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Continuum and molecular-dynamics simulation of nanodroplet collisions
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The extent to which the continuum treatment holds in binary droplet collisions is examined in the present
work by using a continuum-based implicit surface capturing strategy (volume-of-fluid coupled to Navier-Stokes)
and a molecular dynamics methodology. The droplet pairs are arranged in a head-on-collision configuration with
an initial separation distance of 5.3 nm and a velocity of 3 ms−1. The size of droplets ranges from 10–50 nm.
Inspecting the results, the collision process can be described as consisting of two periods: a preimpact phase that
ends with the initial contact of both droplets, and a postimpact phase characterized by the merging, deformation,
and coalescence of the droplets. The largest difference between the continuum and molecular dynamics (MD)
predictions is observed in the preimpact period, where the continuum-based viscous and pressure drag forces
significantly overestimate the MD predictions. Due to large value of Knudsen number in the gas (Kngas = 1.972),
this behavior is expected. Besides the differences between continuum and MD, it is also observed that the
continuum simulations do not converge for the set of grid sizes considered. This is shown to be directly related to
the initial velocity profile and the minute size of the nanodroplets. For instance, for micrometer-size droplets, this
numerical sensitivity is not an issue. During the postimpact period, both MD and continuum-based simulations
are strikingly similar, with only a moderate difference in the peak kinetic energy recorded during the collision
process. With values for the Knudsen number in the liquid (Knliquid = 0.01 for D = 36nm) much closer to
the continuum regime, this behavior is expected. The 50 nm droplet case is sufficiently large to be predicted
reasonably well with the continuum treatment. However, for droplets smaller than approximately 36 nm, the
departure from continuum behavior becomes noticeably pronounced, and becomes drastically different for the
10 nm droplets.
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I. INTRODUCTION

Over the last decade or so, significant engineering interest
has been focused on time and length scales where the contin-
uum approximations become questionable. Analyses between
molecular dynamics (MD) and continuum-level calculations
have been performed to study channel flows [1–3] of nanome-
ter dimensions. These studies focused on the departure from
continuum-level fluid-wall behavior. Liu and Li [2] concluded
that channels with size greater than 150 molecular diameters
follow the continuum model with stick boundary conditions,
and Gărăjeu et al. [3] incorporated a continuum form of fluid
wall interaction, obtaining good agreement with MD results for
even smaller channel sizes. One of the key differences observed
in some studies has been an increased effective viscosity due
to liquid-wall interface in very small channels as compared to
the estimates from continuum models [4,5].

For multiphase flow applications, in particular the gas-
liquid system, the situation can be even more problematic
since the large discrepancy in the respective mass densities of
each phase can give rise to situations where the continuum
treatment (i.e., application of continuum-level equations) may
hold reasonably well in the liquid phase, but not so well in
the gas phase. This line of thought is in agreement with Sharp
et al. [6], where it is argued that liquids continue to follow the
continuum regime for length scales that are about two orders
smaller than gaseous flows.
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Out of the large variety of configurations in gas-liquid sys-
tems, a recurring and common configuration consists of liquid
droplets. For instance, a number of studies have considered
the coalescence of two micrometer or submicrometer droplets
and the dynamics of the resulting jumping droplet [7–10].
The kinetic energy of the jumping droplet comes from the
release of surface energy during the coalescence of droplets.
This interesting phenomenon has been demonstrated to have a
variety of applications in heat pipes [11], thermal diodes [12],
self-cleaning surfaces [13], energy harvesting [14], and sinter-
ing [15].

The continuum-level binary droplet collision phenomenon
has been previously investigated [16–18], where analytical ex-
pressions for coalescence efficiency have been developed [19].
Additionally, a detailed description of coalescence regimes
has been presented by Qian and Law [20]. However, the
literature is very limited for droplets having nanometer scale
dimensions. The first systematic investigation for nanoscale
binary droplet collision was done by Ming et al. [21], where
they concluded that continuum-level droplet collision models
are applicable for nanometer-scale argon clusters. Subsequent
MD simulations of argon nanodroplet collisions [15,22] report
a classification of the collision process according to different
regimes established in the continuum-level categorization.
Owing to the increased surface-to-volume ratio for these
nanodroplets, coalescence is the dominant result of these
collisions. Simulations of polymer nanodroplets undergoing
head-on collision have also been studied, as reported by
Kim [23]. The main goal in his work was to characterize
the deformation process and the contact radius evolution,
in comparison to the continuum Hertzian model of solid
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elastic balls. This contact radius is defined as the radius
of the circular cross section representing the contact area
between the two merging droplets. With the exception of the
early moments during initial contact and extending until the
coalescing droplets assume the prolate-ellipsoid shape, the
process is well represented by the Hertzian model.

While some knowledge of the nanodroplet collision process
has been gained in previous MD simulations, the focus of these
works was not directed at understanding and characterizing the
departures from continuum behavior that occur with decreas-
ing droplet size. In the present work, this topic is taken by
combining MD [24,25] and continuum-level simulations [26]
of binary droplet collisions, and by exploring the discrepancies
in collision behavior. The systems studied consist of argon
droplets undergoing binary head-on collisions with diameters
ranging from 10–50 nm. Within this range, significant differ-
ences in collision behavior between the continuum and MD
treatment are noted. The main reason for choosing argon is
that its interatomic potential has a relatively simple form and
is adequately represented with Lennard-Jones potential. Fur-
thermore, the reported MD simulations employed 106 atoms
and are able to simulate the entire droplet collision process
within reasonable time. This provides attractive conditions
from which to compare to continuum-level simulations.

In what follows, descriptions of the continuum-level sim-
ulation and MD approach are given in Sec. II, where the
continuum simulation consists of an algebraic volume-of-fluid
methodology. The simulation setup is described in Sec. III. A
benchmark configuration of droplets having 36 nm diameter
(D) is initially compared in Sec. IV between both methods. The
discrepancies are then analyzed by considering the numerical
sensitivities associated specifically with the continuum and
MD approach in Sec. V. In Sec. VI, this comparison is
extended by considering independently the role of viscosity
and by performing droplet collision calculations with different
diameter droplets.

II. NUMERICAL METHODS

A. Volume of fluid

The code used in the present work pertains to an open-
source solver (interFoam), which forms part of a larger
distribution of computational mechanics solvers and C++
libraries of OpenFOAM R©. In a relatively recent publication
from our group [26], a detailed description of the algorithm is
presented along with a systematic verification and validation
of the code pertaining to different aspects of two-phase
flow behavior. In the current paper, the presentation of the
numerical methodology is succinctly described. Following
standard procedures for solving fluid mechanics problems
under isothermal conditions, only mass and momentum con-
servation are enforced, i.e., the energy equation is not solved.

In the present case, an incompressible treatment is enforced,
i.e., ∇ · u = 0. The first part of the solution consists of the
transport of the local liquid fraction, α, which is defined at the
computational cell level (�i), i.e.,

α(xi ,t) = 1

|�i |
∫

�i

I(x,t)dV, (1)

where I is a liquid phase indicator function and is defined as
one at points occupied by liquid and zero at points where gas
is present. The discrete finite volume solution for the transport
of αi (corresponding to cell i) is obtained from

αn+1
i − αn

i

�t
= − 1

|�i |
∑

f ∈∂�i

(Fu + λMFc)n, (2)

where the unsteady term is discretized using forward Euler
scheme, and the advection term appears as a summation over
the cell faces (f ) of �i . Quantities evaluated at the faces are
subscripted by f . The advection fluxes Fu and Fc are expressed
by

Fu = φf αf,upwind and (3)

Fc = φf αf + φrf αrf (1 − α)rf − Fu, (4)

where φf (volume flux) is given by

φf = uf · Sf . (5)

The role of the delimiter λM in Eq. (2) is to separate the
numerical treatment given to the evolution of the liquid fraction
in the interfacial region as opposed to the single-phase region.
Specifically, away from interface or its neighboring cells λM =
0. This gives

αn+1
i − αn

i

�t
= − 1

|�i |
∑

f ∈∂�i

F n
u

(λM = 0, single-phase region). (6)

In this part of the domain, there are no gradients of α and
its evolution can be simply obtained by an upwind treatment
without any difficulties.

In the interfacial region, Eq. (2) becomes

αn+1
i − αn

i

�t
= − 1

|�i |
∑

f ∈∂�i

φf αf + φrf αrf (1 − α)rf

(λM = 1, interfacial region). (7)

As elaborated in our earlier publication [26], the action of
the flux on the right-hand side is to mitigate the effects of
numerical diffusion that would naturally occur when advecting
a field as sharp as a liquid fraction. This is done through
the action of a compressive term [φrf αrf (1 − α)rf ], which is
aligned normal to the interface. There are a small fraction of
cells, where λM varies between 1 and 0. These cells are always
located in the interfacial region and are treated with a mixture
of upwind and compressive fluxes.

With respect to momentum, the following equation is solved

∂ρv
∂t

+ ∇ · (ρv ⊗ v) = −∇pd + [∇ · (μ∇v) + ∇v · ∇μ]

−g · x∇ρ + γlvκ∇α, (8)

where the continuum surface tension model of Ref. [27] is
employed to treat the surface tension force. As is usually
done in implicit interface capturing strategies, the density and
viscosity fields are computed by

ρ = ρlα + ρg(1 − α) and μ = μlα + μg(1 − α). (9)
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Introducing the following nondimensional quantities,
denoted by a superscript *,

x∗ = x
D

, u∗ = u
Vo

, P ∗ = P

ρlVo
2 , ρ∗ = ρ

ρl

,

κ∗ = κD, t∗ = Vo

D
t, and μ∗ = μ

μl

, (10)

into the momentum equation yields,

∂(ρ∗u∗)

∂t∗
+ ∇∗ · (ρ∗u∗u∗)

= −∇∗P ∗ + 1

ReL

{∇∗ · [μ∗∇∗(u∗)]

+∇∗(u∗) · ∇∗μ∗} + 1

WeL

κ∗(∇∗α∗), (11)

where

ReL = ρlVoD

μl

and WeL = ρlVo
2D

γlv

. (12)

Note that gravitational term of the momentum equation has not
been included in Eq. (11). Considering the large value of the
Froude number, (Vo/(

√
Dg) = 5,048), the gravitational force

can be safely neglected.
The solution of the momentum equation [Eq. (11)] is

obtained via a PISO [28] iteration procedure. The treatment
enforces incompressibility. A predictor velocity is first con-
structed and then corrected to ensure momentum balance and
mass continuity. Explicit formulation of the predictor velocity
is a two-step process, where first the viscous, advective,

and temporal terms in the momentum equation are used to
generate a cell-centered vector field, which is then projected
to cell faces using a second-order scheme. Contributions from
surface tension and gravity terms are then added, concluding
the predictor formulation. This procedure enforces a consistent
discretization of surface tension and pressure gradient [26].

With respect to the behavior of the code, we have performed
a number of comparisons to other algebraic VoF methods,
interface reconstruction VoF schemes, and level set meth-
ods [26]. It was found that mass conservation was one of
the strongest characteristics of the current algebraic approach.
In a three-dimensional (3D) sphere in single vortex test cases,
the mass error was 1.303 × 10−7% for the current code. For
the particle level set method [29] and the coupled level set
and volume of fluid (CLSVOF) [30], the error was 2.6%
and 0.4%, respectively. This level of superior performance
is expected from VoF code and does not change much with
grid resolution. Perhaps a more telling characteristic concerns
standard advection tests. With respect to this category, the
current algebraic method is comparable in accuracy to an
earlier CLSVOF method [31] and the efficient least-squares
volume-of-fluid interface reconstruction algorithm [32]. It is
only when the present VoF method is compared to other
schemes that involve some higher-order representation of
the interface at the subgrid level, that the VoF method does
noticeably worse, e.g., [33].

B. Molecular dynamics

A truncated and shifted Lennard-Jones (LJ) 12-6 pair
potential is employed in the present work, namely

u(r) =
{

4ε
[(

σ
r

)12 − (
σ
r

)6] − 4ε
[(

σ
rcut

)12 − (
σ

rcut

)6]
if r < rcut

0 if r � rcut,
(13)

with parameters σ = 0.341nm and ε = 10.3meV, to describe
interatomic forces for Ar-Ar interactions [34]. The cutoff
distance is rcut = 2.5σ . The long-range corrections of the
pressure and potential energy are not considered, as they
cannot be applied consistently when multiple phases with
widely different densities coexist in the same simulation cell.
The velocity Verlet algorithm with a time-step size of 0.006
picoseconds (ps) is used to integrate the equations of motion
in all MD simulations [35].

To provide fluid property data to continuum-level simula-
tions, equilibrium MD (EMD) simulations are first performed
to determine the saturation pressure, surface tension, density,
and viscosity of saturated liquid and vapor of Ar at a
temperature of 85 K, which is about 7% higher than the melting
temperature of solid Ar. These fluid properties are used as
inputs to the VoF equations as described in Sec. II A.

1. MD calculation of fluid properties

One key parameter for continuum-level modeling of droplet
collisions is the liquid-vapor surface tension, γlv . To determine
this value, a liquid slab of 2160 Ar atoms is placed in the
middle of a simulation box, which has a length of 19.2 nm

and cross section area of 3.84 nm by 3.84 nm. The box size is
fixed during the simulation, and periodic boundary conditions
(PBCs) are applied in all three directions. The system is
equilibrated at 85 K(To) for 2000 ps using the Berendsen
thermostat [36]. A snapshot of liquid-vapor coexisting phase
with two interfaces is shown in Fig. 1(a). After the system
reaches thermal equilibrium, the thermostat is turned off and
the value of the pressure tensor is monitored in 200 planar bins
into which the simulation cell was divided. The surface tension
is obtained by using the mechanical definition according to
Irving and Kirkwood [37,38]

γlv = 1

2

∫ Lx

0
[PN (x) − PT (x)]dx, (14)

where PN is the pressure normal to the interface and PT is
the tangential pressure. The data collection and averaging
spanned over a time period of 14000 ps. The profiles for PN

and PT are shown in Fig. 1(b). The saturation pressure is the
average value of PN . Using the above described procedure, it
is determined that γlv = 8.16 ± 0.04 × 10−3kgs−2 and Psat =
217 443.45kgm−1s−2.

Another important parameter for continuum-level modeling
is the viscosity, μ, of the saturated fluid. The viscosity μ can
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FIG. 1. (a) Snapshot of liquid-vapor coexistent fluid Ar at 85 K.
(b) Normal and tangential pressure profile at 85 K.

be determined by the Green-Kubo relation for the shear-stress
correlation function in a bulk fluid [39]

μ = V

kBT

∫ ∞

0
< Pαβ (t) · Pαβ(0) > dt, (15)

where

Pαβ = 1

V

( ∑
i

Mνiανiβ +
∑

i

∑
j>i

rijα
fijβ

)
. (16)

In Eqs. (15) and (16), kB is the Boltzmann constant, V and
T are volume and temperature of the system, respectively, P

is the pressure tensor, M is the mass of fluid atom, νi is the
translational velocity of the ith molecule, and r and f are
interatomic separation and force, respectively. The subscripts
α and β denote the vector components, t is the time, and 〈. . .〉
denotes ensemble average.

To evaluate viscosity of saturated liquid Ar at 85 K, a bulk
liquid Ar of 4000 atoms is placed in a cubic simulation box
with PBCs applied in three directions and the bulk liquid was
equilibrated at Psat and To using the Berendsen et al. [36]
algorithm with time constants τT = 0.1ps and τp = 500ps.
After the system reaches the desired temperature and pressure,
the density of saturated liquid Ar is computed to be ρl =
1.31 × 103kgm−3. Subsequently, the global thermostat and
barostat were turned off and the simulation in the microcanoni-
cal ensemble is carried out for 10000 ps to determine the shear-
stress correlation function. The statistical error associated with
the correlation function depends on the total simulation time.
As we performed the NVE simulation for 10 ns, the statistical
error is less than 1%. In some cases, one needs to perform the
simulation for thousands of nanoseconds to get good statistics.
In our particular case, it was only necessary to have one NVE
simulation for 10 ns to obtain acceptable statistics. Once the
correlation function was obtained, Simpson’s rule was used
for the time integration to obtain viscosity. As shown in Fig. 2,

FIG. 2. The shear-stress correlation function and running integral
of the correlation function of saturated liquid Ar at 85 K.

the viscosity μl = 190 ± 1 × 10−6kgm−1s−1 is determined
from the plateau of the running integral of the correlation
function. Using the same method, the density and viscosity of
saturated vapor Ar are obtained to be ρv = 13kgm−3 and μv =
7 ± 0.1 × 10−6kgm−1s−1. The calculated fluid properties of
Ar at 85 K are summarized in Table I.

III. COLLISION SIMULATION SETUP

This section presents the parameters and setup employed in
both methodologies for the benchmark case of droplets having
D = 36nm. The system under consideration is initialized with
two identical argon droplets in a saturated argon environment
with a given initial velocity of Vo (i.e., relative velocity
between them is 2Vo). The system parameters employed in
both MD and VoF simulations are listed in Table II in both
dimensional and nondimensional form along with the key
nondimensional numbers. Length, time, and velocity scales
used in the nondimensionalization are given in Eq. (10).

A. Continuum model

The properties for both liquid and vapor phase are obtained
from Table I computed in the previous section. The velocity
field at all points within the droplets is initially assigned a
velocity magnitude of Vo. Similarly, for all points excluding
the liquid droplet region the velocity magnitude is initialized
to zero. The initial configuration of the system is shown in
Fig. 3, where the interdroplet distance is Lg (= 5.3nm).

The computational domain as shown in Fig. 3 is defined
with periodic boundary conditions in the direction of initial
velocity of the droplets, and wall conditions are imposed on
the remaining sides of the domain.

TABLE I. Fluid properties of Ar at 85 K determined from EMD simulations.

Psat(kgm−1 s−2) γlv(kgs−2) ρl(kgm−3) μl(kgm−1 s−1) ρv(kgm−3) μv(kgm−1 s−1)

2.17 × 105 8.16 ± 0.04 × 10−3 1310 190 ± 1 × 10−6 13 7.0 ± 0.1 × 10−6
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TABLE II. Benchmark parameters employed in the MD and
continuum VoF simulations in dimensional and (nondimensional∗)
form.

Parameters Values (nondimensionalized)

Interdroplet spacing, Lg (L∗
g) 5.3 nm (0.1472)

Diameter of droplet, D (D∗) 36 nm (1)
Initial droplet velocity, Vo (V ∗

o ) 3 ms−1 (1)
Liquid Reynolds number, ReL 0.745
Liquid Weber number, WeL 0.052

B. MD model

Similarly, the setup is mimicked for MD calculations. To
generate an Ar droplet, a [100]-orientated perfect FCC crystal
Ar with the lattice constant of 0.54 nm is placed in the center of
a big simulation box [see Fig. 4(a)]. The crystal Ar contains 50
unit cells in each of the x, y, and z directions. The size of the
simulation box is much greater than that of the Ar crystal. It is
41.3 nm long in the x direction and 56.6 nm long in each of the
y and z directions. The PBCs are applied in three directions
and the box size is fixed during the simulation.

Using the Berendsen thermostat [36], the system is equili-
brated at a temperature of 85 K, which is naturally the same
temperature at which the EMD calculations were performed
(see section Sec. II B 1). The original crystal Ar soon melted
and partially vaporized to establish a liquid-vapor coexisting
phase in the simulation box. To distinguish the liquid and
vapor phases in the simulation, an Ar atom is defined as
liquid if its potential energy is lower than half of that in a
saturated bulk liquid at 85 K. This half-value cutoff for phase
determination is arbitrary but faithfully reflects the physical
transition occurring in the interfacial region. Additionally, the
method of distinguishing the phase based on potential energy
has a lower computational cost than the density criterion
and avoids the undesirable dependency on the size of the

FIG. 3. Initial setup of droplets for continuum simulation. L is
the domain size and Lg is the initial separation distance between the
two droplets.

subdomain needed for density calculation. It has also been
successfully used in study of coalescence of nanoscale droplets
on a solid surface [40]. After 2000 ps, the system reaches a
steady state and a spherical-shaped liquid Ar droplet is formed
in the center of the simulation box. As shown in Fig. 4(b), the
diameter of the droplet is around 36 nm and the rest of the
space in the simulation box is filled with saturated Ar vapor at
85 K.

To study the collision of two droplets using MD simulations,
the liquid-vapor coexisting phase in the simulation box is
duplicated in the x direction to create two identical liquid
Ar droplets. The new system contains 106 Ar atoms and the
separation between the two Ar droplets is Lg [see Fig. 4(c)].
To make the two droplets collide, an x-direction velocity of
± 3 ms−1 is assigned to liquid atoms in the left and right
half of the simulation box respectively and constant-NV E

simulations are carried out for a time period of 6000 ps.

IV. INITIAL COMPARISON

Using the benchmark parameters defined in Sec. III A for
the continuum approach, and those described in Sec. III B
for MD, an initial comparison between both methods is
performed. To aid in the selection of a suitable metric for
describing the collision process, results from a continuum
simulation are depicted in Fig. 5 in terms of liquid bulk
kinetic and surface energy. The surface energy trend displays
a monotonic decrease from the two droplet configuration to a
single coalesced droplet. However, the kinetic energy, defined
as,

Ekin
V oF =

∫
�:α�αthreshold

1

2
ρu2dV, (17)

shows a much more interesting trend characterizing the
different stages during the collision process. Here � represents
the entire domain and the integration is computed over the cells
where the liquid phase volume fraction is greater than or equal
to a threshold value. For the cases pertinent to this problem, a
threshold value of 0.1 provides adequate answers, i.e., having
a lower positive threshold leads to very similar values, since
the gas phase density is so much lower than the liquid one.

As shown in Fig. 5, as the droplets approach each other,
they begin to decelerate due to the build up of the pressure in
between them and the viscous drag; consequently, the kinetic
energy decreases. Once contact has been made, the surface
tension force accelerates the merger of the droplets into a
coalesced drop. This process is marked by an increase in
kinetic energy reaching a maximum value at approximately
t = 2.5ns and a decrease in surface energy. At this stage
the liquid is in the form of a tubularlike structure. This is
followed by a subsequent decrease in kinetic energy as the
droplet reaches a stable configuration aided in part by viscous
forces. A small oscillation at around 4.2 ns marks the final part
in this process. Due to the more descriptive characterization of
collision afforded by the kinetic energy, it is used as a metric
of comparison between MD and continuum simulations in the
calculations presented in this paper.

In MD, the cylindrical symmetry of the problem is exploited
to compute liquid kinetic energy as shown in Fig. 6. The intent
is to capture the macroscopic local fluid velocity in droplets
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FIG. 4. Schematic diagram of the procedure for generation of two droplets: (a) a cubic Ar crystal in the center of a big simulation box;
(b) a liquid Ar droplet surrounded by its saturated vapor; and (c) two identical droplets created by duplication of the simulation box in the x

direction.

and not the microscopic thermal velocity. It is determined by
averaging velocities of atoms in bins with the width of 2 nm
along the axis of cylinder (the axis connecting the center of
mass of two droplets) and 2 nm along the radius of cylinder.
In each bin the axial velocity, Vx , and radial velocity, Vr , are
determined by,

Vx = 1

N

N∑
i=1

vx,i , and Vr = 1

N

N∑
i=1

(vy,icosθ + vz,isinθ ),

(18)

where vx,i , vy,i , vz,i are respectively the x, y, and z component
of velocity of atom i in the bin, N is the number of atoms in
the bin, the summations are over all liquid atoms in the bin,
and θ is the azimuth angle as shown in Fig. 6. Accordingly,
the kinetic energy of liquid in each bin is given by

Ekin
MD(x,r) = 1

2
ρlπ

[(
r + �r

2

)2

−
(

r − �r

2

)2]
×�x

(
V 2

x + V 2
r

)
. (19)

The total kinetic energy of the liquid phase is the summation
of Ekin

MD(x,r) in all bins.
The results with both approaches are shown in Fig. 7 in

terms of kinetic energy time histories, with added images to

FIG. 5. Continuum simulation log-linear plot for kinetic energy
and surface energy for a case of droplet diameter D = 36nm and
�t = 1ps.

illustrate the configuration during the impact process. The
results clearly show that the peak kinetic energy as well as
the time at which it is recorded is noticeably different for both
methods. For MD, the peak occurs sooner and is larger than the
corresponding results from the continuum simulations. This
difference can be identified in the early stages of the collision
process, when the droplets have still not made contact. During
this time, continuum predictions show a markedly smaller
kinetic energy time history. This seems to indicate that the
forces causing this deceleration are much larger in continuum
level simulations than in MD. This phenomena is examined
more carefully in Sec. V.

Although a fraction of the difference in these plots can be
attributed to the thermal noise captured in MD simulations, the
difference during this initial stage is too large to be completely
absorbed by this thermal noise component. This thermal noise
originates from the finite number of atoms in each bin, which
implies that the local bin average is not exactly the true average.
This effect is clearly manifested at the end of collision when
the two droplets merge to form a stable bigger droplet and all
macroscopic kinetic energy is dissipated to thermal energy. In
this case, the continuum-level simulation predicts zero kinetic
energy, but the MD simulation still predicts a constant and
finite kinetic energy due to the thermal noise. However, this
remaining quantity is relatively very small in comparison to
the difference between MD and continuum predictions, and
thus cannot explain the deviation from continuum behavior.

FIG. 6. The schematic diagram of a typical bin used for velocity
and kinetic energy calculations. The projection of the bin in the y-z
plane has a ring shape with the difference between inner radius and
outer radius of 2 nm. The thickness of the bin in the x direction is
2 nm. (yc = 28.3nm, zc = 28.3nm) indicates the center of the ring. yi

and zi are, respectively, y and z coordinate of atom i. θ is the azimuth
angle of atom i.
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FIG. 7. Kinetic energy plots populated with droplet images at
salient points of the process.

As opposed to continuum modeling approaches, e.g., differ-
ent turbulence treatments, where model parameters influence
the results of the simulations to a significant degree, the
Navier-Stokes equation is solved directly in the present VoF
approach. There are no modeling parameters that can be used
to manipulate the results. The only place left to look concerns
the numerical parameters, specifically the spatial and temporal
resolution. These are systematically examined in the next
section.

V. NUMERICAL SENSITIVITIES

A. Continuum VoF model

The main continuum model numerical parameters that will
have a direct influence on the simulation of collision dynamics
are: (i) domain size, (ii) grid cell size, and (iii) time-step
size. These are investigated by independently varying each
parameter from their respective benchmark values listed in
Table III.

1. Extent of physical domain

The proximity of the boundary can sometimes be responsi-
ble for anomalous behavior. In continuum simulations of the
type presented here, the boundary needs to be far enough away
that it has an inconsequential effect on the dynamics. Testing
this plan, the collision process is recalculated using different
values for the extent of this domain as illustrated in Fig. 8.
All other numerical parameters as delineated in Table III are
left unchanged. From the results shown in Fig. 9, it is clearly
confirmed that the present physical extent of the domain bears
practically no influence on the kinetic energy time history. This
parameter cannot explain the difference between MD and VoF
simulations.

TABLE III. Benchmark values for the dimensional
(nondimensional∗) simulation parameters used in continuum
VoF simulations.

Parameters Values

Domain length, L(L∗) 100 nm (2.778)
Grid cell size, �x(�x∗) 1 nm (0.02778)
Time-step size, �t(�t∗) 1 ps (8.33 × 10−5)

300nm
~ x = 4nm

100nm
~ x =1nm

200nm
~ x = 2nm

FIG. 8. Extent of the physical domain used in VoF simulations.

2. Time-step size

The collision process is computed at different levels of
temporal resolution, namely �t = 1ps, 0.5ps, 0.25ps, and
0.05ps, or respectively in nondimensional form as �t∗ =
83.3 × 10−6, 41.7 × 10−6, 20.8 × 10−6, and 4.2 × 10−6.
All of the other numerical parameters retain their nominal
values as given in Table III. With values for �t∗ that are
much lower than one, it is expected that the dynamics are
well resolved. A more pertinent metric concerns the potential
introduction of numerical noise due purely through spurious
interfacial currents [27]. These currents are the result of natural
imperfections in the prediction of interfacial curvature that lead
to erroneous surface tension forces. As elaborated by Brackbill
et al. [27] and generalized by Galusinski and Vigneaux [41],

Time(s) ×10-9
0 1 2 3 4

E
ki

n (
J)

×10-18

0

0.5

1

1.5

2 Small Domain
Medium Domain
Large Domain

FIG. 9. Kinetic energy time histories for droplet collision simu-
lations employing different domain sizes as depicted in Fig. 8.
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Δ t = 1ps
Δ t = 0.5ps
Δ t = 0.25ps
Δ t = 0.05ps

UNSTABLE

FIG. 10. Regime map denoting regions of numerical instability
pertaining to spurious surface tension forces [26].

one way to avoid this problem is to restrict the time-step size
below a specified threshold.

For the solver employed in the present work, (INTERFOAM),
the spurious flow regime has been previously tested for
droplets immersed in a gaseous field [26]. This unstable regime
is delineated by the introduction of two time scales [41],
namely,

τρ =
√

ρl�x3

γlv

and τμ = μl�x

γlv

. (20)

The respective values for τρ/�t and τμ/�t corresponding to
the computations previously mentioned are plotted in a regime
shown in Fig. 10. Clearly all computations are located well into
the stable region. The associated kinetic energy time traces
are shown in Fig. 11, which reflect a very weak dependence
on �t . Additionally, these time histories are smooth and do
not manifest any of the signs of spurious interface motion. A
marginal increase is observed in the maximum kinetic energy
of the droplet and the plot shifts slightly towards the right
as time-step size decreases. However, the overall dynamics is
largely insensitive to reasonable changes in time-step size.
Again, this parameter is not responsible for the observed
differences between MD and continuum-level simulations.

Time(s) ×10-9
0 1 2 3 4

×10-18

0

0.5

1

1.5

2 Δ t=1ps
Δ t=0.5ps
Δ t=0.25ps
Δ t=0.05ps

E
ki

n (
J)

FIG. 11. Kinetic energy variation for droplet collisions with
different time-step size.
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×10-18
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1.5

2 Δ  x* = 1/11
Δ  x* = 1/18
Δ  x* = 1/36
Δ  x* = 1/54

E
ki

n (
J)

FIG. 12. Kinetic energy time histories for different values of �x∗.

3. Grid size sensitivity

The calculations performed under the nominal conditions
listed in Table III are repeated, but with a grid resolution
corresponding to �x = 3.33nm, 2nm, 1nm, 0.667nm or
respectively �x∗ = 0.0926, 0.05556, 0.02778, 0.01852. The
results are shown in terms of kinetic energy histories in
Fig. 12. It is clear from these plots that the simulations
are heavily dependent on the mesh refinement. For the case
with �x∗ = 0.0926, the coarseness of the grid causes the
interdroplet spacing (Lg) to remain largely unresolved, which
results in an immediate collision between the droplets as
compared to other continuum cases, where they decelerate
before collision.

To explore the situation, the equation of motion for a single
droplet in the limit of small Reynolds number is considered. In
our particular case, ReL does not fall exactly in this limit. Yet,
ReL is sufficiently small such that the Stokes flow treatment
is a good approximation as indicated by the drag coefficient
versus Reynolds number chart given in Ref. [42].

For a droplet immersed in a gaseous flow, the drag term
corresponds to the Hadarmard-Rybcynski drag law [43], where
the Stokes drag coefficient (CD,Stokes) incorporates a correction
to account for the tangential movement of the gas-liquid
interface. This is given by

CD = CD,Stokes

(
1 + 2

3 μ̄

1 + μ̄

)
, (21)

where

μ̄ = μv

μl

= 7 × 10−6kgm−1s−1

190 × 10−6kgm−1s−1
= 0.037 
 1. (22)

From the corresponding values listed in Table I, μ̄ = 0.037,
which is much less than one. Hence, to a good approximation,
the dynamics can be treated as pertaining to a solid particle
moving through a gaseous medium. This gives

d

dt

(
ρl

4

3
πR3V

)
= −6πμvRV . (23)

As described previously in Sec. III, the velocity field is
initialized by assigning a magnitude of Vo at all computational
nodes occupied by the droplets, and a magnitude of zero at
nodes occupied by gas. As the numerical resolution increases,
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the distance between nodes (�x) decreases accordingly. This
has important consequences in the interfacial region of the
droplet, where the velocity magnitude changes from Vo to
zero over a distance given by A1�x [A1 is a O(1) constant,
generally ranging between 2 and 3]. The implication is
that the viscous drag force, which is directly related to the
velocity gradient through μ(∇u + ∇uT ) also increases as the
numerical resolution improves.

To incorporate this effect, the equation of motion [Eq. (23)]
is modified by replacing the drag term with a term that directly
accounts for the grid-resolution-dependent viscous force. This
yields,

d

dt

(
ρl

4

3
πR3V

)
= −(4πR2)μv

V

�x
. (24)

It is understood that this approximation does not exactly reflect
the velocity gradient at every point on the droplet surface or
for all time. Rather than striving for a more exact route, which
will render the situation too complicated to solve analytically,
the motivation here is to arrive at a modeling treatment for the
grid sensitivity effect that will explain the results observed in
Fig. 12. (The more exact route consisting of full two-phase
flow simulations in three dimensions is already being reported
in Fig. 12, and does not provide the needed explanation.)

Proceeding with Eq. (24), it is expected that the viscous
drag effect will change over time, for instance in a manner
similar to Stokes first problem. This term can be treated by
an effective drag term, specifically μv

V

�̂x
, where �̂x is a

representative time-averaged length scale. We approximate �̂x

by C1D/Ncells, where Ncells is the number of cells spanning
the diameter of the droplet, and C1 is some nondimensional
constant. Introducing these steps into Eq. (24) yields,

dV

dt
= −

(
6μvNcells

ρlD2C1

)
V, (25)

whose solution and associated droplet-center-of-mass dis-
placement (X − Xo) can be obtained as

V = Vo exp(−κt), and (26)

X − Xo

D
= Vo

κD
[1 − exp(−κt)]. (27)

Here κ = (6μvNcells)/(ρlD
2C1), and Xo denotes the position

of the center of mass of the droplet at t = 0. Presenting this
relation in terms of nondimensional time (t∗ = tVo/D), gives

X − Xo

D
= 1

τ
[1 − exp(−τ t∗)], where τ =

(
μv

μL

)
6Ncells

ReLC1
.

(28)

In this particular case, with the size of the droplets being
already so small, the effect of spatial resolution on the
dynamics is particularly large. To illustrate this point, we
consider the displacement as a function of time for both a
36 nm and a 36 μm diameter droplet. The results shown in
Fig. 13 clearly demonstrate that the nanometer droplet is highly
susceptible to grid resolution issues, which are not observed
for the larger droplet.

One potential way to circumvent the dependency on
numerical resolution is to employ an initially smooth velocity

tV
o
/D

0.5 1 1.5 2 2.5

(X
-X

o
)/

D

0.1

0.2

0.3

0.4

0.5

0.6
Δ  x* = 0.2
Δ  x* = 0.1
Δ  x* = 0.05
Δ  x* = 0.02
Δ  x* = 0.01

tV
o
/D

0.5 1 1.5 2 2.5
(X

-X
o
)/

D

0.4

0.8

1.2

1.6

2

2.4

Δ  x* = 0.2
Δ  x* = 0.1
Δ  x* = 0.05
Δ  x* = 0.02
Δ  x* = 0.01

FIG. 13. Plot for analytical solution of displacement as a func-
tion of time and grid size for (a) nanometer (D = 36nm) and
(b) micrometer-size droplet (D = 36μm).

profile, which decays from a magnitude of Vo in the liquid to
zero in the gas phase over a distance much greater than �x. In
this manner, the issue of grid dependency on this initial profile
will be absent, since the profile will be fully resolved at all
grid levels. Due to the level of arbitrariness with the assumed
mathematical form of this velocity profile, we have chosen not
to follow this route, and to present the results based on the
aforementioned initial velocity assignment. This is consistent
with the standard practices in continuum-level simulations.

B. Molecular dynamics

With respect to the MD simulations, a potentially influential
parameter is the time-step size. In order to study the sensitivity
of results to �t , the value is reduced from 0.006–0.003 ps with
the remaining parameters kept constant as described in §III B.
As shown in Fig. 14, the temporal evolution of kinetic energy
for these simulations is essentially the same. It is observed
that the energy drift for a 4500 ps long MD simulation is less
than 10−4 of the initial total energy (Etot) for �t = 0.006ps as
compared with a value of 2 × 10−5 of Etot for �t = 0.003ps.
These results indicate the MD simulation is converged with
respect to time step size and that a value of �t = 0.006ps is
sufficiently small to capture the system.

VI. A CLOSER LOOK AT THE NANOSCALE DROPLET
COLLISION

In the first part of this section, we take a more detailed
view of the comparison between MD and continuum droplet
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FIG. 14. The temporal evolutions of kinetic energy of liquid
droplets during the collision from MD simulations with dt = 0.006ps
and dt = 0.003ps.

collision calculations presented previously in Sec. IV. This is
followed by a comparison of collisions for pairs of droplets
having different sizes, where the point of interest is the degree
of departure from continuum behavior.

A. Similarities and differences between MD and
continuum-level predictions

By considering the time histories of kinetic energy for both
MD and continuum shown in Fig. 7 (D = 36nm), it is natural to
consider two periods in the collision process. The first period
corresponds to the preimpact phase and it is marked by the
deceleration of droplets due to the increase of pressure between
them and the action of viscous drag forces. The second period
is characterized by the coalescence of the droplets.

Analysis in Sec. V A 3 shows that the level of numerical
resolution of the velocity field, in particular the velocity
gradient and its associated viscous drag component, plays a
key role in the preimpact dynamics for continuum simulations.
However, the differences between the MD and continuum
results extend beyond the VoF numerical resolution of the
velocity field. To gain a better appreciation of the difference,
we consider the Knudsen number (Kn), as categorized by el
Hak [44], namely

(i) Kn � 0.001 (continuum),
(ii) 0.001 < Kn � 0.1 (slip-flow),
(iii) 0.1 < Kn � 10 [transition (moderately rarefied)], and
(iv) Kn > 10 (free molecular flow).
In our particular case, for the gas phase we have from [44]

λ = kBT√
2πPσ 2

= 10.4nm and Kngas = λ

Lg

= 1.972,

(29)

where kB is Boltzmann constant, Psat value is used for the
value of pressure (P ), and σ value is taken from Table IV. For
liquid phase, using an estimate of lattice spacing as a substitute

TABLE IV. Physical properties of argon.

Parameters Values
Molecular diameter, σ 0.341 nm
Molar volume of liquid, V̄ 29.477 × 10−6 m3

FIG. 15. Kinetic energy plot comparing continuum results with
and without gas viscosity against MD simulations.

for mean-free path [6] the following values are obtained

δ ∼
(

V̄

NA

)1/3

= 0.36nm and Knliquid = δ

D
= 0.01.

(30)

The value of V̄ is taken from Table IV and NA represents
Avogadro’s number. The corresponding Kn value puts the
gaseous flow for this system in a moderately rarefied flow
regime, while the liquid is in the slip-flow regime. While
neither phase is expected to behave as a continuum, the
deviation from continuum behavior is milder for the liquid
phase due to its much lower value of Kn.

Consistent with this Kn characterization, the discrepancies
observed in the preimpact period are not only caused by
velocity field representation in VoF simulations as previously
discussed, but also by the departure from continuum behavior.
The interdroplet spacing, Lg , is simply too small to expect the
Navier-Stokes to hold in this region. Similar observations have
been presented in the literature (e.g., the work of Sirk [45]).

While viscous forces may contribute to the deviation
occurring between MD and continuum calculations, the stress
tensor (T) solved in the Navier-Stokes also contains a pressure
component [i.e., T = −P I + μg(∇u + ∇uT )]. To see its
effect in the collision process, the viscosity (μg) is set to
zero and the calculation for the kinetic energy is repeated. The
results, presented in Fig. 15, show a less pronounced reduction
in kinetic energy when compared to the finite viscosity case.
However, at earlier times during the preimpact phase the results
are similar between both viscosity cases. Also, during this
period both continuum calculations predict a kinetic energy
that is substantially lower and decays in a qualitatively different
manner compared to the MD results. This decay in kinetic
energy is attributable to the stagnation pressure buildup in the
interdroplet spacing region, which is specific to the continuum
treatment. This trend is not observed in MD calculations. In
fact in MD the kinetic energy decay is almost linear; it does
not have the exponential decay observed in VoF simulations.

From Fig. 15, the postcollision stage begins at approx-
imately 500 ps. Although the peak in kinetic energy is
somewhat higher for the MD predictions, the trend in the
kinetic energy rise and fall is strikingly similar between
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both solution methods. The difference in peak kinetic energy
between MD and VoF is, at least, partially attributable to the
constrained no-slip flow during this period (Knliquid = 0.01).

An illustrative comparison between the distribution of
velocities and the coalesced droplet shape evolution is shown
in Fig. 16. The VoF calculation included in this figure
corresponds to the zero viscosity case. From the initial impact
(∼ 500 ps) to the end of the collision process (∼ 4400
ps), the results predicted by MD and VoF are quite alike.
The initial ejection of liquid in the radial direction, i.e.,
normal to the preimpact droplet trajectory, is captured almost
identically between both methods. Also the distribution and
magnitude of velocities predicted by both methods agree well
during the coalescence (∼ 1000 ps to ∼ 1900 ps), damped

oscillation (∼ 2700 ps), and final decay of motion (∼ 4400 ps).
This behavior essentially means that once the droplets have
coalesced and the dynamics are governed by the liquid phase,
the notable differences between MD and continuum behavior
diminished considerably. Again, making note of the respective
Kn values, the corresponding liquid phase quantity is much
closer to the continuum regime, and thus, this approximation
to Navier-Stokes behavior is to some degree expected.

B. Size effect on droplet collision

Prediction of kinetic energy time histories for both MD
and continuum level simulations are shown in Fig. 17 cor-
responding to droplets having a size of D = 10nm, 20nm,
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FIG. 16. Droplet images at various times during the collision process for D = 36nm. MD and VoF (μg = 0) results are in blue and red,
respectively. The images are captured along the center plane of the 3D domain.
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FIG. 17. Kinetic energy plots comparing continuum results with
MD simulations for different diameters.

28nm, 36nm, and 50nm. In all of these calculations, the initial
velocity of the droplets and interdroplet spacing remain the
same as indicated in Table II. The time step and grid size used
in VoF are respectively 1 ps and 1 nm.

Overall, the trend is one of increasing similarity between
the two different sets of results as the droplet size increases.
The most noticeable difference is the preimpact behavior. As
shown in Table V, the Knudsen value for the gas remains the
same as the benchmark case, and is thus within the moderately
rarefied regime. With decreasing droplet size, the discrepancy
between MD and continuum predictions become much more
pronounced, as the time required for impact increases from
timpact ∼ 0.8 ns for D = 50nm to no impact observed for D =
10nm. The reason behind this trend is explained by considering
the ratio of droplet inertia to resistance forces, e.g., viscous and
pressure buildup. This is equivalent to the Reynolds number,
which shrinks with decreasing D. Hence, for a critical value
of the Reynolds number, the resistance forces will be such that
they will completely impede droplet contact.

TABLE V. Knudsen number values for all droplet collision cases.

Droplet diameter (D) Kngas = λ/Lg Knliquid = δ/D

10 nm 1.972 0.036
20 nm 1.972 0.018
28 nm 1.972 0.013
36 nm 1.972 0.01
50 nm 1.972 0.0072

With respect to the liquid phase dynamics, the Knudsen
numbers vary as indicated in Table V; however, they remain
within the slip-flow regime. Provided the droplets are suf-
ficiently large to produce impact, the results show that the
relative magnitude for the peak in kinetic energy, between
MD and continuum simulations, increases with decreasing
droplet size. However, it is the preimpact period that exhibits
the strongest departure from continuum behavior.

VII. CONCLUSIONS

The current work presents a direct comparison between
molecular dynamics and continuum-level (Navier-Stokes with
volume-of-fluid) simulations of binary droplet collision for
nanometer-sized argon droplets. The results show that both
methodologies predict reasonably similar behavior as the
droplet diameter approaches 50 nm. At the other extreme,
for droplets having diameters at or below 10 nm, the trends,
characterized by kinetic energy time histories, show markedly
different behavior.

A prominent aspect of the MD-continuum difference occurs
during the trajectory of the droplets through the gas phase
before any contact has been established. During this preimpact
period, continuum simulations largely overpredict the degree
of resistance, contributed by both viscous and pressure effects,
resulting in a strong decline in the kinetic energy, and
consequently a longer time for contact to occur. In fact, for
sufficiently small droplets (D < 28 nm), this impact never
occurs. Due to the large value for the Knudsen number
corresponding to droplet-gas interactions (Kngas = 1.972), this
behavior is expected. Conversely, once the droplets have
made contact, the surface tension forces immediately act to
produce coalescence with little to no secondary oscillations.
This postimpact period sees good agreement between MD and
continuum simulations. The liquid-based Knudsen number
ranges between 0.036 and 0.0072 for respective droplet
diameters between 10 nm and 50 nm, and thus the dynamics
are expected to be much closer to the continuum behavior than
the corresponding preimpact period.

The conclusions from this work can be extended to systems
of nanodroplets. If the droplets are smaller than 50 nm, it is
expected that some degree of departure from continuum-based
behavior will result for the prediction of movement of these
droplets within the gas phase. In fact, it is this motion where the
deviations from continuum behavior are the strongest. Thus,
for a cloud of nanodroplets where their size is significantly
below the 50 nm mark, it is envisioned that the droplet
transport will significantly depart from continuum behavior.
Once collisions have occurred, however, the similarities with
continuum behavior are strong.
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