36]. (b) Same as (a) for cases 5, 6, 7, and 8 of [36]. The
dashed line represents the asymptotic behavior predicted by Eq. (37).

� � �

� �

�

�

�

Air SF

FIG. 22. Plot of k[ψi(t) − ψ∞] as a function of kδv∞
i t for cases

1 and 2 of [37]. The solid lines are calculated with Eq. (35) using u
[0]
i .
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TABLE I. Description of the preshock parameters used in the experiments of [36,37]. The last two columns refer to the values of the
asymptotic ordinate of the contact surface ripple [Eq. (38)] and the asymptotic linear normal velocity predicted. These two quantities are
calculated using five iterations in the corresponding functional equation.

Case/Ref.[ ] γa γb R0 Mi ψ0(cm)/λ(cm) ψ∞ (cm) δv∞
i (m/s)

1[36] 5/3 5/3 1.817 1.30 0.29/20.15 0.187 3.24
2[36] 5/3 5/3 1.817 1.90 0.26/17.92 0.098 5.47
5[36] 1.0935 7/5 5.25 2.86 1.04/17.36 − 0.389 55.48
6[36] 1.0935 5/3 39 1.13 1.50/16.94 0.777 30.70
7[36] 1.0935 5/3 39 1.41 1.38/16.74 − 0.192 66.75
8[36] 1.0935 5/3 39 1.95 1.36/16.70 − 0.771 100.43

1[37] 1.0935 7/5 5.23 1.45 0.306/8 0.045 13.65
2[37] 1.0935 7/5 5.23 1.45 0.918/8 0.134 50.40

over which the data follow the asymptotic linear scaling is
given by 0.2 � kδv∞

i t � 1.4 for the case with smaller initial
amplitude. In Table I we give information on the experiments
of [36] studied here, as well as the experiments of [37].
We indicate the preshock parameters and also the values
inferred for the asymptotic ripple ordinate (ψ∞) together with
the asymptotic normal velocity (δv∞

i ) values that were used
to plot the temporal evolution, according to Eqs. (34)–(38).
The asymptotic ordinate and material velocity have been
calculated with five iterations. In Table II we show the values
obtained for the dimensionless normal velocity (ui), calculated
using the different approximations discussed in the preceding
sections. Blank spaces in Table II are left because the pre-
shock parameters do not fulfill the constraints required in the
corresponding equation referred to in the first column.

VII. SUMMARY

In the present work we have shown analytical expressions
for the asymptotic velocities that develop at a shocked contact
surface when another shock is reflected. The analytical model
used solves exactly the fluid equations in the linear regime for
the perturbations generated between the rippled transmitted
and reflected wave fronts. Initial generation of transverse
velocities at the contact surface is the main cause of the
subsequent evolution of the perturbation dynamics. Even
though the equation of state used here is that of an ideal gas
for both fluids, the results of the model are not restricted
by this assumption and more complex equations of state
can be studied. The critical parameter governing vorticity,
entropy, and sound perturbation generation behind each shock
front is the slope of the Rankine-Hugoniot curve. Therefore,

knowing the dependence of this quantity on the preshock
parameters would allow us to study the RMI in other EOS
fluids. In the cases considered here, ideal gases described
by their isentropic exponents have been taken into account.
For situations where compression is important, the vorticity
field created by the shocks is an important quantity in order
to accurately determine the steady state asymptotic velocity
that characterizes the asymptotic RMI. Unfortunately, the
involved mathematics is complicated because of the coupling
between the reflected and transmitted shocks, which obliges
us to iterate over a coupled functional equation in order to
obtain information until the asymptotic phase is reached. The
equations can be solved to follow the amplitude of the material
surface ripple in time and good agreement is observed for the
initial transient phase and during the interval of time when
the asymptotic linear growth is expected. The initial transient
phase can be neatly followed and agreement with experiments
is very good. This agreement is better for those experiments
with ψ0/λ � 0.1. As an additional result, the scaling ψi(t) ∼
ψ∞ + δv∞

i t has been found, where ψ∞ is, in general, quite
different from the postshock ripple amplitude at t = 0+,
another important effect of compressibility. The ordinate ψ∞
can be measured in recent experiments. As for the asymptotic
ripple velocities, a general formula can be obtained by iterating
a finite number of times. It is seen that in all the cases that can
be studied in experiments and simulations, the asymptotic
linear normal velocity is proportional to the incident shock
velocity. If we define, for example, a characteristic ve-
locity vc = √

p0/ρb0, we can conclude that δvi/(kψ0vc) =
f (γa,γb,R0,Mi)Mi . For very strong shocks, f is independent
of Mi , as in [39], making δvi ∝ Di in this limit. The function f

generally depends on the four preshock parameters γa , γb, R0,

TABLE II. Estimations of the linear asymptotic normal velocity of the experiments discussed, using the different formulas presented in the
work.

Growth rate Case/Ref.[ ] 1[36] 2[36] 5[36] 6[36] 7[36] 8[36] 1/2[37]

Eq. (40) (u[5]
i ) 0.0626 0.0847 0.1463 0.0470 0.0876 0.0976 0.1599

Eq. (42) (u[0]
i ) 0.0626 0.0847 0.1521 0.0470 0.0882 0.1036 0.1619

Eq. (45) (Mi − 1 � 1) 0.0617 0.0516 0.2681
Eq. (55) (Mi � 1) 0.1021 0.1713 0.0851 0.1000 0.2373
Eq. (56) (R0 − Rm

0 � 1) 0.0572 0.0787
Eq. (57) (R0 � 1) 0.0467 0.0878 0.1028 0.0963
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and Mi and is the quantity that has been one the objectives of
our calculations in this work. Several approximate expressions
to f have been compared with the exact solution in different
regimes. Assuming a completely irrotational velocity field in
each compressed fluid turns out to be a good approximation
only for incident shock Mach numbers Mi � 1.3. At higher
compressions the disagreement might become quite important
depending on the fluid compressibility and on the preshock
density ratio. An approximate formula is proposed, named
here u

[0]
i , and written in Eq. (42). It is obtained after an initial

guess of the pressure functions is done when iterating on the
functional equation. The agreement between this expression
and the exact value is shown in different situations with
varying degrees of compression. Despite its apparent algebraic
complexity, it is the simplest expression that can be obtained
from the linear theory up to date which consistently takes
into account the rotational character of the velocity fields
generated by the corrugated shocks. The agreement between
the exact solution and the approximate one is studied as a
function of the incident shock Mach number. Besides, the
behavior of the tangential velocities via , vib and the vorticity
parameters (Fa and Fb) has also been briefly discussed. We
conclude that the assumption of an irrotational velocity field
[characterized with the irrotational estimate of the normal
velocity uirrot given by Eq. (41)] is not a very good hypothesis
over wide regions of the space of preshock parameters and
when compression is important, we conclude in general that
ui < uirrot. Nevertheless, we have found small regions of the
preshock parameter space, not surprisingly near to freeze-out
conditions, in which the exact growth rate ui is actually
larger than the irrotational estimation uirrot. This unexpected
result deserves attention and will be studied in the future.
Motivated by all these results, a different set of approximate
expressions, based on Taylor expansions of a small parameter,
have been presented, each one valid in a different physical
limit, following the same strategies as in [39]. At first, the
weak shock regime is analyzed by expanding the quantities
that compose the normal velocity in powers of Mi − 1.
The first term of the expansion confirms the validity of the
impulsive approximation of Richtmyer for Mi − 1 � 1.1. A
reformulation of the impulsive model (presented in [10]) that
exactly agrees with uirrot is shown to be valid up to Mi � 1.2.
In order to include bulk vorticity effects, we expanded the
normal velocity up to the fourth power in Mi − 1. We have
found that adding more terms is not practical because the
convergence of the series is generally limited to Mi � 1.3.
Using the expression for u

[0]
i , we can calculate the growth

rate in most of the parameter space with small error, except
perhaps, when compressibility is very demanding. Taylor
expansions of u

[0]
i in powers of 1/Mi , R0 − Rm

0 , and 1/R0

have been presented and compared with the exact solution.
Contrary to the results shown in [39], the results obtained
here show more complicated mathematical formulas. This is
a very unpleasant feature of the calculations for RMI with
two fluids. The reason underlying such complexity resides in
the very nature of the functional equations that describe the
interaction of both shocks. Any time one of the rippled shocks
oscillates, it generates velocity and pressure perturbations that

are felt some finite time later on the other rippled shock which
in turn reacts and so on. The process repeats indefinitely,
giving rise to a complicated pattern of reverberations which
couple the velocity fields in each fluid. Weak shocks travel
very fast in comparison to the compressed material surface,
and therefore just an irrotational velocity field is enough to
deal with the asymptotic perturbed motion. When compression
becomes important, at least the transmitted shock moves very
slowly relative to the compressed contact surface, and this
fact enhances coupling through reverberation, complicating
the underlying calculations. Nevertheless, good agreement has
been demonstrated with recent experiments in a wide range of
preshock density ratios, fluid compressibilities, and incident
shock strengths, in which not only the different asymptotic
expressions obtained here have compared favorably with the
measured data, but also the temporal evolution of the transient
phase fits accurately. The main signature of the compression
by rippled shocks of ideal gases is the generation of vorticity
in the bulk. This vorticity has also been identified in recent
simulations and is an important ingredient to be taken into
account if more accurate nonlinear models are to be developed.
Besides, the scaling of the kinetic energy contained in the more
intense vortices near the contact surface is still an interesting
and open question.
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APPENDIX A: FUNCTIONAL EQUATIONS

In this section, we show the functional equations satisfied
by the pressure amplitudes Fm1 and Fm2 in order to calculate
the pressure perturbations in both fluids. As discussed in [15],
we have the following relationships:

Fa2(qa) = sinh χt ṽ0
ya

sinh(qa − χt )η
+
t (qa − χt )

−η−
t (qa − χt )

η+
t (qa − χt )

Fa1(qa − 2χt ),

Fb1(qb) = sinh χr ṽ0
yb

sinh(qb + χr )η−
r (qb − χr )

−η+
r (qb + χr )

η−
r (qb − χr )

Fb2(qb + 2χr ), (A1)

with the functions η±
r,t defined as

η±
r (qb) = αb1(qb)

cosh qb

± 1, η±
t (qa) = αa1(qa)

cosh qa

± 1 (A2)
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and

αm1(qm) = αm10 sinh qm + αm11

sinh qm

, αm2(qm) = αm20

sinh qm

. (A3)

The values of αm10, αm11, and αm20 are

αb10 = M2
r + 1

2Mrβr

, αb11 = − 1

2βr

, αb20 = −ṽ0
yb sinh χr,

αa10 = M2
t + 1

2Mtβt

, αa11 = − 1

2βt

, αa20 = −ṽ0
ya sinh χt . (A4)

After some additional algebraic manipulations, which are explained in previous works, we obtain a coupled system of functional
equations [15]:

φa3(qa)Fa1(qa) + Fb2(qb) = φa1(qa) + φa2(qa)Fa1(qa − 2χt ),

Fa1(qa) + φb3(qb)Fb2(qb) = φb1(qb) + φb2(qb)Fb2(qb + 2χr ). (A5)

The functions φmj :

φa1(qa) = � + 1

2

sinh χt ṽ0
ya

sinh(qa − χt )η
+
t (qa − χt )

, φb1(qb) = � + 1

2�

sinh χr ṽ0
yb

sinh(qb + χr )η−
r (qb + χr )

,

φa2(qa) = −� + 1

2

η−
t (qa − χt )

η+
t (qa − χt )

, φb2(qb) = −� + 1

2�

η+
r (qb + χr )

η−
r (qb + χr )

,

φa3(qa) = 1 − �

2
, φb3(qb) = � − 1

2�
, (A6)

where � = R cosh qb/ cosh qa . The above system of equations allows us to find Fa1,Fb2 by iterations (and hence P̃ and H̃ ). This
is done as in [39], by considering the simplest solution to the coupled system of functional relationships given in Eqs. (A5). It
amounts to neglecting the arguments −2χt and 2χr in the functions Fa1 and Fb2. This is equivalent to considering Eqs. (A5) as
a much simpler algebraic set of two equations in two unknowns: Fa1(qa) and Fb2(qb). Using this approximation, we get a first
estimate, which we call F

[0]
a1 and F

[0]
b2 :

F
[0]
b2 (qb) ∼= φa1(qa) − φb1(qb)[φa3(qa) − φa2(qa)]

1 − [φb3(qb) − φb(qb2)][φa3(qa) − φa2(qa)]
,

F
[0]
a1 (qa) ∼= φb1(qb) − φb3(qb)F [0]

b2 (qb) + φb2(qb)F [0]
b2 (qb + 2χr ). (A7)

We recall that the variables qa and qb are related by N sinh qa = sinh qb, where N = caf /cbf . Once we compute the initial
functions F

[0]
a1 and F

[0]
b2 we can continue with the procedure and obtain new functions F

[1]
a1 and F

[1]
b2 in a second iteration round,

using the functions F
[0]
a1 and F

[0]
b2 on the right hand sides of Eqs. (A5). Proceeding further we can define a sequence of functions

F
[n]
a1 and F

[n]
b2 , where all of them would be nested around the initial set F

[0]
a1 and F

[0]
b2 . It is observed that the iteration procedure

nested around F
[0]
a1 (qa) and F

[0]
b2 (qb) given in Eq. (A7) is reasonably accurate for relatively large values of qa and qb, which is all

we need to compute the dimensionless asymptotic velocity ui . However, if we wanted to calculate ψ∞ [as given by Eq. (38)],
we would need the first derivatives of the functions Fb1 and Fb2 evaluated at qb = 0. Therefore, the approximation used in this
appendix is not convenient and another approach is necessary to get accurate values of the pressure amplitudes at qa = qb = 0.
This point is touched on later in Appendix C.

APPENDIX B: ASYMPTOTIC VELOCITY PROFILES IN BOTH FLUIDS

We write in this appendix the differential equations satisfied by the asymptotic velocity fields, when the corrugated shocks are
very far from the material interface. We then derive the boundary conditions imposed on the asymptotic velocities at both sides
of the contact surface, to warrant boundedness of the perturbations in the whole space.

It is not difficult to see that �̃vrot , defined in Eq. (28), is a solenoidal field; that is, the perturbations u and v in the last equation
determine an incompressible velocity field. Therefore, they satisfy

du

dx
+ v = 0. (B1)

We need another equation to connect u and v which is constructed paying attention to the rotational character of the velocity
field, through the generation of vorticity behind each corrugated shock. As vorticity is a conserved quantity on each fluid element,
its value comes from the vorticity that the fluid element picked behind the shock front position, at the time the shock front
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compressed that fluid particle. In our problem, the dimensionless z component of vorticity is

ω̃(x,y) = δω

kDi

= g(x̃) sin ỹ. (B2)

Following [15,29,32], we have the vorticity functions ga and gb, in each fluid, respectively:

ga(x̃) = �ap̃t (rt = x̃/| sinh χt |),
gb(x̃) = �bp̃r (rr = x̃/ sinh χr ). (B3)

The quantities �a,b are [15,29,32]

�a = −
(
M2

t − 1
)√

2γaM
2
t − γa + 1

M2
t

[
(γa − 1)M2

t + 2
]3/2 ,

�b =
(
M2

r − 1
)2√

2γbM2
r − γb + 1

M2
r

[
(γb − 1)M2

r + 2
]3/2 . (B4)

Therefore, the additional differential equation satisfied by the normal and tangential components of the velocity is

dv

dx
+ u = g(x). (B5)

Combining Eqs. (B1) and (B5), the equations satisfied by the x and y components of the rotational velocity fields in both fluids
are

d2ua

dx̃2
− ua = −ga,

d2va

dx̃2
− va = dga

dx̃
,

d2ub

dx̃2
− ub = −gb,

d2vb

dx̃2
− vb = dgb

dx̃
. (B6)

We can Laplace-transform both equations integrating in the variable |x|, as in [15,29,32]. We define the functions

Um(σm) =
∫ ∞

0
um(x̃) exp(−σm|x̃|)dx̃. (B7)

We multiply by exp(−σm|x̃|) both sides of both Eqs. (B6) and integrate in the whole space at each fluid to obtain

Ua(σa) = −σa|ui | + |via| − �a sinh χt P̃t (−σa sinh χt )

σ 2
a − 1

,

Ub(σb) = σb|ui | − |vib| − �b sinh χrP̃r (σb sinh χr )

σ 2
b − 1

, (B8)

where ui is the asymptotic normal velocity at the contact surface and via and vib are the asymptotic tangential velocities at both
sides. The functions P̃t and P̃r are understood as functions of the corresponding variable q. It is clear that ua and ub are bounded
functions in the whole space. Therefore, their spatial Laplace transforms exist for any real value of their arguments σa and σb,
respectively, and therefore, there should be no singularity for σa = σb = 1. Therefore, we must require, as done in [39],

|ui | − |via| = −�a sinh χt P̃t (qa = −χt ) = Fa,

|ui | − |vib| = �b sinh χrP̃r (qb = χr ) = −Fb, (B9)

where Fm is the dimensionless form of Fm [see Eqs. (2)]. To calculate them, we use the values of Fa1(−2χt ) and Fb2(2χr ) with
the expressions obtained in Appendix A.

APPENDIX C: CALCULATION OF ψ∞

We recall here the definition of the asymptotic ordinate ψ∞:

ψ∞ = ψ∗
0 − Di

cbf

[F
′
b1(0) − F

′
b2(0)]ψ0, (C1)

where we realize the need to calculate the derivatives of Fb1 and Fb2 at the origin qb = 0. This last fact suggests that we
consider Eqs. (A5) in the limit |qa,b| � 1. To this scope we approximate, by making first order Taylor expansions at the
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origin:

Fa1(qa − 2χt ) ∼= Fa1(−2χt ) + qaF
′
a1(−2χt ) + O[(qa)2],

Fb2(qb + 2χr ) ∼= Fb2(2χr ) + qbF
′
b2(2χr ) + O[(qb)2]. (C2)

If we substitute inside Eq. (A5), we obtain, for qa � −χt and qb � χr ,

Fa1(qa) ∼= φa1(qa)φb3(qb) − φb1(qb)

φa3(qa)φb3(qa) − 1
+ φa2(qa)φb3(qb)

φa3(qa)φb3(qb) − 1
Fa1(−2χt ) − φb2(qb)

φa3(qa)φb3(qb) − 1
Fb2(2χr )

+ qaφa2(qa)φb3(qb)

φa3(qa)φb3(qb) − 1
F

′
a1(−2χt ) − qbφb2(qb)

φa3(qa)φb3(qb) − 1
F

′
b2(2χr ),

Fb2(qb) ∼= φb1(qb)φa3(qa) − φa1(qa)

φa3(qa)φb3(qb) − 1
− φa2(qa)

φa3(qa)φb3(qb) − 1
Fa1(−2χt ) + φa3(qa)φb2(qb)

φa3(qa)φb3(qb) − 1
Fb2(2χr )

− qaφa2(qa)

φa3(qa)φb3(qb) − 1
F

′
a1(−2χt ) + qbφa3(qa)φb2(qb)

φa3(qa)φb3(qb) − 1
F

′
b2(2χr ). (C3)

The function Fb1(qb) can be obtained from the linearized Rankine-Hugoniot equations summarized in Eq. (A1). We repeat it
here for completeness, after substituting the approximate expression for Fb2(qb + 2χr ), as given by Eq. (C2) before:

Fb1(qb) ∼=
sinh χr ṽ0

yb

sinh(qb + χr )η−
r (qb − χr )

− η+
r (qb + χr )

η−
r (qb − χr )

Fb2(2χr ) − qb η+
r (qb + χr )

η−
r (qb − χr )

F
′
b2(2χr ). (C4)

We see that the values of the pressure amplitudes Fa1,Fb2

(and of their derivatives) at qa = qb = 0 depend on the values
at qa = −2χt and qb = 2χr . This is due to the functional
character of Eqs. (A5), related to the acoustic reverberations
that occur in the space between both fronts. Therefore, the
accuracy with which we can calculate ψ∞ is dependent on the
accuracy with which we calculate the quantities Fa1(−2χt ),
Fb2(2χr ), F

′
a1(−2χt ), and F

′
b2(2χr ). These last quantities can

be calculated with the expressions derived in Appendix A
above, using the expressions derived for large values of the
arguments qa � −χt and qb � χr . The number of iterations
necessary to calculate them with a given number of digits
will be a function of the four preshock parameters. For weak
shocks, in general, just the seed values used, without iterations,
are usually enough. For moderate to strong shocks, one or two
iteration rounds may be necessary, until the wanted number of
significant/accurate digits is obtained.

APPENDIX D: DETAILED CALCULATIONS
FOR CASE 5 OF [36]

1. Zero order quantities

We show here the different algebraic steps to calculate
the temporal evolution and the linear asymptotic velocity
for one of the experiments discussed before. We consider
case 5 of [36], discussed at the beginning of Sec. VI. A
shock comes from air (γb = 7/5) towards SF6 (γa = 1.0935).
The value chosen for γa has been taken from [8]. The
preshock density ratio is R0 = 5.25, which gives a preshock
Atwood number AT = 0.68. The preshock ripple amplitude
is ψ0 = 1.04 cm and the corrugation wavelength is λ =
17.36 cm. The incident Mach number is Mi = 2.86. Therefore,
the incident shock strength is zi = 2γb(M2

i − 1)/(γb + 1) ∼=
8.376200. The initial sound speeds are ca0 = 13.4882 cm/ms
for SF6, and cb0 = 34.9693 cm/ms for air. Therefore, the
ratio of preshock sound speeds is ca0/cb0

∼= 0.385714. The

incident shock speed is Di = −100.012 cm/ms. The reflected
and transmitted shock strengths, according to the solution of
Eqs. (9) and (10), are zr

∼= 0.801833 and zt
∼= 15.894346.

The upstream reflected and transmitted Mach numbers are,
according to Eqs. (6), Mr

∼= 1.298955 and Mt
∼= 4.026763.

The corresponding downstream Mach numbers are, respec-
tively, βr

∼= 0.786488 and βt
∼= 0.315299. We display below

the different ratios of postshock quantities. We show first the
ratios behind the incident front, according to Eq. (4):

ρb1

ρb0

∼= 3.723755,
cb1

cb0

∼= 1.586803,
U1

cb0

∼= −2.091958.

(D1)
For this experiment, we thus have cb1

∼= 55.4895 cm/ms
and U1

∼= −73.1544 cm/ms. The negative sign for U1 simply
indicates that the fluid behind the incident shock moves from
right to left (see Fig. 1).

We also calculate the ratios across the reflected and
transmitted shocks, using the expressions inside Eq. (7):

ρbf

ρb1

∼= 1.513875,
ρaf

ρa0

∼= 9.654408,

cbf

cb1

∼= 1.090969,
caf

ca0

∼= 1.322842,

U1 − U

cb1

∼= 0.4409218,
U

ca0

∼= 3.609672. (D2)

The ratio of final densities and final sound velocities, at the
contact surface, are

R = ρaf

ρbf

∼= 8.991123, N = caf

cbf

∼= 0.294740. (D3)

We thus have the results caf = 17.842753 cm/ms and
cbf = 66.205234 cm/ms. In the laboratory frame, we have
U = −48.687983 cm/ms, Dr

∼= −1.076082 cm/ms, and
Dt = −54.313785 cm/ms. We see that the reflected shock
moves following the contact surface.
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For this choice of gases and incident Mach number, the
preshock density ratio for which no shock would be reflected
is, according to Eq. (11), Rm

0
∼= 1.161252, which is far from

the preshock density ratio used in this experiment.

2. First order quantities

We show here the values of the perturbed quantities,
relevant for the calculation of the final velocities. The initial
corrugations of the transmitted and reflected shocks, in units
of ψ0, are given as functions of the velocity ratios, Dt/Di and
Dr/Di , which have to be calculated from Eqs. (D1) and (D2):

ψt0

ψ0
= 1 − Dt

Di

= 1 − Dt

ca0

ca0

cb0

cb0

Di

∼= 0.456930,

ψr0

ψ0
= 1 + Dr

Di

= 1 + Dr + U1

cb1

cb1

cb0

cb0

Di

− U1

cb0

cb0

Di

∼= 0.989240 < 1. (D4)

We see a curious result in Eq. (D4) above: the initial
corrugation of the reflected shock is less than the initial
contact surface ripple amplitude. This is a particular case
in which the reflected shock follows the compressed contact
surface, because Dr < 0 in the laboratory frame. Therefore,
as a result of the refraction of the incident shock, all three
surfaces—the transmitted shock, the contact surface, and the
reflected shock—move to the left in Fig. 1. This possibility has
been highlighted in [43]. This result can also be seen in Figs. 8
and 9 of [26]. For example, at t = 0.25 ms, the reflected shock
position is xr ∼ 100.5 cm and at t = 0.50 ms it is xr ∼ 100.08
cm. Therefore, their reflected shock moved very little from
left to right, in the laboratory frame, following the contact

surface, with an approximate speed of |Dr | ∼ 1.2 cm/ms (their
positive x̂ axis points opposed to ours). The value obtained
from the simulation pictures compares reasonably well with
our estimate: Dr ∼ −1.08 cm/ms, and with the value deduced
from the experiments. The relative difference between linear
theory and experiments, on one hand, and simulations in this
case for the reflected shock velocity remains within 10%. It
is clear from the simulation snapshots that the reflected front
follows the material surface.

This possibility opens the road for additional interesting
questions, such as, would it be possible to have reflected
shock fronts following the contact surface with large enough
values of |Dr | such that ψr0 < 0 ? Probably, for sufficiently
strong shocks, this possibility should not be ruled out. This
observation connects with the discussion done in Sec. V
about freeze-out for strong shocks in the shock reflected
case. If ψr0 < 0, the sign of δv0

yb also changes, thus making
δv0

ya/δv
0
yb > 0, which has been found a necessary condition

for freeze-out [17,44]. As these situations are quite speculative
at the moment, and far beyond the scope of the present paper,
they will be considered in a future work.

For the experiment under discussion, the initial tangential
velocities, behind the transmitted and reflected shocks in units
of kψ0Di , are, according to Eq. (16),

ṽ0
ya = δv0

ya

kψ0Di

= − U

Di

(
1 − Dt

Di

)
∼= −0.222442,

ṽ0
yb = δv0

yb

kψ0Di

= U1 − U

Di

(
1 + Dr

Di

)
∼= 0.242003. (D5)

The negative sign for ṽ0
ya indicates that it is opposed to ṽ0

yb.
The values of the real velocities achieved in this experiment,

in dimensional units, are

δv0
ya

∼= −8.373997 cm/s, δv0
yb

∼= 9.1103677 cm/s. (D6)

With the postshock quantities obtained before, we can calculate the temporal evolution of the pressure perturbations with the
aim of describing the contact surface ripple growth together with the calculation of the asymptotic normal and tangential velocities
in the linear phase. Using the algebra explained in [10] we can calculate the sequences of coefficients π2j+1 and ω2j+1 for both
fluids. The dimensionless coordinates χ for the transmitted and reflected shock are, respectively, χt = − tanh−1 βt

∼= −0.326419
and χr = tanh−1 βr

∼= 1.062157. We show the values of the first few coefficients that allow us to calculate the initial derivative
of the pressure perturbations behind each corrugated front:

πa
1 = −0.1518432, ωa

1 = −0.298504,

πb
1 = −0.123747 , ωb

1 = −0.087981. (D7)

The first time derivatives of the pressure perturbations behind each corrugated front (we recall that rt = τa/ cosh χt and rr =
τb/ cosh χr ) are

p̃
(1)
t1 = dp̃t

drt

∣∣∣∣
rt=0+

= 1

2

(
πa

1 cosh χt + ωa
1 sinh χt

) ∼= −0.033885,

p̃
(1)
r1 = dp̃r

drr

∣∣∣∣
rr=0+

= 1

2

(
πb

1 cosh χr + ωb
1 sinh χr

) ∼= −0.156202. (D8)

The successive values of the initial derivatives can be calculated numerically in a systematic way. See the Supplemental
Material [41] to look for the explicit analytical expressions of the first and third initial derivatives of p̃t,r . Calculating higher
order derivatives allows us to obtain the coefficients π2n+1 and ω2n+1, necessary to plot the temporal evolution.

To calculate the first estimates of the quantities Fa,b we must obtain the analytical form of the pressure amplitudes Fa1(qa)
and Fb2(qb), to be used in Eqs. (33). The explicit forms of these functions are given in Eqs. (A7) and when written out explicitly
inside the MATHEMATICA notebook they are exceedingly large. We only show here the final expressions of the auxiliary functions
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φm1,2,3, after substituting for the postshock and preshock background quantities:

φa1(qa) = 0.209514 cosh(qa + 0.326418)(0.111221 cosh qa +
√

1 + 0.0868714 sinh2 qa)

cosh qa[1 + 0.315299 sinh(2qa + 0.652837) + 1.061672 sinh2(qa + 0.326418)]
,

φa2(qa) = −(0.111221 cosh qa +
√

1 + 0.0868714 sinh2 qa)
4.495562

cosh qa

×
[

1 − 0.315299 sinh (2qa + 0.652837) + 1.061672 sinh2 (qa + 0.326418)

1 + 0.315299 sinh (2qa + 0.652837) + 1.061672 sinh2 (qa + 0.326418)

]
,

φa3(qa) = 0.500000 cosh qa − 4.495562
√

1 + 0.0868714 sinh2 qa

cosh qa

,

φb1(qb) = − 0.0269575 cosh(qb + 1.062157)(8.991123 cosh qb +
√

1 + 11.511269 sinh2 qb)

cosh qb[1 + 0.786488 sinh(2qb + 2.124313) + 1.592668 sinh2(qb + 1.062157)]
,

φb2(qb) = −(8.991123 sinh qb +
√

1 + 11.511269 sinh2 qb)
0.0556104

cosh qb

×
[

1 − 0.786488 sinh (2qb + 2.124313) + 1.592668 sinh2 (qb + 1.062157)

1 + 0.786488 sinh (2qb + 2.124313) + 1.592668 sinh2 (qb + 1.062157)

]
,

φb3(qb) = 0.500000 cosh qb − 0.055610
√

1 + 11.511269 sinh2 qb

cosh qb

. (D9)

With the auxiliary functions above we can construct the seed functions F
[0]
a1 and F

[0]
b2 with which we calculate the initial

estimates of the average values Fa,b. Of course, iterating several times over Eqs. (A5), we get improved values of the bulk
vorticity parameters. We obtain, as a first estimation,

F
[0]
a1 (−2χt ) ∼= −0.0516249, F

[0]
b2 (2χr ) ∼= −0.000622197, (D10)

and

F [0]
a

∼= −0.0798572, F
[0]
b

∼= 0.0120960. (D11)

If we iterate five times, we get

F [5]
a

∼= −0.0865496, F
[5]
b

∼= 0.012538. (D12)

With the above values, we can calculate the dimensionless asymptotic velocities at the contact surface. At first, the irrotational
part is

uirrot = ṽ0
yb − Rṽ0

ya

R + 1
∼= 0.224400, (D13)

and the values for u
[0]
i and u

[5]
i are

u
[0]
i

∼= 0.151325, u
[5]
i

∼= 0.145287. (D14)

For the dimensionless velocities, we get δv∞
i

∼= 5.70 cm/ms without iterations, and δv∞
i

∼= 5.47 cm/ms after iterating five
times.

The asymptotic tangential velocities are, on the heavier fluid side,

v
[0]
ia

∼= −0.231182, v
[5]
ia

∼= −0.231836, (D15)

which correspond to dimensional values −8.70 cm/s and −8.73 cm/s, respectively. On the side of the lighter fluid, we get

v
[0]
ib

∼= 0.139229, v
[5]
ib

∼= 0.133033, (D16)

which correspond to dimensional values 5.24 cm/s and 5 cm/s, respectively.
We finally show the value obtained for the asymptotic ordinate ψ∞, according to Eq. (38). For the shocked initial ripple

amplitude we have ψ∗
0

∼= 0.53 cm. The asymptotic ripple ordinate is, after using the results of Appendix A, ψ∞ ∼ −0.4 cm. This
makes ψ∞ − ψ∗

0 ∼ −0.93 cm, as can be seen in Fig. 19.
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