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Nonlinear plastic modes (NPMs) are collective displacements that are indicative of imminent plastic instabilities
in elastic solids. In this work we formulate the atomistic theory that describes the reversible evolution of NPMs and
their associated stiffnesses under external deformations. The deformation dynamics of NPMs is compared to those
of the analogous observables derived from atomistic linear elastic theory, namely, destabilizing eigenmodes of
the dynamical matrix and their associated eigenvalues. The key result we present and explain is that the dynamics
of NPMs and of destabilizing eigenmodes under external deformations follow different scaling laws with respect
to the proximity to imminent instabilities. In particular, destabilizing modes vary with a singular rate, whereas
NPMs exhibit no such singularity. As a result, NPMs converge much earlier than destabilizing eigenmodes to
their common final form at plastic instabilities. This dynamical difference between NPMs and linear destabilizing
eigenmodes underlines the usefulness of NPMs for predicting the locus and geometry of plastic instabilities,
compared to their linear-elastic counterparts.

DOI: 10.1103/PhysRevE.93.053004

I. INTRODUCTION

When a disordered elastic solid is subjected to external
deformation, particle-scale plastic instabilities are inevitably
encountered [1], each accompanied by a rearrangement of
a small set of particles conventionally coined as a “shear
transformation,” and some degree of energy dissipation [2–4].
The occurrence rate, micromechanical consequences, and
interactions between these instabilities determine the macro-
scopic rate of plastic deformation, which is a key rheological
observable that controls important material properties such as
toughness and elastic limit [5].

The micromechanical process that takes place as plastic
instabilities are triggered under athermal conditions has been
thoroughly studied in the framework of atomistic linear elastic-
ity [6–8]. In this framework, plastic instabilities that interrupt
reversible elastic branches [illustrated in, e.g., Fig. 1(b)] are
reflected by the continuous vanishing of the lowest eigenvalue
λp of the dynamical matrix M ≡ ∂2U

∂ �x∂ �x (see Appendix A for
tensoric notation conventions) as the imposed shear strain γ

approaches an instability strain γc. Here and in what follows, �x
denotes the multidimensional coordinate vector of all particles’
positions, and U (�x) denotes the potential energy. In the
potential energy landscape (PEL) picture, plastic instabilities
are understood as the coalescence and mutual annihilation
of a local minimum and a nearby first-order saddle point, a
process known as a saddle-node bifurcation, at some critical
instability strain γc. This implies that asymptotically close to
the instability strain, i.e., as γ → γc, the eigenvalue associated
with the destabilizing eigenmode depends on the strain as
λp ∼ √

γc − γ . In Fig. 1 key micro- and macroscopic aspects
of the mechanics of plastic instabilities are reviewed.

Plastic instabilities are cleanly captured by destabilizing
eigenmodes only very close (in strain) to instability strains, and
more so as larger systems are considered, due to hybridization
processes of destabilizing eigenmodes with low-energy plane
waves. This is not the case, however, with nonlinear plastic
modes (NPMs), introduced first in Ref. [9]. NPMs are
collective displacement directions which are indicative of the
spatial structure and geometry of imminent plastic instabilities.

Their definition, which is solely based on inherent structure
information, hinges on properly accounting for the relevant
anharmonicities of the potential energy landscape, as shown in
Ref. [9] and explained in what follows. In this work we show
that NPMs closely resemble plastic instabilities well away
from instability strains and well before destabilizing modes
do. This is the case since NPMs do not “compete” with other
low-frequency modes for their identity as the lowest-lying
normal mode. They therefore do not suffer hybridizations with
other modes, which leads to the preservation of their spatial
structure remarkably far (in strain) from plastic instabilities.
This superior robustness of NPMs identities renders their
spatial distribution useful as means for a microstructural
characterization of disordered solids that controls plastic
deformation rates.

In this work we present a micromechanical theory for
the athermal quasistatic deformation-dynamics of NPMs
(i.e., their evolution under imposed deformations) and their
associated stiffnesses upon approaching plastic instabilities.
The NPM’s deformation dynamics is compared to that of the
conventional set of “linear” observables, namely, the destabi-
lizing eigenmodes of the dynamical matrix and their associated
eigenvalues. In addition to demonstrating the persistence of
NPMs’ identities over very large strain scales away from
plastic instabilities, we further show that NPMs converge
much faster scaling-wise to their form at the instability strains,
compared to destabilizing eigenmodes. We present a scaling
analysis that explains the qualitative differences observed
between the deformation dynamics of these two types of
modes.

This manuscript is organized as follows: in Sec. II we
briefly describe the numerical methods and models used in
this work. Further details about the numerics and algorithms
used are provided in Appendix B, and explanations of the
tensor notations used throughout our work can be found in
Appendix A. In Sec. III we review the conventional mi-
cromechanical theory of plastic instabilities, discuss its range
of applicability, and validate the theory against numerical
simulations. In Sec. IV we reintroduce the barrier function, put
forward first in Ref. [9], from which the definition of NPMs
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FIG. 1. Review of the micromechanics of a plastic instability. (a) An illustration of the basic setup considered in this work: an athermal
glass under quasistatic simple shear deformation. (b) Cartoon of a typical stress σ vs strain γ signal in our setup; at some instability strain γc a
plastic instability occurs. The dashed frame shows that close to the instability the stress follows σ − σc ∼ √

γc − γ , as shown, e.g., in Ref. [7].
(c) Lowest eigenvalue λp = M : �̂p�̂p of the dynamical matrix M, vs the distance in strain γc − γ to the instability. Away from the instability
the eigenmode �̂p associated with λp is delocalized, as demonstrated in panel (f), and λp is largely insensitive to the deformation. As the solid is
further deformed �̂p destabilizes and localizes, as demonstrated in panel (e). λp then vanishes as

√
γc − γ . (d) Energy variations δU�̂ (s) upon

displacing the particles about the mechanical equilibrium state according to δ�x = s�̂p , measured at distances γc − γ = 10−14, 10−41/3, 10−40/3,
and 10−13 away from the instability strain. These curves demonstrate the well-understood saddle-node bifurcation which characterizes plastic
instabilities, in which a saddle point and minimum on the potential energy landscape coalesce and mutually annihilate, as shown in Refs. [6–8].
The continuous lines are obtained by a cubic Taylor expansion of the energy variation, for which the expansion coefficients were calculated
using inherent state information.

emerges. We present results from a numerical investigation of
the spatial properties of NPMs, which are important for under-
standing NPMs’ deformation dynamics. We further present
the micromechanical theory that describes the deformation
dynamics of stiffnesses associated with NPMs. In Sec. V
we derive the micromechanical theory for the deformation
dynamics of destabilizing modes and NPMs and present
data from numerical simulations that validate the theory’s
predictions. We end with a summary and discussion in Sec. VI.

II. METHODS AND MODELS

We provide here a brief overview of the numerics used
in our work; a complete and detailed description is provided
in Appendix B. We employed a simple glass former in two
dimensions that consists of pointlike particles interacting via
inverse power-law purely repulsive pairwise potentials. We
expect our results to be independent of this particular choice
of model. An example of a snapshot of our model glass

with N = 1600 is displayed in Fig. 1(a). We investigated
systems of N = 402, 802, 1602, and 3202 particles; for each
system size, we selected a single realization for which the
first plastic instability upon shearing occurred at a strain
γc � 10−3. No other considerations were used when selecting
each realization for the subsequent analyses carried out. All
deformation simulations were carried out under athermal, qua-
sistatic conditions, and the imposed deformation was simple
shear under Lees-Edwards periodic boundary conditions. Here
128-bit numerics were employed to enable approaching plastic
instabilities up to strains of the order of γc − γ ∼ 10−14. The
calculation of nonlinear plastic modes (defined in Sec. IV) is
explained in Appendix B.

III. PLASTIC INSTABILITIES AS REFLECTED BY
ATOMISTIC LINEAR ELASTICITY

In this section we review the conventional atomistic theory
of plastic instabilities in disordered elastic solids. The majority
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of the formalism presented in this section appears in, e.g.,
Refs. [7,8,10,11]; it is summarized here for the sake of
completeness.

We consider a disordered system of N particles in đ
dimensions, enclosed in a box of volume � under periodic
boundary conditions, and interacting via some potential energy
U (�x) which is a function of the particles’ coordinates �x.
Here and in all that follows, we restrict the discussion to the
athermal limit T → 0, with T denoting the temperature. In
the athermal limit, as long as it is mechanically stable, the
system resides in a local minimum of the potential energy,
i.e., in a state �x0 of mechanical equilibrium. This means that
(1) ∂U

∂ �x |�x0
= 0 and (2) all eigenvalues of the dynamical matrix

M ≡ ∂2U
∂ �x∂ �x |�x0

are non-negative (see Appendix A for tensoric
notation conventions).

We next consider what happens when we deform our solid
under quasistatic shear deformation, and in particular, we study
how the eigenvalues of M vary as deformation is imposed. We
start by writing the eigenmode decomposition of the dynamical
matrix as

M =
Nd−∑
	=0

λ	�̂	�̂	, (1)

where the orthonormal eigenmodes �̂	 satisfy the eigenvalue
equation

M · �̂	 = λ	�̂	, (2)

and therefore λ	 = M : �̂	�̂	. We aim to spell out the
deformation dynamics of the eigenvalues, namely, to derive
an equation for dλ	

dγ
. In the athermal limit, total derivatives

with respect to strain are taken according to [7,8,12,13]

d

dγ
= ∂

∂γ
+ d �x

dγ
· ∂

∂ �x , (3)

where d �x
dγ

denotes what are known as the nonaffine part of
the deformation dynamics of the particles’ coordinates. An
explicit expression for d �x

dγ
can be derived by requiring that

mechanical equilibrium is preserved under the deformation,
namely,

d

dγ

∂U

∂ �x = ∂2U

∂γ ∂ �x + d �x
dγ

· ∂2U

∂ �x∂ �x = 0, (4)

which can be inverted in favor of d �x
dγ

, as

d �x
dγ

= −M−1 · ∂2U

∂ �x∂γ
. (5)

The superscript −1 should be understood here and in what
follows as denoting the inverse of an operator taken after
removing its zero modes. This removal is justified by the
perfect orthogonality of the contracted vector with the zero
modes of the inverted operator (which will always be the
case in what follows). Equations (3) and (5), introduced first
in Ref. [12], are central for the calculations presented in the
subsequent sections.

Using the formalism explained above, we take the derivative
of an eigenvalue of M as

dλ	

dγ
= dM

dγ
:�̂	�̂	 = ∂M

∂γ
:�̂	�̂	 + U ′′′ .

:�̂	�̂	

d �x
dγ

, (6)

where U ′′′ ≡ ∂3U
∂ �x∂ �x∂ �x , and no additional terms appear since

normalization of modes implies that d�̂	

dγ
·�̂	 = 0. Using the

eigenmode decomposition of the dynamical matrix in Eq. (5),
and inserting it in Eq. (6) we find

dλ	

dγ
= ∂M

∂γ
:�̂	�̂	 −

∑
m

(U ′′′ .
:�̂	�̂	�̂m)

(
�̂m · ∂2U

∂ �x∂γ

)
λm

. (7)

Equation (7) describes the deformation dynamics of any
of the Nd− eigenvalues λ	 of M. Here we focus in particular
on the equation for the lowest eigenvalue λp; as a plastic
instability at a strain γc is approached λp → 0, and the RHS
in the above equation is then dominated by the term in the
sum pertaining to the destabilizing mode [an example of the
latter can be seen in Fig. 1(e)]. As γ → γc, we can therefore
approximate

dλp

dγ

∣∣∣∣
γ→γ −

c

� −τpνp

λp

, (8)

where we have defined the asymmetry of a mode �̂	 as τ	 ≡
U ′′′ .

: �̂	�̂	�̂	, and its shear-force coupling as ν	 ≡ ∂2U
∂γ ∂ �x · �̂	.

This limiting differential equation, together with the boundary
condition λp(γc) = 0, can be trivially solved for λp as

λp(γ → γ −
c ) � √

2τpνp

√
γc − γ , (9)

where we have assumed that τp and νp are regular at γc. In
Fig. 1(c) the scaling λp ∼ √

γc − γ is confirmed by computer
simulations.

Let us review two important consequences of Eq. (9),
demonstrated in Fig. 1. First, on the macroscopic level, the
shear stress and modulus also show signatures of plastic
instabilities, which are derivable from Eq. (9); in the athermal
limit, the shear modulus is given by [7,8,12]

μ = 1

�

(
∂2U

∂γ 2
+ ∂2U

∂γ ∂ �x · d �x
dγ

)
. (10)

As γ → γc, λp → 0, then d �x
dγ

= −∑
	

ν	

λ	
�̂	 → − νp

λp
�̂p, and

the shear modulus can be approximated as

μ � − ν2
p

λp

∼ −(γc − γ )−
1
2 . (11)

Consequently, the departure of the stress from its value σc at
the instability strain is expected to follow

σ − σc ∼ √
γc − γ , (12)

as illustrated in the cartoon in Fig. 1(b), and shown in, e.g.,
Ref. [7].

Equation (9) also leads to insights on the microscopic
mechanics; we define δU�̂(s) as the variation of the potential
energy upon displacing the particles about the inherent state
�x0 according to δ�x ≡ �x − �x0 = s�̂p. For small distances s we
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can expand δU�̂(s) as

δU�̂(s) � 1
2λps2 + 1

6τps3. (13)

Figure 1(d) displays the energy variations δU�̂(s) obtained
at various strains approaching a plastic instability strain γc.
The softening of the stiffness λp = d2U

ds2 upon approaching
the instability, as predicted by Eq. (9), is apparent, as is the
decreasing of the saddle point. From Eq. (13) we deduce that
the saddle point occurs at s� = −2 λp

τp
, with a magnitude of

δU�̂(s�) = 2
3

λ3
p

τ 2
p

∼ (γc − γ )
3
2 following Eq. (9), as shown in

Refs. [10,11].
How far away from the instability strain γc is Eq. (9) valid?

This depends on the strain scale in which the dehybridization
of the destabilizing mode from the lowest plane waves occurs,
which can be estimated by comparing the stiffness associated
with the lowest energy shear wave in a system of linear size
L, to the stiffness of the destabilizing mode λp. The former
is expected to scale as L−2, while the latter is proportional to√

τpνp

√
γc − γ . Equation (9) is therefore expected to hold at

up to strain intervals γc − γ � 1/(τpνpL4), as indeed shown
to hold numerically in Fig. 2. In what follows we will show
that this strain scale is central to the deformation dynamics of
destabilizing modes.
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FIG. 2. (a) The eigenvalues λp associated with destabilizing
modes �̂p vs distance in strain γc − γ to a plastic instability strain
γc, for various system sizes as shown in the legend. The instabilities
were the first encountered upon shearing a randomly selected freshly
quenched glass. (b) Rescaled λp vs the rescaled strain interval reveals
that Eq. (9) holds on intervals below the scale δγ ∼ 1/(τpνpL4).

τp ≡ U ′′′ .
: �̂p�̂p�̂p and νp ≡ ∂2U

∂γ ∂ �x · �̂p were calculated at γc − γ �
10−13.

IV. NONLINEAR PLASTIC MODES (NPMS)

A. Introduction and definitions

The strain scale 1/(τpνpL4), below which plastic insta-
bilities are robustly reflected by the destabilizing mode,
quickly vanishes for large systems. An important question
is therefore whether modes that are indicative of imminent
plastic instabilities can be defined and detected away from
instability strains, at scales γc − γ 	 1/(τpνpL4). In other
words, is it possible to overcome the difficulties associated
with the hybridization of destabilizing modes with plane
waves in the detection of imminent plastic instabilities? In
Ref. [9] this question was answered to the affirmative: it
was shown that nonlinear plastic modes (NPMs) exhibit
remarkable resemblance to dehybridized destabilizing modes
and can be detected well before plastic instabilities, deep in
the regime where the destabilizing mode is fully hybridized
with plane waves.

The theoretical framework within which the definition of
NPMs emerges is constructed as follows: consider the variation
δUẑ(s) of the potential energy upon displacing the particles
about the inherent state �x0, but this time along a general
collective displacement direction (mode) ẑ (which may or may
not be an eigenmode of M), namely, according to δ�x = sẑ.
For small s, it writes

δUẑ(s) � 1
2κẑs

2 + 1
6τẑs

3, (14)

where we have introduced the stiffness κẑ ≡ M : ẑẑ and
the asymmetry τẑ ≡ U ′′′ .

: ẑẑẑ associated with the collective
displacement direction ẑ. Notice that the first order term in
Eq. (14) is absent due to mechanical equilibrium, and ẑ is
dimensionless and normalized, i.e., ẑ · ẑ = 1. In its truncated
form Eq. (14), δUẑ possesses stationary points at s = 0 and
s� = − 2κẑ

τẑ
, corresponding respectively to a minimum and

maximum of the truncated potential energy variation along the
reaction coordinate s. We emphasize that Eq. (14) differs from
Eq. (13) by describing the energy variation upon displacing
the particles along a general direction ẑ in the former case, as
opposed to along the eigenmode �̂p in the latter.

We next define the truncated energy variation at the
maximum s� as the “barrier function” b(ẑ), namely,

b(ẑ) ≡ 1

2
κẑs

2
� + 1

6
τẑs

3
� = 2κ3

ẑ

3τ 2
ẑ

. (15)

Notice that b(ẑ) is not a function of the reaction coordinate
s, but instead a function of the multidimensional collective
displacement direction ẑ. By construction, modes ẑ for which
b(ẑ) is small are characterized by small stiffnesses κẑ and large
asymmetries τẑ. This, in turn, implies that the displacement
distance s� for those modes is small, and therefore the
cubic expansion at distances s ∼ s� should be a faithful
representation of the actual variation of the potential energy
upon displacing the particles along ẑ, as demonstrated, e.g., for
destabilizing modes in Fig. 1(d). Thus, small enough b should
pertain to actual saddle points (energy barriers) that separate
between the inherent structure in which the system resides and
neighboring ones.

NPMs are therefore defined as modes π̂ for which b attains a
local minimum. This means that modes π̂ satisfy ∂b

∂�z |�z=π̂ = 0,
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and all eigenvalues of the linear operator ∂2b
∂�z∂�z |�z=π̂ are non-

negative. Local minima of b do not guarantee the smallness
of b and therefore do not necessarily faithfully indicate an
actual instability direction. Nevertheless, modes π̂ that pertain
to low-lying minima of b are indicative of directions that take
the system over saddle points of the potential energy and in
particular indicate imminent plastic instabilities, as shown in
Ref. [9].

At this point it is useful to note that the barrier function
is invariant to variations of the norm of its vector argument,
i.e., b(ẑ) = b(cẑ) for any finite c. This means that the barrier
function can be equivalently expressed as a function of a set
of Nd− independent variables �z, as

b(�z) = 2

3

(M : �z�z)3

(U ′′′ .
: �z�z�z)2

. (16)

In turn, this allows us to meaningfully take partial derivatives
with respect to those variables, and in particular

∂b

∂�z = 4
κ2

�z
τ 2
�z

(
M · �z − κ�z

τ�z
U ′′′ : �z�z

)
. (17)

The gradient ∂b
∂�z with respect to �z given above vanishes when

evaluated at NPMs π̂ , the latter are therefore solutions to the
nonlinear equation

M · π̂ = κπ̂

τπ̂

U ′′′ : π̂ π̂ . (18)

Equation (18) is key to the deformation dynamics of NPMs
and has an interesting geometric interpretation; to see this,
imagine we displace the constituent particles about the inherent
structure configuration according to δ�x = sπ̂ . The quadratic
expansion in s of the force response that results from this
displacement is

�Fπ̂ (s) � −M · π̂ s − 1
2U ′′′ : π̂ π̂ s2. (19)

Equation (18) says that the linear and nonlinear coefficients
of the force response expansion are parallel Nd− dimensional
vectors.

What is the spatial structure of the said force response,
and in particular of the parallel vectors M · π̂ and U ′′′ : π̂ π̂?
In Ref. [9] it was shown that NPM’s structure consists of a
disordered, localized core, decorated by long-range largely
affine displacement fields that decay away from the core as
|π̂ |(r) ∼ r1−d− , where r denotes the distance from the NPM’s
core center. The force response �Fπ̂ is given by a double
contraction of π̂ with the third order tensor U ′′′; we therefore
expect the relative magnitude of the force response away from
the NPM’s core to scale as the gradient squared of π̂ , namely,

| �Fπ̂ |(r) ∼ |∇π̂ |2(r) ∼ r−2d− . (20)

This relation is further motivated in Appendix C, for the simple
case of pairwise central-force potentials.

To verify Eq. (20) numerically, we define the spatial decay
profiles C�v(r), which are calculated on a vector �v by taking the
median over the square of all components of the normalized
v̂ that are situated at a distance ≈ r away from the core
of a plastic instability; see Ref. [9] for further details. In
Fig. 3(a) we plot the decay profiles of a NPM π̂ (calculated
as explained in Appendix B) and a destabilizing mode �̂p
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FIG. 3. (a) Spatial decay profiles C(r) (see text for definition)
of a NPM π̂ and of a destabilizing eigenmode �̂p calculated in a
system of N = 102 400 at a distance γc − γ ∼ 10−14 away from a
plastic instability. Also plotted is the decay profile of the response
δ �R = M−1 �d to a local dipolar force �d . All these modes are found
to decay as r−1 (notice that C scales as the magnitude squared of a
mode’s components). (b) The nonlinear force responses of the same
modes analyzed in panel (a) decay as r−4. We verify that the double
contraction of a spatially decaying mode with U ′′′, e.g., U ′′′ : �̂p�̂p ,
picks up the square of the spatial gradient of that mode, in consistency
with Eq. (20). Notice that the linear and nonlinear force responses of
the NPM π̂ are parallel, therefore |M · π̂ |(r) ∼ r−4 as well, while
|M · �̂|(r) ∼ r−1.

measured close to a plastic instability. These decay profiles
are compared to that calculated for the displacement response
δ �R = M−1 �d to a local dipolar force �d (as described in,
e.g., Ref. [14]) in an undeformed solid. All three modes are
found to decay as r−1 (in our two-dimensional simulations).
In Fig. 3(b) we plot the spatial decay profiles of the double
contractions of these three modes with the third-order tensor
U ′′′. We indeed find that Cπ̂ ∼ r−2 and CM·π̂ ∼ CU ′′′:π̂ π̂ ∼ r−8

implying that |π̂ |(r) ∼ r−1, and |M·π̂ |(r) ∼ |U ′′′ : π̂ π̂ |(r) ∼
r−4, supporting Eq. (20).

The above discussion and the data plotted in Fig. 3 lead to
an interesting conclusion: although destabilizing modes and
NPMs share the same spatial decay profiles, the linear force
responses M−1 · �̂p and M−1 · π̂ do not; the former decay
away from the disordered core as r1−d− (just as the destabilizing
modes themselves), whereas the latter decay as r−2d− .
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B. Dynamics of NPM stiffnesses

We next show that the deformation dynamics of NPMs
stiffnesses κπ̂ = M : π̂ π̂ and of the eigenvalues λp = M :
�̂p�̂p obey the same equation of motion close to plastic
instabilities. The total derivative with respect to deformation
of the stiffness reads

dκπ̂

dγ
= dM

dγ
: π̂ π̂ + 2M :

dπ̂

dγ
π̂

= U ′′′ .
: π̂ π̂

d �x
dγ

+ ∂M
∂γ

: π̂ π̂ + 2M :
dπ̂

dγ
π̂ .

Notice next that the first term on the RHS of the above equation
can be written using Eqs. (5) and (18) as

U ′′′ .
: π̂ π̂

d �x
dγ

= − τπ̂

κπ̂

π̂ · M · M−1 · ∂2U

∂ �x∂γ
= −τπ̂ νπ̂

κπ̂

, (21)

and therefore we arrive at

dκπ̂

dγ
= −τπ̂ νπ̂

κπ̂

+ ∂M
∂γ

: π̂ π̂ + 2M :
dπ̂

dγ
π̂ . (22)

The vanishing of κπ̂ upon plastic instabilities also implies
that |M · π̂ | → 0. Assuming that | dπ̂

dγ
| � |M · π̂ |−1 as plastic

instabilities are approached (an assumption that will be
established in the following section), and recalling that ∂M

∂γ
is

always regular, the last two terms in the right-hand side of the
above equation can be neglected close to plastic instabilities,
and we are left with

dκπ̂

dγ

∣∣∣∣
γ→γ −

c

� −τπ̂ νπ̂

κπ̂

. (23)

This limiting differential equation is identical in structure to
Eq. (9) for the deformation dynamics of the eigenvalues λp

associated with destabilizing eigenmodes �̂p. It is therefore
solved by

κπ̂ (γ → γ −
c ) �

√
2τπ̂ νπ̂

√
γc − γ , (24)

which is verified numerically in Fig. 4.
One important observation to note is that Eq. (24) is

followed over large strain intervals γc − γ , without a clear
system-size dependence, as can be seen in Fig. 4. This stands
in contrast with what is seen for the eigenvalues of destabilizing
modes as described by Eq. (9), which is valid only over
scales γc − γ � L−4. This difference arises since NPMs do not
“compete” for their identity with other low-frequency normal
modes, i.e., they do not suffer hybridizations.

One obvious limitation on the range over which Eq. (24)
is valid is the extent of typical elastic branches between
consecutive plastic instabilities, which has been shown to
vanish as N−β with β ≈ 2/3 [1,15]. We therefore assert that
above some system size the deformation dynamics of NPMs
associated with imminent plastic instabilities will always be
described by Eq. (24).

Finally, we underline an important consequence of the
simultaneous vanishing of the eigenmode λp and the stiffness
κ at the same instability strain: both the destabilizing mode
�̂ and the NPM π̂ must converge to a common final form
at the instability strain, since at that point they both satisfy
M · �̂p = M · π̂ = 0 and must therefore be equal. This
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FIG. 4. (a) Stiffnesses κπ̂ vs strain interval γc − γ . The pale
symbols represent the eigenvalues λp , which perfectly coincide with
the κπ̂ as γ → γc. (b) Rescaling the stiffnesses by their asymptotic
form κπ̂ � √

2τπ̂ νπ̂

√
γc − γ verifies Eq. (24) and shows that this

scaling breaks down at a strain scale with no clear system-size
dependence, in stark contrast with the eigenvalues λp shown in Fig. 2.
Nevertheless, up to strain intervals γc − γ � 10−3, we find that the
deviations from the asymptotic form remain less than roughly 50%.

convergence of the two modes at a plastic instability is
validated in Fig. 5.

V. DEFORMATION DYNAMICS OF LINEAR AND
NONLINEAR MODES

We have seen theoretically and numerically that the stiff-
nesses associated with destabilizing modes and NPMs are en-
slaved to the same equation of motion at scales γc − γ � L−4

away from plastic instabilities. Is there a similar equivalence
between the deformation dynamics of the destabilizing mode
and that of the NPM? In this section we derive exact equations
of motion for the NPM and destabilizing mode associated with
a plastic instability. A scaling analysis close to the instability
reveals the surprising finding that the deformation dynamics
of these two mode types follow different scaling laws, both
with respect to the distance to the instability strain and with
respect to system size. In particular, we find that

∣∣∣∣d�̂p

dγ

∣∣∣∣
2

∼ L4

γc − γ
and

∣∣∣∣dπ̂

dγ

∣∣∣∣
2

∼ const, (25)

as shown numerically in Figs. 6 and 7.
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FIG. 5. (a) The NPM π̂ and the destabilizing mode �̂p converge
to a common final form at the instability strain γc, as indicated by the
vanishing of 1 − π̂ · �̂p . (b) We find that 1 − π̂ · �̂p ∼ γc − γ ; see
Sec. V for a theoretical explanation of this scaling. We also find that
the same strain scale δγ ∼ 1/(τpνpL4) controls the convergence of
both modes to their common final form.
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FIG. 6. (a) The total derivative squared with respect to strain of

destabilizing eigenmodes, | d�̂p

dγ
|2 vs the distance to the imminent

plastic instability strain γc − γ . (b) An appropriate rescaling (see
text) reveals that the same strain scale δγ ∼ 1/(τpνpL4) controls
the deformation dynamics of destabilizing modes, as well as their
associated eigenvalues.
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FIG. 7. Norm squared of the total derivatives of NPMs vs
γc − γ . Although NPM stiffnesses and eigenvalues associated with
destabilizing modes follow the same scaling κπ̂ ∼ λp ∼ √

γc − γ ,
the two modes’ deformation dynamics follow different scaling laws,
namely, |d�̂p/dγ |2 ∼ (γc − γ )−1, while |dπ̂/dγ |2 ∼ (γc − γ )0.

We begin the exploration of the modes’ deformation
dynamics by constructing the stiffness function

κ̃(�z) ≡ M : �z�z
�z · �z , (26)

which is a function of a general Nd−-dimensional vector �z,
whose single global minimum occurs at �̂p, and κ̃(�̂p) = λp is
the lowest eigenvalue of M. Notice that κ̃(�z) as defined above
and κ�z ≡ M : �z�z differ by the normalization that appears in
the former but not in the latter. The gradient of κ̃ with respect
to �z reads

∂κ̃

∂�z = 2

�z · �z
(
M · �z − κ�z

�z · �z �z
)

. (27)

Using the gradient of κ̃(�z) above and the gradient of b(�z) as
given by Eq. (17), we construct the vector fields

��(�z) ≡ �z · �z
2

∂κ̃

∂�z = M · �z − κ�z
�z · �z �z, (28)

�G(�z) ≡ τ 2

4κ2

∂b

∂�z = M · �z − κ�z
τ�z

U ′′′ : �z�z. (29)

Notice that

��(�̂p) = M · �̂p − λp�̂p = 0 (30)

and

�G(π̂ ) = M · π̂ − κπ̂

τπ̂

U ′′′ : π̂ π̂ = 0, (31)

which motivates the particular definition of �� and �G from the
gradients of κ̃(�z) and b(�z), respectively.

The deformation dynamics of the destabilizing mode �̂p

and the NPM π̂ are derived by requiring that �̂p and π̂ remain
solutions to Eqs. (30) and (31) under the imposed deformation,
namely,

d ��
dγ

∣∣∣∣
�̂p

= ∂ ��
∂γ

∣∣∣∣
�̂p

+ ∂ ��
∂ �x

∣∣∣∣
�̂p

· d �x
dγ

+ ∂ ��
∂�z

∣∣∣∣
�̂p

· d�̂p

dγ
= 0 (32)
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and

d �G
dγ

∣∣∣∣
π̂

= ∂ �G
∂γ

∣∣∣∣
π̂

+ ∂ �G
∂ �x

∣∣∣∣
π̂

· d �x
dγ

+ ∂ �G
∂�z

∣∣∣∣
π̂

· dπ̂

dγ
= 0. (33)

Equations (32) and (33) can be inverted in favor of d�̂p

dγ
and

dπ̂
dγ

as

d�̂p

dγ
= −

(
∂ ��
∂�z

)∣∣∣∣
−1

�̂p

·
(

∂ ��
∂γ

∣∣∣∣
�̂p

+ ∂ ��
∂ �x

∣∣∣∣
�̂p

· d �x
dγ

)
(34)

and

dπ̂

dγ
= −

(
∂ �G
∂�z

)∣∣∣∣
−1

π̂

·
(

∂ �G
∂γ

∣∣∣∣
π̂

+ ∂ �G
∂ �x

∣∣∣∣
π̂

· d �x
dγ

)
. (35)

The analysis of the scaling properties of Eqs. (34) and (35)
with respect to γc − γ starts with realizing that �̂p and π̂

are zero modes of ∂ ��
∂�z |�̂p

and ∂ �G
∂�z |π̂ , respectively, and therefore

( ∂ ��
∂�z )|−1

�̂p
and ( ∂ �G

∂�z )|−1
π̂ (defined as taken after removal of the

zero modes) are regular as γ → γc. Furthermore, the vectors
∂ ��
∂γ

and ∂ �G
∂γ

are expected to converge to regular values at plastic
instabilities as well. We conclude thus that any singularity

that d�̂p

dγ
and dπ̂

dγ
might possess can be inherited only from the

singularity of d �x
dγ

[recall that | d �x
dγ

| ∼ (γc − γ )−1/2].

A. Deformation dynamics of destabilizing modes

Let us focus first on d�̂p

dγ
as given by Eq. (34); close to

instabilities we can approximate d �x
dγ

� − νp

λp
�̂p, then

d�̂p

dγ
� νp

λp

(M − λpI)−1 · (U ′′′ : �̂p�̂p − τp�̂p), (36)

which is singular in terms of γc − γ following the scaling of
λp ∼ √

γc − γ .
In Fig. 3 it was shown that �̂ decays at distances r away

from its core as r1−d− , and U ′′′ : �̂p�̂p decays as r−2d− , the for-
mer therefore dominates the difference U ′′′ : �̂p�̂p − τp�̂p

as appears in Eq. (36), at large r . This difference therefore
couples strongly to the lowest-lying eigenmodes of M − λpI
in Eq. (36), which are plane waves with frequencies of order
L−1. This is further corroborated in Fig. 8, where we plot the

field d�̂p

dγ
which displays the same geometry as displayed by the

lowest-frequency plane waves of the system. We thus expect
∣∣∣∣d�̂p

dγ

∣∣∣∣
2

∼ τ 2
pν2

pL4

λ2
p

∼ τpνpL4

γc − γ
, (37)

as found in our numerical simulations; see Fig. 6.

B. Deformation dynamics of NPMs

We finally turn to analyzing the scaling properties of the

equation of motion (35) for dπ̂
dγ

. As shown for the case of d�̂p

dγ
,

the only way dπ̂
dγ

could be singular in γc − γ is if the right-hand

side of Eq. (35) inherits the singularity of d �x
dγ

, whose norm

scales as (γc − γ )−1/2. It turns out, however, that ∂ �G
∂ �x |π̂ · d �x

dγ
is

FIG. 8. The field d�̂p

dγ
calculated at γc − γ ∼ 10−14 away from a

plastic instability in a system of N = 6400 particles.

regular at γc; to see this, we first approximate this contraction
close to instabilities as

∂ �G
∂ �x

∣∣∣∣
π̂

· d �x
dγ

� νp

λp

(
U ′′′ .

: π̂ π̂�̂p

τπ̂

U ′′′ : π̂ π̂ − U ′′′ : π̂�̂p

+ κẑ

τπ̂

U ′′′′ .
: π̂ π̂�̂p − κπ̂U ′′′′ :

: π̂ π̂ π̂�̂p

τ 2
π̂

U ′′′ : π̂ π̂

)
, (38)

where U ′′′′ ≡ ∂4U
∂ �x∂ �x∂ �x∂ �x is the fourth order tensor of derivatives

of the potential energy. It is clear that the last two terms on the
right-hand side of the above equation are not singular (they are
proportional to κẑ/λp, which approaches unity at the instability
strain). We therefore focus for a moment on the first two terms
on the right-hand side of Eq. (38); notice that

U ′′′ .
: π̂ π̂�̂p

τπ̂

U ′′′ : π̂ π̂ − U ′′′ : π̂�̂p

= U ′′′ .
: π̂ π̂ ��
τπ̂

U ′′′ : π̂ π̂ − U ′′′ : π̂ ��, (39)

where we have defined the vector difference �� ≡ π̂ − �̂p

between π̂ and �̂p, and recall that τπ̂ ≡ U ′′′ .
: π̂ π̂ π̂ . As the

instability strain is approached � ≡ | ��| → 0, then we can
express �� as the solution to either one of the linear equations:

∂2κ̃

∂�z∂�z
∣∣∣∣
�̂p

· �� = ∂κ̃

∂�z
∣∣∣∣
π̂

, (40)

∂2b

∂�z∂�z
∣∣∣∣
π̂

· �� = −∂b

∂�z
∣∣∣∣
�̂p

. (41)

The two above equations are nothing more than the linear
expansion of the respective gradients of κ̃ and b about their
minima at �̂p and π̂ , respectively.

We focus on Eq. (40) since it is simpler in structure; taking
the partial derivatives, inverting in favor of ��, and using
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FIG. 9. The field dπ̂

dγ
calculated at γc − γ ∼ 10−14 away from a

plastic instability in a system of N = 6400 particles.

Eq. (18), we find

�� � κπ̂

τπ̂

(M − λpI)−1 · (U ′′′ : π̂ π̂ − τπ̂ π̂ ). (42)

The above equation explicitly shows that that � ∼ κπ̂ ∼ λp ∼√
γc − γ , which, together with Eqs. (38) and (39) implies that

the contraction ∂ �G
∂ �x · d �x

dγ
is regular as γ → γc. This, in turn,

implies that | dπ̂
dγ

| is regular as well, as discussed above and
verified numerically in Fig. 7. Notice that all vectors contracted
on the right-hand side of Eq. (35) are of the same order;
however, in our model glass we find that those that comprise
contractions with U ′′′′ are dominant.

An example of the field dπ̂
dγ

is plotted in Fig. 9, calculated

at the same instability for which d�̂p

dγ
is plotted in Fig. 8.

As opposed to d�̂p

dγ
the NPM’s variation with strain is a

quasilocalized field; this quasilocalization stems from quick
spatial decay of the fields ∂ �G

∂ �x |π̂ · d �x
dγ

and ∂ �G
∂γ

|π̂ appearing on

the right-hand side of Eq. (35). These decay at least as r−2d−

and therefore do not couple strongly to the low-frequency
modes of ∂ �G

∂�z |π̂ .
Furthermore, as Eq. (42) is similar in structure to Eq. (36),

similar considerations as previously spelled out for d�̂p

dγ
apply

here as well, and in particular that the far field of U ′′′ : π̂ π̂ −
τπ̂ π̂ is dominated by the slow decay of π̂ (∼ r1−d− see Fig. 3).
It therefore couples strongly to the lowest-lying eigenmodes
of M − λpI, leading to the prediction � ∼ L2λp, shown to
hold numerically in Fig. 10. By directly comparing Eqs. (36)
to (42), we conclude that as γ → γc,

�� ≡ π̂ − �̂ � λ2
p

τpνp

d�̂p

dγ
, (43)

which means that �� has the structure of the lowest-frequency
plane wave, as can be seen in Fig. 8.
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FIG. 10. Norm � ≡ |π̂ − �̂p| of the difference vector between
π̂ and �̂p vs the product λpL2.

C. Predictiveness of NPMs

In the previous two subsections we have shown that there
is a dramatic difference between the deformation dynamics
of destabilizing modes compared to that of NPMs. Although
their associated stiffnesses share the same scaling with γc − γ

close to instabilities [see Eqs. (9) and (24)], the two types of
modes exhibit different scaling laws in their variation rate as
an instability is approached, and in particular

∣∣∣∣d�̂p

dγ

∣∣∣∣
2

∼ L4

γc − γ
, but

∣∣∣∣dπ̂

dγ

∣∣∣∣
2

∼ const.

To what degree do destabilizing modes and NPMs indicate
their common final form away from the instability strain?
This can be quantified by considering the differences 1 −
π̂ (γ ) · π̂ (γc) and 1 − �̂p(γ ) · �̂p(γc) for the NPM and the
destabilizing mode cases, respectively. The former can be
easily estimated by Taylor expanding π̂ (γ ) around γc (which
is possible due to its regularity), leading to the prediction

1 − π̂ (γ ) · π̂(γc) ∼ (γc − γ )2, (44)

where we have used that dπ̂
dγ

· π̂ = 0.
The destabilizing mode case is slightly more subtle due to

the singularity in its derivative as seen in Eq. (36). However,
since the said singularity is integrable, we can define

δ �� ≡ �̂p(γc) − �̂p(γ ) =
∫ γ

γc

d�̂p

dγ

∣∣∣∣
γ̃

dγ̃ ,

with the norm |δ ��| ∼ L2√γc − γ following Eq. (37). Notice
that |δ ��|2 = 2 − 2�̂p(γc) · �̂p(γ ), therefore we predict

1 − �̂p(γc) · �̂p(γ ) ∼ L4(γc − γ ). (45)

The scaling laws Eqs. (44) and (45) are verified numerically
in Fig. 11. They further explain the observation that away from
instabilities the overlaps 1 − π̂ · �̂p ∼ L4(γc − γ ), as seen in
Fig. 5: since NPMs converge very quickly to their final forms
at the instability, π̂ · �̂p is bounded by the convergence rate of
the destabilizing mode, as given by Eq. (45).

Besides the difference in convergence rates between the
two mode types as seen in Fig. 11, perhaps the most striking
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FIG. 11. 1 − π̂(γ ) · π̂(γc) (outlined symbols) and 1 − �̂p(γ ) ·
�̂p(γc) (solid symbols) vs γc − γ . NPMs converge must faster
scaling-wise to their final form at instabilities compared to desta-
bilizing modes and are therefore better predictors of imminent plastic
instabilities.

feature of this data is the typical value measured for π̂(γ ) ·
π̂ (γc) when the NPMs are first detected, at strain scales on
the order of 10−3 away from the instability. At these strains
the overlaps with the final form of the NPMs agree up to a
few tenths of a percent, indicating that once detected, NPMs
are nearly perfect indicators of the locus and geometry of
imminent plastic instabilities.

VI. SUMMARY AND OUTLOOK

We have carried out a comparative theoretical and nu-
merical analysis of the deformation dynamics of nonlinear
plastic modes and destabilizing eigenmodes upon approaching
plastic instabilities. We have found that although the stiffnesses
associated with these two mode types follow the same scaling
with strain, the modes themselves vary with vastly different
rates as instabilities are approached. Not only do NPMs not
suffer from hybridizations with low-frequency normal modes
as destabilizing modes do, but their variation rate is regular
upon approaching plastic instabilities, in stark contrast with
the singular variation rate of destabilizing modes. These results
add substantial support to the usefulness of NPMs as robust
plasticity predictors and to the role NPMs’ spatial distribution
may play as a state variable that controls the rate of plastic
deformation in glasses subjected to external loading.

The picture that emerges from our study is that the system
size and strain dependence in the deformation dynamics of
destabilizing mode stems from the dehybridization process
that continues to take place all the way up to the instability
strain. We find that close to plastic instabilities the destabilizing
mode can be obtained by adding a plane-wave-like mode with
an amplitude proportional to L2√γc − γ to the NPM. This
interpretation suggests that the most relevant objects to plastic

flow in disordered solids are NPMs, and that research efforts
should be focused on studying their statistics and dynamics.

Our analysis reveals that a NPM π̂ is characterized by
three key physical parameters: the stiffness κπ̂ , the asymmetry
τπ̂ , and the shear-force coupling νπ̂ . A local instability

strain can be defined using these parameters as δγπ̂ ≡ κ2
π̂

2νπ̂ τπ̂
,

following Eq. (24). While similar modes are expected to
form local minima of δγẑ (written as a function of a general
Nd−-dimensional displacement direction ẑ) and of the barrier
function b(ẑ) reintroduced in this work, the deformation
dynamics as presented in this work do not strictly speaking
hold for minima of δγẑ. One can nevertheless use δγπ̂ (i.e.,
evaluated at NPMs π̂ calculated using the barrier function)
as an indicator of the proximity of an individual NPM to its
particular plastic instability strain.

One important question we leave for future research is
whether correlations exist between the amount of energy
dissipated in an elementary shear transformation, and the
parameters τπ̂ and νπ̂ associated with the NPM that destabi-
lized. In other words, can the postinstability consequences be
predicted based on pre-instability information? Considering,
e.g., the observed variance between samples of the prefactors
of the scaling κπ̂ ∼ √

γc − γ , and of the variation rates dπ̂
dγ

,
it is possible that besides predicting the strain at which an
NPM would destabilize, this information might be indicative
of postinstability mechanics.

In this work we did not touch upon the important task
of a priori detecting of the entire field of NPMs of a solid.
The usefulness of the NPM framework clearly hinges on the
availability of computational methods that are able to robustly
detect this field and monitor its statistics and dynamics. Such
methods are currently under development and are left for future
studies.
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APPENDIX A: TENSORIC NOTATION CONVENTION

In this work we omit particle indices with the goal of
improving the clarity and readability of the text. We denote
Nd−-dimensional vectors as �v, and each component pertains
to some particle index i and a particular Cartesian spatial
component. Tensors defined as derivatives with respect to
coordinates �x or the displacements �z are denoted, e.g.,

∂3U
∂ �x∂ �x∂ �x , which should be understood as ∂3U

∂ �xi∂ �xj ∂ �xk
with i,j,k

denoting particle indices. Single, double, triple, and quadruple

contractions are denoted by ·, :,
.
:, and

:
:, respectively. For

example, the right-hand side of Eq. (29) M · �z − κ�z
τ�z

U ′′′ : �z�z
should be interpreted as

Mij · �zj − κ�z
τ�z

∂3U

∂ �xi∂ �xj∂ �xk

: �zj �zk, (A1)

where repeated indices should be understood as summed over.
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APPENDIX B: MODELS AND NUMERICAL METHODS

We employ a 50:50 binary mixture of “large” and “small”
particles of equal mass m in two dimensions, interacting
via radially symmetric purely repulsive inverse power-law
pairwise potentials, that follow

ϕIPL(rij ) =
⎧⎨
⎩

ε
[( aij

rij

)n +
q∑

	=0
c2	

( rij

aij

)2	]
,

rij

aij
� xc

0 ,
rij

aij
> xc

, (B1)

where rij is the distance between the ith and j th particles, ε is
an energy scale, and xc is the dimensionless distance for which
ϕIPL vanishes continuously up to q derivatives. Distances are
measured in terms of the interaction length scale a between
two “small” particles, and the rest are chosen to be aij = 1.18a

for one “small” and one “large” particle, and aij = 1.4a for
two “large” particles. The coefficients c2	 are given by

c2	 = (−1)	+1

(2q − 2	)!!(2	)!!

(n + 2q)!!

(n − 2)!!(n + 2	)
x−(n+2	)

c . (B2)

We chose the parameters xc = 1.48,n = 10, and q = 3. The
density was set to be N/V = 0.86a−2. This model undergoes
a computer-glass transition around the temperature Tg ≈
0.5ε/kB . Solids were created by a fast quench from the
melt to a target temperature T � Tg , followed by an energy
minimization using a standard nonlinear conjugate gradient
algorithm. Systems were deformed by imposing simple shear,
meaning that the coordinates xi,yi of each particle were
displaced according to

xi → xi + δγyi, (B3)

yi → yi, (B4)

where δγ is the strain increment, chosen to be smaller than
10−3. Here 128-bit numerics were employed, which enabled
us to approach instabilities up to γc − γ ≈ 10−14.

Once each system was brought as closely as possible to the
firstly encountered plastic instability, the lowest eigenmode
of M was calculated by minimizing the stiffness function
κ̃(�z) as given by Eq. (26) over directions �z. The minimization
was carried out via a standard nonlinear conjugate gradient
algorithm, while the norm of �z was monitored and maintained
during the minimization. κ̃ has a single minimum at the lowest
eigenmode �̂p of M, which is uncovered upon convergence
of the minimizer. This allows us to start this minimization
with any random initial conditions ẑini; the minimization is
guaranteed to terminate with �̂p.

Once calculated, the eigenmode �̂p found close to an
instability strain γc is then used for all subsequent calculations
of nonlinear plastic modes away from the instability strain.

This is done at each strain by minimizing the barrier function
b(�z) as given by Eq. (16), with the eigenmode �̂p|γ→γc

as the
initial conditions for the minimization. The same minimization
code for κ̃(�z) is used for minimizing b(�z).

Derivatives with respect to strain of eigenmodes �̂p and
NPMs were calculated by finite differences. The results were
validated close to the instability strains by directly solving
Eqs. (34) and (35).

APPENDIX C: DOUBLE CONTRACTIONS WITH THE
THIRD-ORDER TENSOR ∂3U

∂ �x∂ �x∂ �x

In this Appendix we motivate Eq. (20) of the main text,
and in particular we show that the double contraction of U ′′′ ≡

∂3U
∂ �x∂ �x∂ �x with a field characterized by some spatial variation is
expected to scale as the square of the gradient of that field, for
the case of pairwise central-force potentials.

Assuming the potential energy is written as U = ∑
i<j ϕij ,

with ϕ the pairwise central potential, the tensor of interest is

∂3U

∂ �x	∂ �xm∂ �xn

=
∑
i<j

ϕ′′′
ij

∂rij

∂ �x	

∂rij

∂ �xm

∂rij

∂ �xn

+
∑
i<j

ϕ′′
ij

(
∂2rij

∂ �x	∂ �xm

∂rij

∂ �xn

+ ∂2rij

∂ �x	∂ �xn

∂rij

∂ �xm

+ ∂2rij

∂ �xm∂ �xn

∂rij

∂ �x	

)

+
∑
i<j

ϕ′
ij

∂3rij

∂ �x	∂ �xm∂ �xn

, (C1)

with ϕ′
ij ≡ ∂ϕ

∂rij
etc., and rij ≡

√
�xij · �xij is the pairwise

distance between particles i and j , and �xij ≡ �xj − �xi . A direct
calculation shows that

∂rij

∂ �x	

· �v	 ∼ |�vij |,

∂2rij

∂ �x	∂ �xm

∂rij

∂ �xn

: �vm�vn ∼ |�vij |2,

∂2rij

∂ �x	∂ �xm

: �v	�vm ∼ |�vij |2,

∂3rij

∂ �x	∂ �xm∂ �xn

: �vm�vn ∼ |�vij |2,

If the interaction ϕ is short-ranged, then the dominant
contribution to the contraction U ′′′ : �v�v comes from the first
coordination shells. For those pairs, |�vij | ∼ |∇�v|, and therefore
|U ′′′ : �v�v| ∼ |∇�v|2, as expressed by Eq. (20).
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