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Patterning behavior of gravitationally modulated supercritical Marangoni flow in liquid layers
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The objective of the present analysis is the investigation of hybrid convection induced by the joint influence
of imposed vibrations (g-jitters) of desired amplitude and frequency and surface-tension-induced forces in a
nonisothermal liquid layer. This study may be regarded as the natural extension of an earlier work [V. M.
Shevtsova, I. Nepomnyashchy, and J. C. Legros, Phys. Rev. E 67, 066308 (2003)], where the focus was on
convection driven by interacting thermocapillarity and steady gravity. As in that work, conditions are considered
for which the unperturbed (vibrationless) Marangoni flow would be characterized by the emergence and
propagation of a classical hydrothermal wave, namely, a supercritical thermofluidynamic disturbance propagating
continuously in the upstream direction. A number of numerical results are analyzed and discussed. Regimes of
quasistationary rolls, standing waves, traveling waves, and modulated (pulsotraveling) disturbances are identified
in the considered space of parameters. Most interestingly, it is observed that traveling waves can reverse their
direction of propagation in some specific regions of the phase space.
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I. INTRODUCTION

In the present work we consider mixed convection induced
by the joint influence of surface-tension-induced forces and
imposed vibrations (g-jitters) of desired amplitude and fre-
quency in a nonisothermal liquid layer. The latter kind of
convection, generally referred to as thermovibrational flow,
initially studied due to its perturbing and undesired influence
on microgravity experiments [1,2], has recently witnessed a
renewed and significant theoretical interest because it has been
understood that adequate knowledge of it may be used for the
elaboration of a new strategy of flow control.

The use of vibrations may be regarded as a rather new and
yet less investigated technique to be used more universally
[3] than traditional methods used in crystal growth and
other technological processes because it is not restricted to
electrically conductive melts (as is the case for magnetic
fields). Vibrations and related effects could be applied without
limitations for effective flow control also in situations in which
the working fluid is organic.

A proper introduction of the topic considered in the present
work and its collocation in a relevant research historical
background should perhaps start from the simple remark that
although many studies have appeared in the literature over
the past two or three decades for pure Marangoni flow (both
theoretical and experimental, see, e.g., the works of Zebib et al.
[4], Bucchignani [5], Sato et al. [6] and, in particular, Schwabe
[7] for rich and exhaustive reviews on the subject) and pure
thermovibrational flow (see the works of Lyubimova et al.
[8], Gabdrakhmanov and Kozlov [9], Savino and Lappa [10],
Mialdun et al. [11], and Shevtsova et al. [12]) the interaction
dynamics of these modes of convection are still obscure. Some
important analyses are available for the companion case of
convection driven by interacting thermocapillarity and steady
gravity; see, e.g., the work of Parmentier et al. [13], Bur-
guete et al. [14], Nepomnyashchy and Simanovskii [15,16],
Shevtsova et al. [17], and Nepomnyashchy et al. [18]. Despite
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the potential important applications mentioned above, how-
ever, studies expressly addressing the mixed thermocapillary-
thermovibrational problem are rare and sparse (see, e.g.,
[19–30]). Moreover, most of existing numerical investigations
were based on analytic solutions (valid under the assumption
of an infinitely extended layer) and/or on the typical concepts
and methods of the linear stability analysis.

Most recently, [31] reconsidered this specific subject
addressing its potential application to the control of convection
patterning and strength in shallow rectangular cavities of finite
extent (with A = 4, where A is the aspect ratio defined as
the cavity length-to-depth ratio) with relevance to the most
widely used technologies for the growth of single-crystalline
materials from the melt. Although the Navier-Stokes equations
were solved in their complete and nonlinear form, however,
the numerical simulations were restricted to the case of low
Prandtl number liquids (e.g., silicon, with Pr = 0.01), steady
Marangoni flow, and (an even more limiting assumption)
vibrations of low amplitude and high frequency satisfying
the conditions for which the so-called simplified Gershuni
mathematical model becomes applicable (by which the ef-
fective time required for the numerical simulations can be
significantly shortened [32,33]). On the numerical side, some
other developments deserve attention, among them the study
by Grassia and Homsy [21,22], who considered the infinite
parallel Marangoni flow subjected to gravitational modulation
in various directions, at low frequencies where the Gershuni
model is no longer applicable; these authors assumed as base
unmodulated Marangoni flow the popular return flow solution
and employed a quasisteady approach, in the limit of a very
low forcing frequency. The idea here is to somehow control
the basic features of surface-tension-driven convection (not
only the typical patterning behavior in steady conditions but
also the onset and properties of emerging oscillatory flow, etc.)
in a geometry of finite extent via imposed vibrations without
resorting to any specific assumptions on their frequency and
amplitude.

From the theoretical viewpoint, it is important to mention
that the dynamics of mixed thermocapillary-thermovibrational
convection represent yet a rather complex challenge to
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FIG. 1. Sketch of fluid layer subjected to vibrations with arbitrary
direction applied in the plane of the basic two-dimensional flow.

researchers in the domain of fluid mechanics and heat transfer,
because of the fact that it appears very difficult, if not to
say practically impossible, to formulate any theory that can
reasonably predict a priori the nonlinear properties of the
resulting flow in terms of related waveforms. Numerical
simulations are adversely affected in terms of computational
resources and costs by the very high (both spatial and
temporal) resolution required to capture the resulting delicate
dynamics. A thorough understanding of the underlying physics
is also still lacking because of their inherent complexities and
involvement of different spatial and temporal scales.

II. MATHEMATICAL MODEL

A. Geometry

We consider a liquid layer with a free liquid-gas interface
parallel to the x axis and characteristic depth L = d (Fig. 1),
laterally delimited by solid walls, one cooled and the other
heated, with adiabatic conditions on the remaining boundaries.
The system aspect ratio A, defined as its length-to-depth ratio
�/d, is fixed to 20. The value of the Prandtl number (Pr =
ν/α, where ν is the fluid kinematic viscosity and α is the
thermal diffusivity) is Pr = 15. Moreover, no steady residual
gravity is present. The vibrations are contained in the xy plane,
being directed along a generic direction n̂ forming an angle θ

with the free interface.

B. Vibrations or g-jitters

By modeling vibrations as a sinusoidal displacement
varying in time as s(t) = bsin(ωt)n̂, where b and ω (= 2πf )
are its amplitude and angular frequency, respectively, it is
known that, in the absence of other forces or effects and for
a given fluid, i.e., for a fixed value of the Prandtl number,
the properties of the emerging thermovibrational flow can be
characterized in terms of two independent nondimensional
parameters only, the nondimensional frequency � and the
associated Rayleigh number Raω:

� = ωL2

α
, (1a)

Raω = bω2βT 
T L3

να
, (1b)

where βT is the thermal expansion coefficient and 
T

the imposed temperature difference. Since the displacement
s(t) = bsin(ωt)n̂ can be considered exactly equivalent to
an acceleration g(t) = g

ω
sin(ωt) (where g

ω
= bω2n̂) and

because the specificity of this alternating acceleration is that its
linear effects have a zero-time-averaged value, in the following
we will use the terms vibrations, system shaking or forcing,
gravity modulation, periodic acceleration, and g-jitters as
synonyms.

C. Balance equations

Scaling time, velocity, pressure, and temperature by L2/α,
α/L, ρα2/L2 (where ρ is the fluid density), and 
T ,
respectively, defining the temperature as T = (T − T m)/
T ,
where T is the dimensional temperature and T m a reference
value, and using the canonical Boussinesq approximation
to account for the effects of buoyancy, the nondimensional
momentum equation can be written as

∂V

∂t
= −∇p − ∇ · [V V ] + Pr∇2V + PrRaωT sin(�t)n̂.

(2)
Accordingly, the continuity and energy equations can be

cast in compact form as

∇ · V = 0, (3)

∂T

∂t
= −∇ · [V T ] + ∇2T . (4)

D. Boundary conditions

Obviously, such equations must be supplemented with
adequate kinematic and thermal boundary conditions, which,
by indicating with u and v the velocity components along x

and y, respectively, reduce to

u = 0, v = 0, T = ±1/2 for x = ±A/2, (5a)

u = 0, v = 0, ∂T /∂y = 0 for y = −1/2, (5b)

v = 0, ∂u/∂y = −Ma∂T /∂x, ∂T /∂y = 0 for y = 1/2,

(5c)

where

Ma = σT 
T L/νρα (6)

is the well-known Marangoni number (σT being the derivative
of the surface tension σ with respect to temperature). Equation
(5c) enforces a flow by tangential variation of the surface ten-
sion. The motion (thermocapillary or Marangoni convection)
immediately results whenever a temperature gradient exists
along the considered interface, no matter how small (see, e.g.,
[34,35]).

E. Numerical method

Balance equations and related boundary conditions (1)–
(6) have been solved numerically by a time-explicit finite-
difference method (primitive-variable approach) based on
a rectangular mesh and a staggered collocation of fluid-
dynamics variables. In particular, forward differences in time
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TABLE I. Grid refinement study: angular frequency of the
hydrothermal wave as a function of mesh resolution (Pr = 15,
A = 20, and Ma = 3 × 104).

Grid Nx × Ny �HTW

200 × 20 50.4
400 × 20 48.0
300 × 30 47.5
400 × 30 47.2
600 × 30 47.1

and central-differencing schemes in space (second-order accu-
rate) have been used to discretize the energy and momentum
governing equations. The related solution strategy is not
discussed here, the interested reader being referred to various
books and articles in the literature for an exhaustive treatment.

Here we limit ourselves just to providing some useful
information about the grid refinement study and the strategy
that we had to implement to guarantee a proper resolution
of all spatial and temporal scales involved in the considered
phenomena. As sensitive parameters for the spatial grid
refinement study, we have considered the angular frequency of
the hydrothermal wave representing the typical supercritical
state of pure Marangoni flow (see Sec. III A). The minimum
mesh required to guarantee independence of such a frequency
from the used spatial resolution has been found to be 30
points per unit nondimensional length. Accordingly, a mesh
with 600 points in the x direction and 30 points in the y

direction has been used for all simulations, i.e., 30 grid points
per unit nondimensional length along both spatial horizontal
and vertical directions (see Table I). The criterion for the
selection of the temporal resolution, i.e., the time integration
step, has been based on the combination of three independent
requirements


t1 � 1

2Pr


x2
y2

(
x2 + 
y2)
, (7a)


t2 � 1

2


x
y

umax
y + vmax
x
, (7b)


t3 � 2π

�M
, (7c)

where M = 1000 and


t = min{
t1,
t2,
t3}, (8)

where the first two inequalities are the well-known conditions
for the numerical stability of the diffusive and convective
contributions, respectively, and the third one is an even more
restrictive limitation coming from the need to resolve with
a sufficient number M of time steps (a minimum of 103)
the period of oscillation of the imposed vibrations. The first
condition depends on the spatial resolution only. The second
has been found to be the dominant limitation at high values
of the Rayleigh number Raω defined by Eq. (1b), whereas the
third becomes effective only at relatively high values of the
angular frequency (� = 104).

F. Validation

Validation of the numerical algorithm has been attained
via comparison with the numerical results by Shevtsova et al.
[17] for the case of mixed thermocapillary-thermogravitational
convection (steady gravity). Their numerical results were
obtained for values of the characteristic parameters relatively
close to those considered here (A = 24.7 and Pr = 13.9). In
particular we refer to their simulations for Ma = 18 154.5 and
Ra = 2578 (Bodyn = Ra/Ma = 0.142, on a 600 × 100 grid)
for which they could clearly measure the frequency of the
emerging traveling wave as �HTW = 45.28. By using such
values of the aspect ratio, Prandtl number, and Marangoni
number and simply setting � = 0 and Raω = 2578 in our
code (with a mesh 600 × 30), we could obtain a frequency of
46.03 differing by 1.6% with respect to the value reported in
their work.

III. RESULTS

We concentrate on the following specific conditions: fixed
values for the aspect ratio and Prandtl and Marangoni numbers
(A = 20, Pr = 15, and Ma = 3 × 104), the nondimensional
angular frequency of the acceleration disturbance, and the
associated Rayleigh number spanning over several orders of
magnitude. More precisely, ϖ is allowed to vary in the interval
�HTW � � � 1 × 104 (where �HTW is the angular frequency
of the hydrothermal wave produced by pure Marangoni flow)
and the Rayleigh number spans the range 0 � Raω � 3 × 106.
By introducing a specific parameter measuring the relative
importance of vibrational and Marangoni effects as

Bω = bω2ρβT

σT

L2 = Raω

Ma
, (9)

the last condition is equivalent to 0 � Bω � 102. More
specifically, for each interval 10n−1 � Raω < 10n with 4 �
n � 7 and 10n−1 � � < 10n with 2 � n � 5, numerical
simulations have been performed for Raω = a × 10n−1 and
� = b × 10n−1, considering for a values 1, 3, 5, and 10
and for b values 1 and 5, respectively. This resulted in a
total of approximately 160 simulations. Moreover, we limited
ourselves to considering two-dimensional flow having in mind
that such an idealized setting will help us in using it to infer the
general principles that drive complex patterns in more realistic
situations (in which vibrations and Marangoni flow can also
display components along the third dimension).

A. Pure Marangoni flow and the classical hydrothermal wave

To fully understand the influence of inertial (vibrational)
effects on the supercritical state of Marangoni flow, we begin
our analysis from the simplest possible situation, i.e., that of
unperturbed (vibrationless) thermocapillary convection. It is
known (see, e.g., [30]) that for this case, the so-called hy-
drothermal waves (HTWs) always correspond to the preferred
mode of instability [36]. These waves are known to have weak
components in the flow’s spanwise direction in the high-Pr case
[37–39], which supports our assumption of two-dimensional
flow. A remarkable feature common to all cases is that the
disturbance always travels in a direction with a component in
the direction opposite to that of the surface flow (upstream).
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FIG. 2. Oscillatory instability of Marangoni flow in a liquid layer,
with Pr = 15, A = 20, and Ma = 3 × 104, Ma based on the depth; the
free surface is adiabatic; cold side on the left and hot side on the right;
and the isolines of the stream function (ψmax = 43.3 and 
ψ ∼= 3.1)
are shown in four snapshots [plane (x,y)] evenly distributed during
one period of oscillation τHTW = 2π/�HTW. The location of the cells
near the cold side at different time moments indicates the propagation
of a wave to the right, i.e., in the upstream direction; a single roll is
steadily located near the hot wall as a consequence of the strong
temperature gradient established in the boundary layer adjacent to
the right wall (for illustration purposes, in this and in the following
figures the depth of the fluid layer is two times its real dimension).

As shown in Fig. 2, in practice, the hydrothermal wave itself
looks like a chain of cells moving from the cold side towards a
motionless rolls on the hot side with a given angular frequency
(�HTW = 47.1 for A = 20, Pr = 15, and Ma = 3 × 104). The
stationary roll existing near the right wall is maintained by the
strong temperature gradient established in the lateral boundary
layer. The moving train of moving cells senses the presence of
this roll by decaying in the region where this roll is located.
When a roll dies in proximity to the hot side, a new roll is
created at the cold side, thereby preserving the average number
N of convective cells present in the cavity at any instant (N ∼= 7
for the present conditions).

B. Thermovibrational flow and its properties

Before embarking onto the systematic analysis of hybrid
thermocapillary-thermovibrational convection, following the
same practice undertaken in Sec. III A for Marangoni flow, we
recall here some fundamental properties of pure thermovi-
brational convection (which will prove very useful in the
interpretation and categorization of mixed flows considered
later). It is known (see, e.g., [2,10]) that in the presence of an
imposed acceleration disturbance of given angular frequency
ω, the velocity field V will be, in general, made up by the
sum of two contributions, an average value V plus a periodic
oscillation of amplitude V ′ (V ′ = V − V ) oscillating in time at
the same acceleration frequency ω of the imposed disturbance
(or at frequencies that are multiple of ω). In the absence
of preexisting flows of other natures, this average (steady)
contribution V should be regarded essentially as a consequence
of the nonlinear nature of the balance equations, which (by
virtue of such a nonlinearity) are able to produce a flow that
has a nonzero finite steady component, although the imposed
alternating force does not possess such a property.

The same concept applies to any scalar field associated
with the considered convective field. As a result of such a
convective field, the scalar variables can be also thought of as
quantities consisting of a steady plus an oscillatory part, e.g.,
the temperature would read T = T + T ′.

The relative weight of the two contributions, in general,
is part of the problem, i.e., it cannot be predicted a priori;
different situations may occur, depending on the oscillation
frequency. For instance, it is known that at high frequencies
a regime can be attained where the oscillatory velocity and
temperature contributions are relatively large while the related
time-averaged steady contributions are small. At smaller
frequencies, the situation is reversed, with the oscillatory
contributions being very strong with respect to the mean ones.

C. High-frequency regime

When vibrations are superimposed on an already developed
convective flow (of thermocapillary nature in our case) the
situation becomes even more complex in terms of system
response and related nonlinearities. The effect of vibrations
strongly depends on the shaking direction relative to the
prevailing temperature gradient. In particular, it is known
that, in the limit of high frequency ϖ and small displacement
� = b

βT 
T

L
(see Ref. [19]), the mean vibration force is a bulk

driving action induced by temperature gradients normal to
the vibration axis, an important feature of this force being
that, if temperature distortions, with respect to the purely
diffusive case, are induced by another type of convection,
average vibrational flows arise in such a way as to permit
the isotherms to turn and again become perpendicular to the
vibration direction. Accordingly, vibrations are expected to
exert a damping action on preexisting Marangoni convection
if applied in the same direction of the imposed temperature
gradient (along the liquid-gas interface in the present case).

FIG. 3. Mixed Marangoni-vibrational flow, with Ma = 3 × 104,
� = 104, Raω = 3 × 104, Bω = Raω/Ma = 1, θ = 0, vibrations
parallel to the liquid-gas interface, ψmax = 43.75, and 
ψ ∼= 3.1;
streamlines are shown in four snapshots evenly distributed during
the timeframe τHTW. The additional bottom contour map shows a
snapshot of the related temperature field.
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Some results along these lines are shown in Fig. 3 which
illustrates the stages of evolution of supercritical Marangoni
flow in the presence of imposed vibrations with � = 104

and Raω = 3 × 104 (Bω = 1 and θ = 0). As expected, some
mitigation of the typical features of the hydrothermal wave
can be observed. Indeed, this figure shows that the velocity of
propagation of rolls changes along the cavity, as the rolls can be
clearly seen to decelerate in the course of their migration from
the cold side towards the hot side. Their velocity decreases
until it vanishes completely at a certain location; there the
typical spatiotemporal behavior of the traveling wave is taken
over by a different mechanism by which rolls occupy fixed
positions in time. The resulting flow pattern can be ideally
split into two different regions.

A group of cells spatially spreading periodically towards the
hot side (i.e., moving upstream) represents a first circulation
system. Such a group of rolls is bounded from the left (where
such rolls are being continuously created) by the cold wall and
from the right (where their propagation velocity decays) by a
second multicellular region where convection displays a qua-
sisteady behavior. This region is characterized by a relatively
stable pattern consisting of corotating quasistationary rolls.
Although these rolls undergo some weak growth and decay
in time, they maintain stable positions (thereby, creating a
barrier, i.e., a resistance to the propagation of the rolls being
continuously created at the cold side and spreading towards
the hot side).

Interestingly, due to the impact of the moving rolls coming
from the cold side, an intermediate region is created where
the local patterning behavior consists of the alternating of
two distinct corotating rolls and a single vortex formed by the
periodic merging of such rolls. As a result of the coexistence of
three different regions, the number of convective rolls present
at any instant in the layer increases with respect to the case of
pure Marangoni flow (N = 8 for the present conditions).

Most interestingly, Fig. 4 shows that if the considered
Rayleigh number is increased by one order of magnitude
(Raω = 3 × 105) while retaining the same frequency of
shaking (� = 104), the multicellular flow where convection
displays a quasisteady behavior becomes the dominant mode
of convection (it extends to the entire layer). The number of
rolls present at any time in the layer increases from a total of
8 (for Raω = 3 × 104) to N = 10. Cells spatially spreading
periodically towards the hot side are no longer a feature of the
system. A second set of cells, however, appears periodically in
proximity to the bottom wall [Fig. 4(b)]. Such cells have a very
limited extension along the y direction and display a clockwise
sense of circulation (i.e., they may be seen as a counterrotating

(a)

(b)

FIG. 4. Mixed Marangoni-vibrational flow, with Ma = 3 × 104,
� = 104, Raω = 3 × 105, Bω = Raω/Ma = 10, θ = 0, vibrations
parallel to the liquid-gas interface, ψmin = −9.5, ψmax = 50.5, and

ψ ∼= 4.3; streamlines are shown in two snapshots.

system of circulation with respect to the classical Marangoni
flow).

When vibrations are rotated by 90° (resulting oscillatory ac-
celeration perpendicular to the imposed temperature gradient),
in line with the general expectations related to the principle of
Birikh et al., we find changes induced in the HTW to be barely
appreciable for Raω = 3 × 104. For this case the qualitative
mechanism with cells migrating continuously in the upstream
direction is retained, although for larger values of Raω some
wave modulation effects due to the application of vibrations
become noticeable.

D. Gravitationally modulated HTWs at intermediate
frequencies

As already discussed to a certain extent in Sec. III B, there is
a strong dependence of both types of vibration-induced contri-
butions (average and periodic) on the acceleration frequency.
Amplitudes of the periodic (oscillatory) contributions tend
quickly to increase with a decrease in the forcing frequency.
Conversely, the average quantities are less dependent on ϖ so
that at low frequencies one may expect the steady contribution
to become negligible in comparison with the unsteady one. As
a result, the general law of Birikh et al. discussed in Sec. III C
(about the expected effect of the mean vibration force) is no
longer applicable at low and intermediate frequencies and
the influence of vibrations on supercritical Marangoni flow
becomes essentially unpredictable (i.e., it has to be assessed
on a case-by-case basis).

As a first step towards this end, numerical simulations per-
formed yet for Raω = 3 × 104 and θ = 0, but decreasing the
angular frequency by one order of magnitude (i.e., � = 103),
reveal that vibrations directed along the liquid-gas interface are
no longer able to induce the changes (in terms of patterning be-
havior and spatiotemporal dynamics) observed for � = 104.
Indeed, apart from some weak modulation of the rolls intensity,
the velocity field (not shown) does not display significant
changes with respect to the case of pure thermocapillary flow
(the reader being referred again to Fig. 2, which shows rolls
continuously propagating in the upstream direction).

At this frequency, the order of magnitude of the Rayleigh
number has to be increased to produce a significant effect. As
an example, Fig. 5 illustrates the convective field for � = 103

and Raω = 3 × 105 in the case of vibrations parallel to the
liquid-gas interface. For this value of the Rayleigh number, the
traveling wave is completely replaced by a mechanism with
rolls at fixed locations that pulsate in time, i.e., disturbance
nodes growing and shrinking alternately in time without
undergoing an appreciable displacement in the streamwise
direction. A more in depth analysis of Fig. 5 also reveals that
the classical dynamics seen in Fig. 2 (pure Marangoni flow)
and Fig. 3 (� = 104 and Raω = 3 × 104), characterized by
convective rolls all rotating in the counterclockwise direction
(and all being part of a larger circulation system with fluid
moving continuously from the hot side to the cold side
along the free interface and then flowing back along the
bottom wall), is no longer a feature of the flow. Regions of
reversed flow, in fact, appear periodically at the free interface,
which correspond to the emergence of clockwise-oriented cells
alternatively distributed among the counterclockwise-oriented
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FIG. 5. Mixed Marangoni-vibrational flow, with Ma = 3 × 104,
� = 103, Raω = 3 × 105, Bω = Raω/Ma = 10, θ = 0, vibrations
parallel to the liquid-gas interface, ψmin = −55.5, ψmax = 99.2,
and 
ψ ∼= 8.14; streamlines are shown in eight snapshots evenly
distributed during the time frame τω = 2π/� . The additional bottom
contour map shows a snapshot of the related temperature field.

rolls [see, e.g., Figs. 5(g) and 5(h)] as witnessed by the
negative value of the stream function associated with them.
Accordingly, the number of rolls present in the layer at any
instant ranges between N = 9 [when all rolls have the same
sense of circulation; see, e.g., Figs. 5(b)–5(e)] and N = 16
[see Figs. 5(g) and 5(h), where the flow may be seen as a set
of eight couples of counterrotating cells].

In the following we will classify the emerging solutions as
traveling roll and standing roll solutions [or as traveling waves
and standing waves, respectively] depending on whether the
prevailing oscillatory mode is featured by disturbance nodes
propagating along the x direction or growing and shrinking
alternately in time at fixed positions. Most notably, an even
more dramatic change in the emerging dynamics with respect
to those obtained for � = 104 can be produced when the direc-
tion of vibrations is changed to make them perpendicular to the
liquid-gas interface (� = 103, Raω = 3 × 105, and θ = π/2).

Figure 6 clearly indicates that for such circumstances the
cells spatially spread from the hot side towards the cold side
(i.e., they move downstream). This means that the nodes
of the gravitationally modulated wave have reversed their
direction of propagation with respect to the vibrationless

FIG. 6. Mixed Marangoni-vibrational flow, with Ma = 3 × 104,
� = 103, Raω = 3 × 105, Bω = Raω/Ma = 10, θ = π/2, vibrations
perpendicular to the liquid-gas interface, ψmin = −26.5, ψmax =
76.1, and 
ψ ∼= 7.3; streamlines are shown in eight snapshots
evenly distributed during the time frame τHTW, with the angular
frequency of the downstream traveling disturbance being |�| ∼= 420.
The additional bottom contour map shows a snapshot of the related
temperature field.

condition (recall that pure hydrothermal waves propagate in the
upstream direction as extensively discussed in the preceding
text). This may be seen as a practical occurrence of the
principle by which the application of a proper modulation
strategy may be used to induce a desired spatiotemporal
change resulting in disturbance nodes traveling in the positive
(upstream) or negative (downstream) direction or not traveling
at all (a standing wave). Most interestingly, when the wave
reverses its sense of propagation, the related angular frequency
(|�| ∼= 420) is much larger than the typical angular frequency
of the HTW (� ∼= 47.1), which clearly indicates a significant
modification of the fundamental mechanism of instability.

Like the case of vibrations parallel to the interface, also for
θ = π/2, clockwise-oriented rolls separating counterclock-
wise rotating cells emerge. In this case, however, as noticeable
in Fig. 6, their longitudinal (along x) size is very limited
(it never reaches the same size of counterclockwise-oriented
cells). On average the number of counterclockwise rolls is
N = 10.

Interestingly, an analysis of the associated temperature field
(see the bottom contour map in Fig. 6) reveals the existence
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FIG. 7. Marangoni-vibrational flow, with Ma = 3 × 104, � =
103, Raω = 1 × 106, Bω = Raω/Ma = 33, θ = π/2, vibrations per-
pendicular to the liquid-gas interface, ψmin = −169.5, ψmax = 178.5,
and 
ψ ∼= 24.85; streamlines are shown in eight snapshots evenly
distributed during the time frame τω = 2π/� , with the angular
frequency of the downstream traveling disturbance being |�| ∼= 193.
The additional bottom contour map shows a snapshot of the related
temperature field.

of eleven thermal plumes originating from the bottom wall
and extending towards the free surface, resembling those that
would be typical of a classical layer heated from below and
subjected to standard gravity (Rayleigh-Bénard convection). It
can therefore be argued that the mechanism driving instability
has a strong component of buoyancy nature (i.e., related to the
inertial action produced by vibrations; the reader is referred to
Sec. IV for some additional insights into these dynamics).

An increase in the Rayleigh number (Raω = 1 × 106

and θ = π/2) (Fig. 7) determines an increase in size of
the clockwise-oriented rolls. Figure 7, showing the typical
sequence of stages of evolution in the period 2π/� , indicates
that, although counterclockwise rolls are the dominant mode
of convection in Figs. 7(f)–7(h), in the other stages of evolution
they have the same size as the clockwise-oriented ones (as also
confirmed by ψmin and ψmax whose absolute values are almost
equal). Moreover, comparison of Figs. 7(a) and 7(h) leads to
the conclusion that the direction of propagation of convective
disturbances is still in the downstream direction. The related
angular frequency, however, experiences a decrease with
respect to the value measured for Raω = 3 × 105.

FIG. 8. Marangoni-vibrational flow, with Ma = 3 × 104, � =
103, Raω = 3 × 106, Bω = Raω/Ma = 102, θ = π/2, vibrations per-
pendicular to the liquid-gas interface, ψmin = −415.8, ψmax = 340,
and 
ψ ∼= 54; streamlines are shown in eight snapshots evenly
distributed during the time frame τω = 2π/� , with the angular
frequency of the downstream traveling disturbance being |�| = 48.

An additional increase in the Rayleigh number further
reduces the velocity of the disturbances, which drops from
−420 for Raω = 3 × 105 to −193 for Raω = 1 × 106 to
� ∼= −48 only for Raω = 3 × 106 (Fig. 8). In line with the
expectations naturally resulting from the observed decrease of
the disturbance angular velocity for increasing values of the
Rayleigh number, only standing waves have been obtained for
values of the Rayleigh number higher than 3 × 106.

A further decrease in the frequency of forcing (� = 102)
confirms the trend discussed in the preceding text about the
relative importance of vibration-induced steady (averaged)
and oscillatory velocity (and temperature) contributions. In
such conditions the time-averaged departure from the basic
solution induced by the vibrational effect is very small with
respect to the oscillatory component of such a departure.
The related effects involve significant temporal modifications
to the earlier flow solution (the supercritical Marangoni
flow), which depend basically on the intensity of the forcing
(the Rayleigh number Raω) and its direction. In particular,
vibrations in the vertical direction (θ = 90◦) are expected
to generate time-dependent vorticity due to coupling with
the applied horizontal temperature gradient (this alternately
cooperating or competing with the Marangoni flow over a
cycle of the modulation [21]), while vibrations applied along
the layer (θ = 0◦) are expected to produce vorticity only
when coupled to vertical convected temperature gradients
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FIG. 9. Mixed Marangoni-vibrational flow, with Ma = 3 × 104,
� = 102, Raω = 3 × 104, Bω = Raω/Ma = 1, θ = 0, vibrations
parallel to the liquid-gas interface, ψmin = −23.9, ψmax = 73.5,
and 
ψ ∼= 5.73; streamlines are shown in eight snapshots evenly
distributed during the time frame τω = 2π/� .

(produced by the preexisting Marangoni flow). The present
numerical simulations for � = 102 indicate that, by virtue
of mechanisms depicted above, the flow at Raω = 3 × 105 is
rather turbulent for both θ = 0◦ and θ = 90◦ (not shown) in
comparison to earlier cases at higher values of ϖ.

Interestingly, for θ = 0◦ and Raω = 3 × 104 (see Fig. 9),
the interplay between the imposed horizontal vibrations over a
cycle of the modulation and temperature gradients produced by
Marangoni flow leads to a periodic response consisting of the
temporal alternation of two main circulation systems. One of
them is represented by a counterclockwise-oriented elongated
cell where fluid moves continuously on the free surface from
the hot side towards the cold side (and then back to the hot
side along the bottom wall). The other is a more complex
configuration in which an extended region of reversed flow
appears at the free surface. This region corresponds to the
presence of an elongated (70% of the overall system horizontal
size) [see, e.g., Figs. 9(e)–9(g)] single convective cell rotating
in the clockwise direction, while the remaining part of the
layer is occupied by two rolls of lower size still rotating
counterclockwise (located in proximity to the lateral walls).

The former circulation system can be seen as a result of the
joint action of the Marangoni effect and the Rayleigh-Bénard
convective mode that is excited when the system is temporarily
subjected to an acceleration acting along the positive x

direction (i.e., in the part of the cycle when the stratification

FIG. 10. Mixed Marangoni-vibrational flow, with Ma = 3 × 104,
� = 102, Raω = 3 × 104, Bω = Raω/Ma = 1, θ = π/2, vibrations
perpendicular to the liquid-gas interface, ψmin = −8, ψmax = 47.8,
and 
ψ ∼= 4; streamlines are shown in eight snapshots evenly
distributed during the time frame τω = 2π/� .

induced along the x direction by the imposed temperature
gradient is unstable with respect to the acceleration). In this
configuration the body force, which acts to displace the hot
light fluid by the cold heavy fluid, tends to enhance the basic
Marangoni return flow.

Figure 9 also shows that the multicellular character of
convective systems (with many rolls) seen for higher values
of ϖ is significantly reduced in such circumstances. This
clearly indicates that the oscillatory nature of the thermofluid-
dynamics field and the related large-scale disturbances must
be ascribed essentially to the imposed forcing rather than
to the existence and propagation of a hydrothermal wave of
thermocapillary origin.

When vibrations perpendicular to the liquid surface are
considered (see Fig. 10, where θ = 90◦ and Raω = 3 × 104),
a comparison with the earlier simulations performed for
� = 103 and Raω = 3 × 105 makes it immediately evident
that a Rayleigh number decreased by one order of magnitude
is no longer sufficient to support the reversal of direction of
propagation of the wave seen in Fig. 6. The rolls in Fig. 10, in
fact, display again the classical motion in the upstream direc-
tion, which is typical of the canonical Marangoni supercritical
flow (the reader is referred in particular to the left part of
the figure). Nevertheless, a large-scale disturbance traveling in
the same direction of the surface flow (downstream) can still
be identified. Originating from the hot side, it propagates on
the background flow causing a visible weakening of the rolls.
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FIG. 11. Mixed Marangoni-vibrational flow, with Ma = 3 × 104,
� = 102, Raω = 1 × 105, Bω = Raω/Ma = 3.3, θ = π/2, vibra-
tions perpendicular to the liquid-gas interface, ψmin = −29, ψmax =
57.6, and 
ψ ∼= 6.2; streamlines are shown in eight snapshots evenly
distributed during the time frame τω = 2π/� .

Under the impact of such a disturbance, any roll belonging
to the Marangoni multicellular structure is weakened for a
limited time until the disturbance moves to the next roll in
the downstream direction. Such a disturbance travels with the
angular velocity of the forcing acceleration ϖ.

An increase in the Rayleigh number from Raω = 3 × 104

to 105 does not change the general qualitative behavior.
Two disturbances propagating in opposite directions can be
still clearly identified (Fig. 11). Some quantitative changes,
however, must be taken into account. Indeed, it can be seen
that the convective disturbance of buoyant nature is now
strong enough to cause the emergence of clockwise-oriented
cells in some stages during a cycle of modulation (more
precisely, when the vibration-induced acceleration is directed
from the bottom wall towards the free surface, i.e., in the
positive y direction [Figs. 11(a)–11(c)]). Buoyancy also makes
the disturbance traveling downstream the dominant mode of
convection when the acceleration is reversed (acceleration
directed from the surface towards the bottom wall, i.e., in
the negative y direction [Figs. 11(d)–11(h)].

E. Resonant states

In this section we briefly investigate the possible existence
of resonances, i.e., of special convective (resonant) states in
which the frequency of the mechanical vibrations is equal to
the natural frequency related to an oscillatory instability of

FIG. 12. Mixed Marangoni-vibrational flow, with Ma = 3 × 104,
� = �HTW, Raω = 3 × 104, Bω = Raω/Ma = 1, θ = 0, vibrations
parallel to the liquid-gas interface, ψmin = −27.4, ψmax = 73, and

ψ ∼= 5.9; streamlines are shown in eight snapshots evenly dis-
tributed during the time frame τHTW.

the base flow (in our case the traveling HTW that occurs in the
unmodulated case). This may be regarded as a special case of
situations where the frequency of forcing and the frequency
of the hydrothermal wave related to Marangoni flow have the
same order of magnitude (see the simulations discussed in
Sec. III D for � = 102). It is shown here how special types of
spatiotemporal resonances can arise for � = �HTW because
this condition permits selection of different interacting spatial
modes. Accordingly, a wider flexibility in possible oscillatory
behaviors (that can form) is allowed.

Along these lines, Fig. 12 indicates that when the case
of horizontal vibrations is considered, although the dynamics
resemble those already discussed for � = 102 (with the
periodic emergence of a region of reversed flow and the
interface), the pattern displays a richer variety of oscillatory
modes. Indeed, two main stages of oscillatory behavior can
be observed in a period 2π /ϖ, with rolls propagating in the
upstream direction at the beginning [Figs. 12(a)–12(d)], as
expected for pure Marangoni flow, and then moving in the
opposite direction when the main circulation system driven by
the joint action of Marangoni effects and buoyancy is taken
over by an elongated clockwise-oriented cell responsible for
the reversed flow at the interface.

Again, two counteracting effects can be observed in the case
of vibrations perpendicular to the interface (Fig. 13). Rolls
propagate in the upstream direction as in the vibrationless
case, but their motion is slowed down by a disturbance
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FIG. 13. Mixed Marangoni-vibrational flow, with Ma = 3 × 104,
� = �HTW, Raω = 3 × 104, Bω = Raω/Ma = 1, θ = π/2, vibra-
tions perpendicular to the liquid-gas interface, ψmin = −7.7, ψmax =
49.5, and 
ψ ∼= 4.1; streamlines are shown in eight snapshots evenly
distributed during the time frame τHTW.

periodically emerging at the hot side and propagating to the
other (cold) side over a period. Such a disturbance causes
a weakening of the rolls it meets and, at the same time, it
promotes the formation of a single elongated cell (via the
coalescence of weakened component rolls). Correspondingly,
isotherms display a very interesting alternation in time of
almost horizontal isotherms (vertical stratification induced by
the Marangoni effect) and plumes (of Rayleigh-Bénard origin)
originating from the bottom wall due to buoyancy (not shown).

IV. DISCUSSION

Having finished a description of the patterning behavior and
some related quantitative details (as a function of vibration
direction, frequency, and Rayleigh number), we now turn
to interpreting the results described in the previous sections
under an alternative point of view that may provide a more
rigorous characterization and classification of all solutions. In
particular, we will show how the problem becomes at once
more manageable and more intuitive if it is cast in the form of
maps in the phase space.

A summary in the case of vibrations directed along a
direction parallel to the liquid layer is shown in Fig. 14. In this
map, a diagram with ϖ as the abscissa and Raω as the ordinate,
three distinct regions can be clearly discerned. The first one
is the region of standard HTW emergence, that is, the area
of the space of parameters (Raω,ϖ) where the hydrothermal
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FIG. 14. Map of spatiotemporal states and waveforms as a
function of acceleration amplitude and frequency in the case of
vibrations parallel to the layer (θ = 0◦). Legend: oscillatory state
with counterrotating cell, OSCC; upstream traveling wave, TW;
pulsotraveling (upstream) wave, PTW; standing wave, SW; quasis-
tationary state, QS; mixed traveling quasistationary state, MTQS;
turbulence, T.

wave produced by Marangoni flow seems to be unaffected
(at least from a qualitative standpoint) by the presence of
vibrations (regardless of their acceleration amplitude and
frequency). From a purely technical standpoint, this region
would correspond to safe conditions for the execution of
an ideal space experiment aimed at studying the formation
mechanism of hydrothermal waves induced by Marangoni
flow. The opposite situation, i.e., the region in which a flow
having clearly recognizable characteristics can no longer be
identified (turbulent conditions), is also present in Fig. 14 (this
should be regarded as the worst case as opposed to the ideal
situation discussed before).

A region also exists that separates the two limit situations
above. As the reader may easily realize, this is the region
where the interesting dynamics described in the earlier sections
occurs.

Here, in the direction of identifying in a unique and consis-
tent way the spatiotemporal behavior of the emerging oscilla-
tory solution when initial disturbances saturate their amplitude,
we classify definitely the solutions as traveling and standing
roll solutions (equivalent to traveling and standing waves,
respectively), quasistationary (QS) convection, and mixed
states, namely, patterns that display at the same time features
pertaining to more than one of these fundamental modes of
convection. No definition is perfect and it is hard to disentangle
a definition from a property, but the following categorization
captures the essential aspects of the observed phenomena.

By the first category we intend solutions where a clear
direction of propagation of the fluid-dynamics disturbance
can be identified. The second type of flow consists of rolls
pulsating at fixed positions along the horizontal extension of
the layer (undergoing a remarkable periodic growth and decay
in time and eventually a change in the sense of rotation).
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This pattern shows an appearance that is totally different
from the traveling wave. In physics, a standing wave is a
wave (a disturbance oscillating in time) that remains in a
constant position. In general, this phenomenon emerges as
a result of the interference (superposition) of two waves
having the same amplitude and same angular frequency ω,
but traveling in opposite directions. This typically results in
a field with no net disturbance transport on average along
the propagation direction of the two component waves (the
x axis in the present case for which we consider a liquid
layer). In terms of patterning behavior, the final effect is a
series of nodes (disturbance of zero amplitude) and antin-
odes (disturbance of maximum amplitude) at fixed locations
along x.

The essentially stationary nature of the resulting pattern
distinguishes the third case (QS convection) from the other
phenomena. It is termed in this way because of the gently
fluctuating nature of rolls, which change neither their position
along x nor their sense of rotation.

The last category is given by patterns with a more or
less regular spatiotemporal behavior that can be seen as a
combination of portions of patterns pertaining to different
fundamental classes or as states displaying the fundamental
properties of two different variants at the same time. A typical
example along these lines is the pulsotraveling mode, i.e., rolls
that undergo a change in strength while they migrate along the
x direction.

A direct comparison of Fig. 15, summarizing the results for
the case in which the angle formed by g-jitters and the free
liquid-gas interface is θ = 90◦, with Fig. 14 leads to the more
or less immediate realization that vibrations perpendicular to
the liquid layer are, in general, less dangerous than those acting
along the x axis. The region of classical HTW occurrence is
much more extended with respect to the case θ = 0◦. Also, a
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notable shrinkage of the region of turbulent behavior can be
observed.

Interestingly, in such a case some additional varieties (in
terms of characteristics of the emerging pattern) occur that are
not present in the θ = 0◦ case. We refer, in particular, to Figs. 6
and 7 and Figs. 10 and 11, which lead to the definition of two
different categories of patterns as further described below. The
first class (Figs. 6 and 7) is hereafter referred to as a reversed
traveling wave owing to the sense of propagation of the dis-
turbances, which now travel continuously in the downstream
direction. The second variant is the mixed-traveling mode
(denoted by CD in Fig. 15), i.e., the oscillatory state resulting
from the coexistence of two distinct disturbances traveling
in opposite directions with different amplitudes and angular
velocities (Figs. 10 and 11). This second type of solution
can be met moving along the vertical traverse at � = 100.
The standard HTW existing for Raω < 104 is replaced by the
mixed-traveling mode with counterpropagating disturbances
for 104 < Raω < 105 before a transition to turbulence occurs at
higher values of Raω. These specific dynamics may be seen as
a consequence of the increased ability of inertial disturbances
to interfere with the delicate mechanisms supporting the HTW
when they are perpendicular to the layer and their angular
frequency is comparable to the angular frequency of the
hydrothermal wave, i.e., when these two quantities have the
same order of magnitude O(� ) = O(�). Indeed, an increase
inϖ at constant Raω = 105 beyond � = 3 × 102 determines a
suppression of this fascinating behavior, with the emergence of
a pulsotraveling mode at � = 103 and recovery of a classical
HTW at � = 104.

Even more interesting is the dynamics encountered when
moving along a vertical traverse at � = 103. For Raω >

5 × 104, the fairly regular classical HTW (see, e.g., Fig. 2)
is replaced by a pulsotraveling mode at Raω = 105; a further
increase in Raω, however, determines a change in the sense
of propagation of the disturbance, thereby producing the
aforementioned reversed traveling wave (Figs. 6 and 7). Given
the strong increase displayed by the related angular velocity
(in comparison to the pure Marangoni flow) when the change
in the sense of propagation occurs, it can be argued that the
disturbance is essentially thermovibrational in nature. Its sense
of propagation, however, must still be ascribed to the presence
of Marangoni flow.

The general principle established by the linear stability
analysis by Smith and Davis [36] implies that in the case
of a basic-state flow-induced temperature distribution along
y corresponding to a positive vertical temperature gradient,
disturbances should always travel in a direction with a
component in the direction opposite to that of the surface
flow. Although the wave traveling downstream clearly violates
this principle, one must keep in mind that the base state in
the cavity is characterized not only by a vertical temperature
gradient but also by the tendency to transport fluid along the
interface from the hot side to the cold side due to the Marangoni
surface stresses. By breaking the in-plane isotropy that would
characterize pure thermovibrational flow, the presence of these
stresses may explain the observed sense of propagation of rolls.

Beyond Raω = 106, this solution displays again the typical
properties of a mixed mode with rolls traveling and pulsating
at the same time. A further increase in Raω strengthens the
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FIG. 16. Reversed traveling-wave–disturbance angular velocity
(absolute value) as a function of Raω for � = 103. The solid line
is a polynomial fit with degree 2, indicating that in this regime
the disturbance angular velocity decreases quadratically with the
Rayleigh number.

pulsating aspect of the rolls (Fig. 8) with respect to their
traveling nature [their velocity of propagation tends to be
reduced as Raω is increased (Fig. 16)] until a pulsating-only
behavior (standing wave) is attained for Raω � 3 × 106.

At this stage, it is also worth considering comparison
with some similar results available in the literature. Notably,
Zebib [27] found vertical modulation in the limit of high
frequencies (i.e., the Gershuni approximation) to stabilize
the hydrothermal branch for any value of Pr. The influence
of vibrations on the hydrothermal waves was reported as a
function of a dimensionless parameter W defined as

W = R̃a
2
ωPr

2M̃a� 2
, (10)

where M̃a = σT γ d2/μα and R̃aω = bω2βT γ d4/να, respec-
tively, where γ is the rate of imposed uniform temperature
increase along the x axis (
T/� in our case).

The hydrothermal waves were observed to be stabilized
(i.e., to emerge at higher values of Ma) with increasing W .
Most interestingly, in theoretical agreement with the present
results, the waves could reverse their direction of propagation,
i.e., travel in the same direction as the free surface flow at
particular values of W depending on Pr. For Pr = 15, W was
found to be approximately equal to 1.5 × 10−1, which implies
that

R̃a
2
ω

∼= 2 × 10−2M̃a� 2, (11a)

which, replacing M̃a and R̃aω with the equivalent expressions
in terms of our Ra and Ma, reads

Ra2
ω

∼= 2 × 10−2M̃a� 2A = 4 × 10−1Ma� 2. (11b)

For Ma = 3 × 104 and � = 103, this relationship gives
finally a transition Rayleigh number Raω

∼= 105, which is in
good agreement with the present findings (wave traveling in
the downstream direction emerging only for Raω > O(105).

V. CONCLUSION

We have focused on the patterning behavior and oscillatory
response of a plane liquid layer supporting Marangoni flow to
the application of inertial disturbances of given intensity and
frequency. In particular, attention has been concentrated on a
traveling wave, which of Marangoni convection represents a
well-known solution.

The hydrothermal wave appears as a train of rolls moving
continuously from the cold side towards the hot one. This rel-
atively simple description, however, is no longer applicable as
soon as complications such as external periodic perturbations
of inertial nature are added to the considered problem.

These perturbations can prevent HTW formation com-
pletely. In general, however, there exist, between this limiting
classical solution and turbulent behaviors in space (and/or
time), numerous intermediate situations. In particular, on the
basis of the present numerical results it is possible to divide the
regimes of modulated supercritical Marangoni convection into
three main regions: (i) apparently unaffected HTWs, (ii) hybrid
thermocapillary-thermovibrational waves, and (iii) turbulent
flow. The second region in turn can be further partitioned into
an array of possible modes of convection.

The numerical simulations have shown how, in general,
the behavior at a large scale of the system and the resulting
properties of the flow arise from detailed structures on different
scales. In such a context, some effort has been directed to sep-
arate expressly on such scales the features that characterize the
pattern and create its recognizable identification. Accordingly,
solutions have been classified in detail as traveling, standing
(pulsating), quasistationary, and mixed modes. This last
category in turn has been split into different variants, including
a pulsotraveling mode, i.e., rolls that undergo a change in
strength while they migrate along the x direction and a mixed-
traveling mode, i.e., the oscillatory state resulting from the
coexistence of two distinct disturbances traveling in opposite
directions with different amplitudes and angular velocities.

We have found that both large and small rolls, appearing
periodically, can affect the dynamics at small values of
the vibrations nondimensional frequency. A more precise
assessment of the impact of vibrations frequency ϖ and
intensity Raω, however, has revealed that for a fixed value
of Raω a regime exists where large-scale disturbances are
the dominant mode of convection. As this frequency attains
progressively larger values, the large-scale disturbance is taken
over by disturbances on a smaller scale. An additional increase
in ϖ tends to suppress also these dynamics, leading to a full
recovery of the classical HTW. By contrast, increases in Raω

at a constant value of ϖ cause, in general, a transition to
turbulence at relatively small values of ϖ or a tendency to
replace traveling waves with pulsating or stationary modes at
larger � (�103).

We have proved that it is somehow possible to take
advantage of modulation of Marangoni convection induced
by physical vibrations of the overall system (i) to induce
a mitigation of the resulting convective disturbances, (ii)
to control convection patterning (i.e., induce spatiotemporal
convective patterns with desired features), and (iii) to induce
changes in the system hierarchy of bifurcations (modify
threshold parameters and features of the supercritical states).
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