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Stochastic Markov processes are used very frequently to model, for example, processes in turbulence and
subsurface flow and transport. Based on the weak Chapman-Kolmogorov equation and the strong Markov
condition, we present methods to test the Markov hypothesis that is at the heart of these models. We demonstrate
the capabilities of our methodology by testing the Markov hypothesis for fluid and inertial particles in turbulence,
and fluid particles in the heterogeneous subsurface. In the context of subsurface macrodispersion, we find that
depending on the heterogeneity level, Markov models work well above a certain scale of interest for media
with different log-conductivity correlation structures. Moreover, we find surprising similarities in the velocity
dynamics of the different media considered.
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I. INTRODUCTION

Markov processes are a special category of random pro-
cesses v(t) with realization V (t), where the future state
v1 ≡ v(t1) at time t1 depends solely on the present state v2

at time t2 ≡ t1 − �t and no further state in the past, i.e., vi at
times ti ≡ t1 − (i − 1)�t with i = 3, 4, ..., n. Markov models
are often applied as surrogates for complex physical processes,
e.g., Brownian motion. Expressed in terms of transition
probability density functions (PDFs), Markovianity means

p(v1|v2,v3,v4, . . .) = p(v1|v2). (1)

Moreover, in a stationary Markov process, the transition PDFs
are independent of the actual time, e.g., p(v1|v2) = p(vi |vi+1)
for any i. Stationary Markov processes are used in a range
of different physical applications. Pope [1] summarized
corresponding modeling efforts in connection with turbulent
dispersion and turbulent reactive flows, and Minier [2]
reviewed Lagrangian stochastic methods for turbulent
two-phase flows. Specific applications include the models
proposed by Pozorski and Minier [3] and Meyer [4] for the
fluid velocity seen by inertial particles. More recently a similar
model was outlined to describe subgrid scale oscillations
of the velocity seen by the particle in two-phase large eddy
simulation (LES) [5]. In the context of atmospheric dispersion,
stochastic fluid or tracer particles are successfully applied in
the U.K. Meteorological Office’s NAME model [6]. Moreover,
for the simulation of turbulent reactive flows, Pope [7] has
developed Markovian fluid particle velocity processes. Lastly,
to model fluid particle acceleration fluctuations, Sawford [8]
and Zamansky et al. [9] have proposed Markov models.

Based on the success of Markov models in turbulence,
corresponding models were introduced more recently in the
area of subsurface flow and transport. Le Borgne et al. [10]
and Meyer and Tchelepi [11] introduced Markov velocity
processes to model the transport of passive tracers in the
heterogeneous subsurface. Both contributions focus on high
Péclet numbers, where advection is more important than
pore-scale dispersion, which is typical in most applications
[12, section 10.5.2]. The presented velocity processes are
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useful to gain a better understanding of the underlying physical
effects and to arrive at macrodispersion predictions at low
computational costs. For example, the refined Markov model
outlined by Meyer et al. [13] provides predictions that run
several orders of magnitude faster compared to conventional
Monte Carlo sampling. However, since macrodispersion is
governed by the subsurface characteristics that determine
the flow field, e.g., the conductivity correlation structure,
Markov models will not work equally well for all types of
media. For example, Le Borgne et al. [10] found that tracer
particle dynamics in two-dimensional multi-Gaussian fields
with Gaussian correlation structure are non-Markovian in time
due to a high degree of correlation at low velocities.

Despite the listed and numerous other examples [14,15], the
applicability of the Markov hypothesis is rarely verified most
likely due to a lack of a testing framework that is sufficiently
general. In the few cases where it is verified though, the
Chapman-Kolmogorov (CK) equality

p(v1|v3) =
∫

�

p(v1|v2)p(v2|v3) dv2 (2)

is typically used. CK equation (2) is a weak test for the Markov
condition

p(v1|v2,v3) = p(v1|v2), (3)

since multiplication of equation (3) with p(v2|v3) and integra-
tion over v2 leads to Eq. (2). CK equation (2) is a weak test of
the Markov condition (3), since non-Markovian processes like
the ones constructed, for example, by Feller [16], Parzen [17,
p. 203], and Van Kampen [18, p. 79] satisfy the CK equation
but do not satisfy the Markov condition and therefore are not
Markovian. Accordingly, CK equation (2) is a necessary but
not a sufficient condition for Markovianity.

In the case of a univariate random process with discrete
states, the CK equation reduces to an equality between two
transition matrices, i.e., P1,3 = P1,2P2,3, where the element
with index (k,l) in matrix Pi,i+j represents the transition
probability from state k at time ti to state l at ti+j with j � 1.
If the transition probabilities can be estimated reliably, the
verification of the weak CK equation is straightforward and
was, for example, conducted by Le Borgne et al. [10, Sec. IV C]
and Kang et al. [19, Fig. 2] in the context of subsurface flow
and transport as well as by Horstmeyer et al. [20, Figs. 6
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and 7] in connection with speckle image analysis for optical
encryption.

However, when dealing with a process whose state v is
continuous, multiple issues complicate the verification of
the Markov hypothesis by means of the CK equation and
the Markov condition. Firstly, typically a limited number
of samples n give rise to statistical errors when estimating
transition PDFs p(vi |vi+j ) and p(vi |vi+j ,vi+2j ). This aspect
becomes particularly problematic in the Markov condition,
where three-dimensional PDFs arise. Secondly, an accurate
and computationally efficient method is needed to numerically
evaluate the convolution in CK equation (2) at different points
(v3,v1). These issues become critical when verifying the CK
equation and the Markov condition for small lags �t , where
the process states v1 and v2 or v3 are highly correlated
and accordingly the transition PDFs are very peaked along
the diagonals, e.g., v1 = v3 in v3-v1 space. To resolve these
transition PDFs with histograms, very fine bins are required.
In connection with a Cartesian equispaced bin arrangement,
the integral evaluation in Eq. (2) translates then (as in the
previous paragraph) to a matrix-matrix product that scales
with the number of grid cells per vi direction to the third
power. Since the histogram bins have equal side lengths,
reducing their size while maintaining the same sample size
n will lead to increasing statistical errors. In summary, the
typical method to inspect the Markov hypothesis based on
the CK equation in connection with histograms is unable to
adapt to transition PDFs with a diagonal structure, suffers
from statistical errors, and represent only a weak test of
Markovianity.

In this work, we propose a methodology that is based
on a two-stage Markov test, where first the CK equation is
verified and if successful the Markov condition is inspected.
To reduce statistical and numerical errors in both stages,
kernel density estimation and Gauss quadrature integration
are applied. This methodology can account for the strong
anisotropy in the transition PDFs and enables a locally adapted
high-order integral evaluation. We demonstrate the capabilities
of our approach for applications in both turbulence and
subsurface dispersion. The latter area is of particular interest
since predictive Markov models have been developed recently
while the applicability of the Markov hypothesis is still being
discussed [10,11].

II. TESTING MARKOVIANITY

The CK equation (2) and the Markov condition (3) focus
only on the immediate next state in the past, i.e., v3. The
Markov hypothesis (1), however, accounts for dependencies
on all past states. To test the independence of the transition
PDF p(v1|v2,v3,v4, . . .) for states vi with i > 3, we can write,
for example,

p(v1|v4) =
∫∫

�

p(v1,v2,v3|v4) dv2 dv3

=
∫∫

�

p(v1,v2|v3,v4)p(v3|v4) dv2 dv3

=
∫∫

�

p(v1|v2,v3,v4)p(v2|v3,v4)p(v3|v4) dv2 dv3

or in analogy to Eq. (2)

p(v1|v4) =
∫∫

�

p(v1|v2)p(v2|v3)p(v3|v4),dv2,dv3 (4)

to verify that p(v1|v2,v3,v4) = p(v1|v2) and p(v2|v3,v4) =
p(v2|v3), where the latter corresponds for a stationary process
to Eq. (3). In expression (4), repeated integration has to be
conducted, which is a disadvantage in view of accumulating
integration errors. Instead, we inspect

p(v1|v5) =
∫∫∫

�

p(v1|v2,v3,v4,v5)p(v2|v3,v4,v5)

×p(v3|v4,v5)p(v4|v5) dv2 dv3 dv4,

which can be written for a stationary process and with
p(v1|v2,v3,v4,v5) = p(v1|v2) as

p(v1|v5) =
∫

�

[ =p(v1|v3)︷ ︸︸ ︷∫
�

p(v1|v2)p(v2|v3) dv2

×
∫

�

p(v3|v4)p(v4|v5) dv4︸ ︷︷ ︸
=p(v3|v5)

]
dv3. (5)

This is similar to the CK equation (2), but with a lag 2�t in-
stead of �t . Accordingly, to inspect the validity of the Markov
hypothesis for a certain lag �t and an increasing number of
past states vi with i > 2, the CK equation can be tested for a
sequence of lags with increasing sizes, i.e., �t , 2�t , 4�t , ... .
Similarly, to keep the dimensionality of the probability space
low, the Markov condition can be verified sequentially like
p(v1|v2,v3) = p(v1|v2), p(v1|v2,v4) = p(v1|v2), ... .

However, with the autocorrelation function of many physi-
cal processes being a decaying function for increasing lags, it
is likely that if v1 is independent of v3 [Eqs. (2) and (3)], it will
be independent of v4, v5, ... as well [Eq. (5)]. Nevertheless,
for a stationary process v(t), we can replace v3 by vi with
i > 2 in Eq. (2). In the limit of i → ∞, the transition PDFs
p(v1|vi) and p(v2|vi) become equal to the stationary PDF p(v)
of process v(t) and Eq. (2) reduces to the eigenproblem

p(v1) =
∫

�

p(v1|v2)p(v2) dv2, (6)

which could be used to inspect the independence for lags going
to infinity.

III. ESTIMATING TRANSITION PDFS

For the estimation of transition PDFs, e.g.,

p(vi |vi+j ) ≡ p(vi,vi+j )

p(vi+j )
(7)

with j being, for example, equal to 1 or 2 as in Eqs. (2) and
(5), we propose the application of kernel density estimators
(KDEs)

p(v) ≈ 1

nh

n∑
i=1

K

(
v − V (i)

h

)

[21–23]. Here n is the number of samples, h the kernel
bandwidth or smoothing parameter, K the kernel, and V (i)
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the sample with index i. Scott [23, Sec. 6.2.3] points out that
the particular choice of the kernel shape is secondary, but the
selection of the kernel bandwidth is of primary importance.
Here we work with Gaussian kernels and in the univariate case,
that is, for p(vi+j ), choose the smoothing parameter based
on Silverman’s rule [22, Eq. (3.28)], i.e., h ≡ 1.06ασn−1/5.
Here α = 1 unless stated otherwise and σ is the sample
standard deviation. In cases of higher dimensionality, e.g., for
p(vi,vi+j ), it is of particular importance, as will become clear
later, to choose a kernel that is aligned with the joint PDF to
be estimated. The corresponding Gaussian KDE is given by

p(v) =
∑n

i=1 k[h−2(v − V(i))T C−1(v − V(i))]√
det(C)nhd

with k(y) ≡ exp (−y/2)

(2π )d/2
,

h ≡ α

(
4

d + 2

)1/(d+4)

n−1/(d+4), (8)

dimensionality d, and sample covariance matrix C [22, Eqs.
(4.7) and (4.14)]. Equivalent methods were outlined by Wand
and Jones [24] and Haerdle et al. [21, Eq. (3.71)]. For example,
in the CK equation, d = 2, v ≡ (v1,vj )T with j = 2 or 3.
By assuming ergodicity in t , the sample V(i) represents all
possible pairs (Vi,Vi+j )T that can be extracted from the
process realization Vi ≡ V (ti) with lag j�t . When estimating
the PDFs involved on the right-hand side of Eq. (7) with
KDEs, it is important to make sure that the sample size n

is sufficiently high such that the KDEs converge to unique
densities independent of n. Corresponding convergence checks
were conducted in the present work.

To evaluate the right-hand side of CK equations (2) and
(5), for example, at point (v1,v3)T , Gauss-Jacobi quadrature
is applied on a confined interval bounded by (v1 + v3)/2 ±
Lv . In the present work, Lv was determined based on the
standard deviation of v2 conditional on v3. In order to check
if the integration region 2Lv is sufficiently large, it can be
verified whether the resulting PDF p(v1|v3) integrates over v1

to one. Moreover, convergence checks involving the number
of quadrature points and Lv should be performed. All these
safeguards were implemented in the present work.

A first set of application examples, where the outlined
test method was deployed in the context of three-dimensional
turbulence is contained in the Appendix.

IV. ARE TRACER PARTICLES IN THE SUBSURFACE
MARKOVIAN?

In this part, we use the methodology outlined in the previous
sections to inspect the Markovianity of the Lagrangian velocity
process of tracer particles in heterogeneous subsurface flows.
In the context of two-dimensional isotropic multivariate Gaus-
sian log-conductivity (or log-transmissivity) fields, we inspect
the temporal log-velocity-magnitude process v(t) defined be-
low. This process is the main driver of longitudinal macrodis-
persion in a spatially constant regional flow [13]. We demon-
strate that depending on the size of the time lag �t , Markovian-
ity of v(t) can be found for both exponentially decaying and
Gaussian correlation structures at mild and high heterogeneity
levels. It is pointed out that we chose a two-dimensional setup
because of its high relevance in hydrological applications. For
advection-dominated transport results, that is, predictions of
plume shape and spreading, we refer the interested reader to
Refs. [10,11,13], where Markovian velocity process models
are presented and their transport predictions are evaluated in
space-stationary and non-space-stationary cases. The limiting
dispersion behavior in space-stationary setups was investigated
in Refs. [11,13], and Fickian behavior was found in most
cases.

The random log-conductivity fields Y (x) with spatial
position x used in this work were generated with a spectral
random field generator [25]. The resulting isotropic fields (see
Fig. 1) are characterized in terms of the correlation structure
with log-conductivity variance σ 2

Y and correlation length lY .
Since we report normalized flow statistics in the absence of
pore-scale dispersion, the log-conductivity mean is irrelevant.
The hydraulic head h(x) was calculated based on the continuity
equation ∇ · (K∇h) = 0 with K(x) = exp[Y (x)] and a driving
mean head gradient in x1 direction [13]. Note that in general the
hydraulic conductivity K is a tensorial quantity that is assumed
here to be isotropic and thus reduces to a scalar [26, Sec. 5].
Eventually, the position of tracer particles was tracked with

FIG. 1. Sections of log-conductivity fields Y (x) resulting from (a) the exponentially decaying and (b) the Gaussian correlation structure. In
both cases σ 2

Y = 1 and the spatial directions are normalized with the correlation length lY .
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FIG. 2. (a) Log-velocity-magnitude trajectories v(t) (thin blue) and autocorrelation functions ρv(t) (thick red) for the exponentially
decaying (e) and Gaussian (g) correlation structures and heterogeneity levels σ 2

Y = 1/16 (i) and 4 (ii). (b) Histograms of the normalized
log-velocity-magnitude for the exponentially decaying (thick) and Gaussian (thin) correlation structures and three different σ 2

Y = 1/16 (solid),
1 (dashed), and 4 (dash-dot).

X(t) = ∫ t

0 u[X(t ′),t ′] dt ′, where the flow field u is resulting
from Darcy’s law, i.e., u = −(K/n)∇h with constant porosity
n. Accordingly, in the absence of Brinkman and Forchheimer
corrections in Darcy’s law, we consider laminar low-velocity
flow in porous media whose characterization is based on
representative elementary volumes [27, Sec. 2]. Moreover, we
focus on the high Péclet number limit, where the Péclet number
is defined as Pe ≡ UlY /D based on the mean flow velocity
U , the correlation length lY , and the pore-scale dispersion
coefficient D. However, at small or moderate Péclet numbers,
we expect that the inclusion of pore-scale dispersion in the
form of a random walk component in X(t) [28] will rather
enhance Markovianity at short time lags due to an increased
temporal decorrelation of the Lagrangian velocity u[X(t),t].
In the following, we focus on the dynamics of the Lagrangian
velocity magnitude process u(t) ≡ |u(t)| or more precisely
v(t) ≡ ln[u(t)/U ], where U is the mean downstream velocity
in x1 direction.

Unlike u(t), whose stationary PDF is very skewed in
heterogeneous cases with high σ 2

Y [29], v(t) is approximately
Gaussian as illustrated in Figs. 2(b) and 3 with log scaling,
which will facilitate the subsequent formulation of a Markov
model. Here histograms of v(t) for different heterogeneity
levels σ 2

Y are plotted for both correlation structures. Inter-
estingly, both correlation structures lead to almost identical
log-velocity-magnitude histograms despite the quite different
log-conductivity field structures (see Fig. 1) and flow dynamics
shown in Fig. 2(b).

In a first step, we test the validity of the Markov hypothesis
for the mildest heterogeneity level considered, i.e., σ 2

Y = 1/16.
For closer inspection of the validity of CK equation (2), most of
the data in the following figures are plotted along the diagonal
v1 = v3 in v3-v1 space and a logarithmic scaling is used in
certain transition PDF contour plots. For the exponentially
decaying correlation structure, it is shown in Fig. 4 that the
Markov hypothesis is not supported by the Lagrangian particle

statistics for a lag �t = 0.11lY /U , i.e., the left-hand side of
CK equation (2) represented by the filled contours in Fig. 4
does not match the right-hand side (dashed contour lines).
However, for lags �t = 0.22lY /U and 0.44lY /U the contours
from both equation sides coincide, and thus the CK equation
is satisfied to a very good approximation.
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FIG. 3. See Fig. 2(b). For comparison, Gaussian probability
densities (gray solid) with means and variances equal to the data
sets from the exponentially decaying correlation structure are plotted
as well.
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FIG. 4. Transition PDFs p(v1|v3) resulting from (filled contours)
the KDE, i.e., the left-hand side of CK equation (2), and (dashed
contour lines) the right-hand side of CK equation (2). Results for
the exponentially decaying correlation structure with σ 2

Y = 1/16 and
three different time lags (a) to (c) corresponding to �t = 0.11lY /U ,
0.22lY /U , and 0.44lY /U , respectively, are depicted.

Subsequent tests of the Markov condition (3) confirm the
validity of the Markov hypothesis for lag �t = 0.44lY /U . The
corresponding data are provided in Fig. 5, where the cubical
domain containing the grid points used for the estimation
of p(v1|v2,v3) is depicted. The contour surfaces of equal
probability in p(v1|v2,v3) shown in panel (b) are to a good
approximation parallel to the v3 direction, which illustrates
that the Markov condition (3) is satisfied. Given the fact
that the vertical grid lines in the domain are parallel to the
v3 direction, further evidence is provided in panels (c) and
(d), where the distribution of p(v1|v2,v3) on the top and
bottom planes of the domain, respectively, is shown. Both
PDF distributions are approximately equal, which provides

further evidence that the dependence of p(v1|v2,v3) on v3 is
insignificant.

For the Gaussian correlation structure, as can be seen
from Fig. 6 and based on similar results as depicted in
Fig. 5, the Markov hypothesis becomes applicable for roughly
10 times larger lags at �t = 2lY /U . This is not surprising
given the smooth log-conductivity fields and accordingly v(t)
realizations that are resulting from the Gaussian correlation
structure [see Figs. 1 and 2(a)]. Since p(v1|v3) at �t = 4lY /U

is essentially a Gaussian PDF with constant standard deviation
and conditional mean 〈v1|v3〉 that is linear in v3, the corre-
sponding v(t) process can be accurately modeled by a simple
linear diffusion or Langevin process. For the exponentially
decaying correlation structure, however, a nonlinear process
or model is necessary (see Fig. 4).

When increasing the level of heterogeneity, the transition
PDFs become more complex. This is shown in Fig. 7,
where results for two lags �t and the exponentially decaying
correlation structure with σ 2

Y = 4 are depicted. Especially for
the larger lag, two regimes can be identified. For high velocities
or v3 > −1, the process is similar to the ones inspected for
σ 2

Y = 1/16, i.e., the standard deviation of v1 conditional on v3

is approximately constant, and the mean has an approximate
linear dependence on v3. For small velocities with v3 < −1,
the conditional standard deviation becomes small, leading
to a more correlated behavior [compare Fig. 2(e,ii)], which
is in agreement with earlier observations [10,11]. While the
Markov hypothesis is supported by the data for high velocities
(compare Fig. 7), deviations between the sides of the CK
equation appear at small velocities (inset in top panel of Fig. 7).
This is the case as well for the Markov condition verified in
Fig. 8, where a slight dependence on v3 becomes apparent at
small v1, whereas the dependence is negligible for large v1

values.
Very similar observations can be made for the Gaussian

correlation structure. Like in the mildly heterogeneous case,
the Markov hypothesis becomes a good approximation for
larger time lags, i.e., �t � 1.6lY /U , compared with the
exponentially decaying structure, where good agreement in the
CK equation and the Markov condition was found already for
�t � 0.64lY /U . Low- and high-velocity regimes are present,
as is shown in Fig. 9, where the transition PDF p(v1|v3) and
the joint PDF p(v1,v3) are plotted, respectively [see Fig. 2(g,ii)
as well].

Independent of the correlation structure, particularly the
transition PDFs for σ 2

Y = 4 involve a degree of complexity
that greatly complicates a verification of the CK equation
and the Markov condition with conventional methods based
on equidistant histograms and matrix products. On one hand,
the low-velocity regions necessitate the use of fine grid cells
and accordingly many samples to keep statistical errors low.
On the other hand, coarse structures in the high-velocity
regions require sufficient spatial extension in probability
space and therefore induce a high number of grid cells. With
the methodology outlined in this work, these difficulties
can be overcome. Since KDEs provide semianalytical PDF
estimates, the transition PDFs can be quantified at relevant grid
points only. For example, to capture the narrow low-velocity
regions [see, for example, Fig. 7(a)], a small spacing of points
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1/16 and two different time lags (a) and (b) corresponding to �t =
2lY /U and 4lY /U , respectively, are depicted.
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FIG. 7. See Fig. 4. The contour levels represent log10 values of
p(v1|v3). Results for the exponentially decaying correlation structure
with σ 2

Y = 4 and two different time lags (a) and (b) corresponding to
�t = 0.64lY /U and 2.56lY /U , respectively, are depicted. The inset
shows a detail view of the PDF depicted in the top panel.
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FIG. 8. Transition PDF p(v1|v2,v3) of the exponentially decaying correlation structure with σ 2
Y = 4 and a time lag �t = 0.64lY /U . See

Fig. 5.

is chosen, whereas in the high-velocity regions points are
coarsely distributed. For a graphical illustration see Figs. 8(a)
and 10. By using a suitable kernel shape, the KDE can account
for the narrow diagonal PDF structure and the PDF can
be accurately estimated with a relatively small sample size.
However, since we use the same kernel shape and size in the
entire probability space, its size has to be selected such that the
narrow PDF section in the low-velocity region is resolved. For
this reason α in Eq. (8) was reduced to 0.5 for the case with
the exponentially decaying correlation structure with σ 2

Y = 4
and �t = 0.64lY /U .

V. CONCLUSIONS

In this work, we have systematically tested the Markov
hypothesis for applications in the areas of turbulence modeling
(see the Appendix) and subsurface dispersion. Our results
confirm the suitability of Markov models for the description
of tracer particle velocities and the fluid velocities seen by
inertial particles. In the context of subsurface dispersion,
unlike previous contributions, we show that Markov models
become applicable above a lowest limiting time lag. For the
smooth Gaussian correlation structure, this lag is significantly
larger compared to the discontinuous exponentially decaying

structure. For low heterogeneity levels, the transition PDFs
have relatively simple shapes for both structures. However, at
high heterogeneity levels, these PDFs are more complex and
low- and high-velocity regimes coexist. At high velocities, the
transition PDF is wide and the Markov hypothesis is accurate
for small lags. However, at low velocities, the transition PDF is
narrow and the dynamics become Markovian at elevated lags
only. It is remarkable that despite the different log-conductivity
correlation structures, the transition PDFs are very similar
for both correlation structures at high heterogeneity levels.
This similarity opens the prospect of a unified Markovian
macrodispersion model for both structures and blends thereof
like the Matern covariance. This is because each transition
PDF essentially represent a blueprint of a model process.

For the estimation of transition PDFs, that are crucial when
verifying the Markov hypothesis, a numerical framework that
is based on suitably selected kernel density estimators and
a Gauss quadrature formula was outlined and successfully
applied.1 Our framework is particularly useful when testing
Markovianity at small lags, where conventional histogram-

1The according computer programs are available by contacting the
corresponding author.
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FIG. 9. Results for the Gaussian correlation structure with σ 2
Y = 4 and a lag �t = 6.4lY /U are depicted. (a) See Fig. 4. The contour levels

represent log10 values of p(v1|v3). (b) The contour levels represent log10 values of the joint PDF p(v1,v3).
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FIG. 10. Joint PDF p(v1,v3) resulting from kernel density es-
timation. Contour levels represent log10 values of the joint PDF.
The dots represent points (v1,v3)T , where the right-hand side
of the Chapman-Kolmogorov equation was evaluated with Gauss
quadrature leading to the dashed contours in Fig. 7(a). Results for the
exponentially decaying correlation structure with σ 2

Y = 4 and time
lag �t = 0.64lY /U are depicted.

based methods become inaccurate. Moreover, the presented
methodology includes testing of the Markov condition. This
is unlike most existing contributions that focus on the weak
Chapman–Kolmogorov equation, which may falsely identify
processes as Markov.
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APPENDIX: APPLICATIONS IN TURBULENT FLOWS

To demonstrate the suitability of our methodology in the
context of turbulent flows, we use data stemming from direct
numerical simulation of forced homogeneous isotropic turbu-
lence. This is a prototype flow representative of turbulence
in many applications. The computational domain is a three-
dimensional box that is periodic in each spatial direction and
has a side length of 2π (all values given in SI units). To arrive
at a statistically stationary turbulent flow in time, the linear
forcing scheme of Rosales and Meneveau [30] was applied.
The turbulent flow field used in this study has a Taylor-scale
Reynolds number of Reλ = 48.5, a Kolmogorov length scale
η = 0.0273 and time scale τη = 0.126, a fluid density ρ = 1,
and a viscosity ν = 4.491 × 10−3. The inertial particles were
represented as point particles with diameter dp = 3.19 × 10−3

and densities ρp = 1 × 103 and 80 × 103 corresponding to
Stokes numbers St ≡ τp/τη = 1 and 80, respectively. Here

τp ≡ 2

9

ρp

ρ

1

ν

(
dp

2

)2

(A1)

is the Stokes relaxation time of the particle. We point out
that the point particle approximation is applicable in the limit
of dp 
 η. For the numerical solution of the Navier–Stokes
equation, a spectral element solver [31] was applied and
supplemented by a one-way-coupling particle scheme. One-
way coupling is accurate if inertial particles are suspended
at low mass loadings. The Stokes drag force was determined
based on the Schiller-Naumann drag correction as a function of
the particle Reynolds number. The resulting particle evolution
equations are given by

dxp

dt
= up and

dup

dt
= −cp

τp

(up − uf ), (A2)

where xp(t) and up(t) are the particle position and velocity,
respectively, cp ≡ 1 + 0.15Re0.687

p is the Schiller-Naumann
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-2

0

2
-2

0

2
-4
-2
0
2

(a)

up(t)
uf(t)

(b)

up(t)
uf(t)

(c)

up(t)
uf(t)

t

FIG. 11. Time series of the particle velocity (blue dashed line) and the local fluid velocity seen by the particle (red solid line). Depicted are
three types of particles, (a) fluid particle and inertial particles with (b) St = 1 and (c) St = 80.
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FIG. 12. Transition PDFs p(v1|v3) resulting from (filled con-
tours) the KDE, i.e., the left-hand side of the CK equation, and
(dashed contour lines) the right-hand side of the CK equation. The
contour levels represent log10 values of p(v1|v3). Results for fluid or
tracer particles at three different time lags (a) to (c) corresponding to
�t = 0.24, 0.48, and 0.96, respectively, are depicted.

drag correction applicable for Rep ≡ |up − uf |dp/ν up to
1000 [32], and uf (t) ≡ u[xp(t),t] is the local fluid velocity
seen by the particle. Exemplary time series of components of
the particle velocity and the fluid velocity seen by the particle
are depicted in Fig. 11 for St = 1 and 80. It is visible that
for the larger Stokes number, which corresponds to heavier
particles, the particle velocity fluctuates less (blue dashed
curve). However, as the heavy particle moves through the
fluid, the velocity of the surrounding fluid changes more
rapidly (red solid curve) compared to the lighter particle with
St = 1 and thus becomes subject to an increasingly random
uncorrelated motion (RUM) [33,34]. In the case of tracer or
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FIG. 13. Transition PDFs p(v1|v2,v3) at two different values of
v3, (1) and (2), analogous to the ones depicted in Fig. 5, panels (c)
and (d). Results for fluid or tracer particles at three different time lags
(a) to (c) corresponding to �t = 0.24, 0.48, and 0.96, respectively,
are depicted.

fluid particles, the fluid particle position was evolved based
on the fluid velocity seen by the particle, i.e., up(t) = uf (t).
Corresponding time series are included in Fig. 11 as well.

In a first step, the validity of the Markov hypothesis is tested
for fluid or tracer particles. Corresponding models are applied
for example for the simulation of atmospheric dispersion [6] or
turbulent reactive flows with PDF methods [1,7]. Here variable
v represents one component of the particle or Lagrangian
fluid velocity vector up(t) = uf (t). The resulting transition
PDFs p(v1|v3) are depicted in Fig. 12 for different time lags
�t . For closer inspection, these PDFs are plotted along the
diagonal v1 = v3 in v3-v1 space and a logarithmic contour
level distribution is applied. For lags �t � 0.48, it is visible
that a Markov model can be considered since the left-hand
side of CK equation (2), represented by the filled contours
in Fig. 12, matches with the right-hand side (dashed contour
lines). Moreover, by going from small to large lags, we can
observe that p(v1|v3) becomes, except for a linear dependence
of the conditional mean 〈v1|v3〉, essentially independent of
v3. Additionally, since the shape of p(v1|v3) approaches a
Gaussian for increasing �t , our results are consistent with the
linear diffusion processes or Langevin models that are typically
applied in the previously listed applications (e.g., Ref. [1, Eq.
(28)]). In Fig. 13 we can observe that for a growing time lag
�t , the transition PDF p(v1|v2,v3) becomes independent of v3

and eventually satisfies to a good approximation the Markov
condition (3) at �t = 0.96. This outcome is more conservative
compared to the previous result from the CK equation, i.e.,
�t � 0.48.

The transition PDFs for the fluid velocity seen by the
particle for inertial particles with St = 1 are very similar
compared to the fluid particle case shown in Fig. 12. For
the PDFs of the heavy particle with St = 80 given in
Fig. 14, however, the Markov and diffusion process regimes
are reached roughly at lags half the size compared with
St = 1. This behavior is consistent with our discussion of
Fig. 11. There, we observed that for St = 80, uf (t) evolves
more rapidly and thus loses memory more quickly than
for St = 1. In summary, our results support the use of
stochastic diffusion processes to model uf (t) over time periods
�τη [3,4].
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[1] S. B. Pope, Phys. Fluids 23, 011301 (2011).
[2] J.-P. Minier, Prog. Energy Combust. Sci. 50, 1 (2015).
[3] J. Pozorski and J. P. Minier, Phys. Rev. E 59, 855 (1999).
[4] D. W. Meyer, J. Fluid Mechanics 706, 251 (2013).
[5] J. Pozorski and S. V. Apte, Int. J. Multiphase Flow 35, 118

(2009).
[6] A. Jones, D. Thomson, M. Hort, and B. Devenish, The U.K. Met

Office’s next-generation atmospheric dispersion model, NAME
III, in Air Pollution Modeling and Its Application XVII, edited
by C. Borrego and A.-L. Norman (Springer, New York, 2007),
Sec. 62, pp. 580–589.

[7] S. B. Pope, Prog. Energy Combust. Sci. 11, 119 (1985).
[8] B. L. Sawford, Phys. Fluids A 3, 1577 (1991).
[9] R. Zamansky, I. Vinkovic, and M. Gorokhovski, J. Fluid Mech.

721, 627 (2013).
[10] T. Le Borgne, M. Dentz, and J. Carrera, Phys. Rev. E 78, 026308

(2008).
[11] D. W. Meyer and H. A. Tchelepi, Water Resour. Res. 46,

W11552 (2010).
[12] Y. Rubin, Applied Stochastic Hydrogeology (Oxford University

Press, Oxford, 2003), p. 391.
[13] D. W. Meyer, H. A. Tchelepi, and P. Jenny, Water Resour. Res.

49, 2359 (2013).
[14] J. W.-B. Lin and J. D. Neelin, Geophys. Res. Lett. 30, 1162

(2003).
[15] Y. Xue and A. Leetmaa, Geophys. Res. Lett. 27, 2701 (2000).
[16] W. Feller, Ann. Math. Stat. 30, 1252 (1959).
[17] E. Parzen, Stochastic Processes, Classics in Applied Math-

ematics (Society for Industrial and Applied Mathematics,
Philadelphia, 1999), p. 324.

[18] N. Van Kampen, Stochastic Processes in Physics and Chemistry,
3rd ed. (Elsevier, Amsterdam, 2007).

[19] P. K. Kang, M. Dentz, T. Le Borgne, and R. Juanes, Phys. Rev.
Lett. 107, 180602 (2011).

[20] R. Horstmeyer, R. Y. Chen, B. Judkewitz, and C. Yang, Opt.
Express 20, 26394 (2012).

[21] W. Haerdle, A. Werwatz, M. Mueller, and S. Sperlich, Nonpara-
metric and Semiparametric Models, Springer Series in Statistics
(Springer, Berlin, 2004).

[22] B. W. Silverman, Density Estimation for Statistics and Data
Analysis, Monographs on Statistics and Applied Probability
(Chapman and Hall/CRC, Boca Raton, FL, 1998), p. 174.

[23] D. W. Scott, Multivariate Density Estimation (John Wiley and
Sons, New York, 1992).

[24] M. P. Wand and M. C. Jones, J. Am. Stat. Assoc. 88, 520 (1993).
[25] F. Mueller, P. Jenny, and D. W. Meyer, J. Comput. Phys. 250,

685 (2013).
[26] J. Bear, Dynamics of Fluids in Porous Media (American

Elsevier, New York, 1972), p. 764.
[27] G. Dagan, Flow and Transport in Porous Formations (Springer,

Berlin, 1989), p. 465.
[28] P. Salamon, D. Fernandez-Garcia, and J. J. Gomez-Hernandez,

J. Contam. Hydrol. 87, 277 (2006).
[29] P. Salandin and V. Fiorotto, Water Resour. Res. 34, 949 (1998).
[30] C. Rosales and C. Meneveau, Phys. Fluids 17, 095106 (2005).
[31] P. F. Fischer, J. W. Lottes, and S. G. Kerkemeier, Nek5000

a spectral element code for CFD, http://nek5000.mcs.anl.gov
(2015).

[32] L. Schiller and A. Naumann, Verein Deutscher Ingenieure 77,
318 (1933).

[33] R. H. A. Ijzermans, E. Meneguz, and M. W. Reeks, J. Fluid
Mech. 653, 99 (2010).

[34] K. Gustavsson, E. Meneguz, M. Reeks, and B. Mehlig, New J.
Phys. 14, 115017 (2012).

053103-10

http://dx.doi.org/10.1063/1.3531744
http://dx.doi.org/10.1063/1.3531744
http://dx.doi.org/10.1063/1.3531744
http://dx.doi.org/10.1063/1.3531744
http://dx.doi.org/10.1016/j.pecs.2015.02.003
http://dx.doi.org/10.1016/j.pecs.2015.02.003
http://dx.doi.org/10.1016/j.pecs.2015.02.003
http://dx.doi.org/10.1016/j.pecs.2015.02.003
http://dx.doi.org/10.1103/PhysRevE.59.855
http://dx.doi.org/10.1103/PhysRevE.59.855
http://dx.doi.org/10.1103/PhysRevE.59.855
http://dx.doi.org/10.1103/PhysRevE.59.855
http://dx.doi.org/10.1017/jfm.2012.251
http://dx.doi.org/10.1017/jfm.2012.251
http://dx.doi.org/10.1017/jfm.2012.251
http://dx.doi.org/10.1017/jfm.2012.251
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2008.10.005
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2008.10.005
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2008.10.005
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2008.10.005
http://dx.doi.org/10.1016/0360-1285(85)90002-4
http://dx.doi.org/10.1016/0360-1285(85)90002-4
http://dx.doi.org/10.1016/0360-1285(85)90002-4
http://dx.doi.org/10.1016/0360-1285(85)90002-4
http://dx.doi.org/10.1063/1.857937
http://dx.doi.org/10.1063/1.857937
http://dx.doi.org/10.1063/1.857937
http://dx.doi.org/10.1063/1.857937
http://dx.doi.org/10.1017/jfm.2013.48
http://dx.doi.org/10.1017/jfm.2013.48
http://dx.doi.org/10.1017/jfm.2013.48
http://dx.doi.org/10.1017/jfm.2013.48
http://dx.doi.org/10.1103/PhysRevE.78.026308
http://dx.doi.org/10.1103/PhysRevE.78.026308
http://dx.doi.org/10.1103/PhysRevE.78.026308
http://dx.doi.org/10.1103/PhysRevE.78.026308
http://dx.doi.org/10.1029/2009WR008925
http://dx.doi.org/10.1029/2009WR008925
http://dx.doi.org/10.1029/2009WR008925
http://dx.doi.org/10.1029/2009WR008925
http://dx.doi.org/10.1002/wrcr.20240
http://dx.doi.org/10.1002/wrcr.20240
http://dx.doi.org/10.1002/wrcr.20240
http://dx.doi.org/10.1002/wrcr.20240
http://dx.doi.org/10.1029/2002GL016203
http://dx.doi.org/10.1029/2002GL016203
http://dx.doi.org/10.1029/2002GL016203
http://dx.doi.org/10.1029/2002GL016203
http://dx.doi.org/10.1029/1999GL011107
http://dx.doi.org/10.1029/1999GL011107
http://dx.doi.org/10.1029/1999GL011107
http://dx.doi.org/10.1029/1999GL011107
http://dx.doi.org/10.1214/aoms/1177706110
http://dx.doi.org/10.1214/aoms/1177706110
http://dx.doi.org/10.1214/aoms/1177706110
http://dx.doi.org/10.1214/aoms/1177706110
http://dx.doi.org/10.1103/PhysRevLett.107.180602
http://dx.doi.org/10.1103/PhysRevLett.107.180602
http://dx.doi.org/10.1103/PhysRevLett.107.180602
http://dx.doi.org/10.1103/PhysRevLett.107.180602
http://dx.doi.org/10.1364/OE.20.026394
http://dx.doi.org/10.1364/OE.20.026394
http://dx.doi.org/10.1364/OE.20.026394
http://dx.doi.org/10.1364/OE.20.026394
http://dx.doi.org/10.1080/01621459.1993.10476303
http://dx.doi.org/10.1080/01621459.1993.10476303
http://dx.doi.org/10.1080/01621459.1993.10476303
http://dx.doi.org/10.1080/01621459.1993.10476303
http://dx.doi.org/10.1016/j.jcp.2013.03.023
http://dx.doi.org/10.1016/j.jcp.2013.03.023
http://dx.doi.org/10.1016/j.jcp.2013.03.023
http://dx.doi.org/10.1016/j.jcp.2013.03.023
http://dx.doi.org/10.1016/j.jconhyd.2006.05.005
http://dx.doi.org/10.1016/j.jconhyd.2006.05.005
http://dx.doi.org/10.1016/j.jconhyd.2006.05.005
http://dx.doi.org/10.1016/j.jconhyd.2006.05.005
http://dx.doi.org/10.1029/98WR00219
http://dx.doi.org/10.1029/98WR00219
http://dx.doi.org/10.1029/98WR00219
http://dx.doi.org/10.1029/98WR00219
http://dx.doi.org/10.1063/1.2047568
http://dx.doi.org/10.1063/1.2047568
http://dx.doi.org/10.1063/1.2047568
http://dx.doi.org/10.1063/1.2047568
http://nek5000.mcs.anl.gov
http://dx.doi.org/10.1017/S0022112010000170
http://dx.doi.org/10.1017/S0022112010000170
http://dx.doi.org/10.1017/S0022112010000170
http://dx.doi.org/10.1017/S0022112010000170
http://dx.doi.org/10.1088/1367-2630/14/11/115017
http://dx.doi.org/10.1088/1367-2630/14/11/115017
http://dx.doi.org/10.1088/1367-2630/14/11/115017
http://dx.doi.org/10.1088/1367-2630/14/11/115017



