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Pattern transition, microstructure, and dynamics in a two-dimensional vibrofluidized granular bed
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Experiments are conducted in a two-dimensional monolayer vibrofluidized bed of glass beads, with a goal to
understand the transition scenario and the underlying microstructure and dynamics in different patterned states. At
small shaking accelerations (� = Aω2/g < 1, where A and ω = 2πf are the amplitude and angular frequency
of shaking and g is the gravitational acceleration), the particles remain attached to the base of the vibrating
container; this is known as the solid bed (SB). With increasing � (at large enough shaking amplitude A/d) and/or
with increasing A/d (at large enough �), the sequence of transitions/bifurcations unfolds as follows: SB (“solid
bed”) to BB (“bouncing bed”) to LS (“Leidenfrost state”) to “2-roll convection” to “1-roll convection” and finally
to a gas-like state. For a given length of the container, the coarsening of multiple convection rolls leading to the
genesis of a “single-roll” structure (dubbed the multiroll transition) and its subsequent transition to a granular gas
are two findings of this work. We show that the critical shaking intensity (�LS

BB) for the BB → LS transition has
a power-law dependence on the particle loading (F = h0/d , where h0 is the number of particle layers at rest and
d is the particle diameter) and the shaking amplitude (A/d). The characteristics of BB and LS states are studied
by calculating (i) the coarse-grained density and temperature profiles and (ii) the pair correlation function. It
is shown that while the contact network of particles in the BB state represents a hexagonal-packed structure,
the contact network within the “floating cluster” of the LS resembles a liquid-like state. An unsteadiness of the
Leidenfrost state has been uncovered wherein the interface (between the floating cluster and the dilute collisional
layer underneath) and the top of the bed are found to oscillate sinusoidally, with the oscillation frequency closely
matching the frequency of external shaking. Therefore, the granular Leidenfrost state is a period-1 wave as is the
case for the BB state.
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I. INTRODUCTION

The earliest scientific work on pattern formation in granular
media dates back to Chladni [1] and Faraday [2], who
studied the now well known heaping phenomenon in shallow
layers of vibrating particles. There has been a renewed
interest in understanding the pattern-formation scenario in a
vibrated granular bed starting from the early 1990s [3–32],
and two comprehensive reviews on granular patterns till
2005 can be found in Refs. [33,34]. Since then a vertically
shaken box of particles has become a canonical experimental
setup to study granular patterns; more specifically, under
harmonic shaking via y(t) = A sin(2πf t), such a system is
known to admit a variety of interesting patterns: the standing
waves, f/n subharmonic waves via period-doubling bifur-
cations [3,13,30], surface waves and heaping [4,6], Faraday
waves and “oscillons” [16,18], convection [5,7,10,11], and the
density-inverted state [26,31]. The primary control parameter
for the onset and/or bifurcation of any of these patterns is the
dimensionless shaking acceleration � = Aω2/g, which is a
relative measure of the driving acceleration with respect to the
gravitational acceleration g. For a review on various patterns
in a quasi-2D vibrated bed as well as to know the specific
contributions of various research groups, we refer the readers
to the introductory section of a recent work [35]. In the present
experimental work, we shall primarily focus on unveiling the
transition scenario among different patterns (the bouncing bed,
the density-inverted state, the convection and the granular gas)
in a vibrofluidized bed with increasing �, and this being a
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well-studied problem, here we provide only a brief review of
the recent works [31,36,37] which motivated the present study.

The above mentioned density-inverted state was dubbed
the granular Leidenfrost state (LS) by Eshuis et al. [31], who
established a possible connection with the original Leidenfrost
effect [38]: a liquid drop placed on a hot plate can float over
its own vapor layer if the temperature of the plate exceeds
a minimum value (Leidenfrost temperature). Akin to this, a
dense, compact layer of particles can be supported by a dilute
gaseous region of fast moving particles underneath it in a
vertically shaken granular bed beyond the critical value of the
shaking intensity. More specifically, they found that a dense
region of particles with crystalline-type structure can float over
a granular gas at mild acceleration (� ∼ 10) which bifurcates
from a time-periodic bouncing bed state. Previous molecular
dynamics (MD) simulations had also predicted the possibility
of such density inversion [8] or floating cluster [26] in a similar
setup.

The most recent and comprehensive experimental work
of Eshuis et al. [36], on shallow vertically shaken granular
materials held in a quasi-2D box (of a few particles wide),
provides the complete phase diagram of various patterns
consisting of (i) a solid bed, (ii) a bouncing bed, (iii)
subharmonic undulatory waves, (iv) the granular Leidenfrost
state, (v) convection, and (vi) granular gas. They also carefully
documented the related bifurcation scenario for each pattern as
a function of � and the particle loading. They found that with
increasing shaking intensity � the convection rolls can appear
either (i) from the bouncing-bed state at small particle loading,
or (ii) from the Leidenfrost state at large particle loading. On
the other hand, the primary onset of the Leidenfrost state was
found to occur from the undulatory waves with increasing �;
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however, the undulatory state can also exist over a range of �

between two Leidenfrost states (at lower and higher values of
�). The latter finding implies that two successive bifurcations
from a “subharmonic” wavy state to the Leidenfrost state
resulted in the onset of convection at large particle loadings.
It must be noted that the temporal order of the Leidenfrost
state was never quantified [31,36,37,39] via experiments, but
it appears to be a quasisteady or steady state from the related
theoretical analyses [35,40,41]. In any case, the convection
rolls found at strong shaking (i.e., at large values of � > 25) are
the granular analog of Rayleigh-Benard convection, and they
must be differentiated from the so-called “boundary-driven”
convection [5,7,10,15] that appears at milder shaking (� ∼ 5).

In this work we carry out experiments in a purely two-
dimensional (2D) container that can accommodate only one
layer of particles along the depth of the container, and in
doing so we uncover the complete sequence of bifurcations
in a 2D vibrofluidized bed as well as provide quantitative
results about different patterned states. In a quasi-2D setup
of a few-particle-diameter depth, such as that employed by
Eshuis et al. [36] and Ansari and Alam [37,39], it is difficult
to obtain quantitative data on (i) the hydrodynamic fields
(density, granular temperature, and velocity) as well as on (ii)
particle-level quantities (microstructure, distribution function,
etc.). Such quantitative measurements are however possible
in a pure 2D container that can accommodate a monolayer
of particles along its depth as in the experimental work
of Eshuis et al. [31]. Our primary focus is (i) to quantify
the onset of the transition from the bouncing bed to the
Leidenfrost state in terms of different control parameters, (ii)
to analyze the microstructure in the latter state and related
signatures of transition, (iii) to quantify the temporal order
(steady or time periodic) of the Leidenfrost state, and finally
(iv) to uncover the possible routes to transition of the LS
to convection and eventually to a gas. The characteristics
and distinguishing features of different states have also been
probed with the help of their mean fields, namely, the density
and temperature profiles along the vertical direction. It was
speculated in Ref. [36] that the collective motion of particles
along the depth of the container may be a prerequisite for
the onset of convection at strong shaking. On the contrary,
we shall demonstrate that (v) the “Rayleigh-Benard-type”
granular convection can be realized in experiments in a 2D
monolayer system and (vi) the route to transition to a gaseous
state occurs via a novel “single-roll” convection. In particular,
the coarsening of a pair of convection rolls leading to the
genesis of a “single-roll” structure spanning the length of the
container and its subsequent transition to a granular gas were
not reported in previous experiments.

II. EXPERIMENTAL SETUP AND METHODOLOGY

The experimental setup consists of a quasi-two-dimensional
rectangular Plexiglas container with length (L), width (W ), and
height (H ) of 40, 2.2, and 100 mm, respectively, as depicted
in Fig. 1(a), which is vibrated along the vertical direction (y)
using an electromagnetic shaker. The width (W ) of the cell
has been chosen such that it fits a monolayer of spherical
glass beads along its width, i.e., W/d ≈ 1; for example, with
d = 2 mm diameter glass beads, we have W/d = 1.1 which

FIG. 1. (a) Schematic of the container with length L, width W ,
and height H . (b) The container is partially filled with a monolayer
(i.e., W/d ≈ 1) of spherical glass beads of diameter d , and is vibrated
harmonically, y(t) = A sin ωt = A sin 2πf t , via an electromagnetic
shaker. F = h0/d is the number of particle layers at rest.

was kept constant for experiments with even larger diameter
particles. A similar Hele-Shaw container was used by Eshuis
et al. [31] whose work motivated the present work to unveil the
complete bifurcation scenario of patterns in a 2D “monolayer”
vibrofluidized bed.

A. Experimental protocol and control parameters

The container is partially filled with spherical glass balls
(density 2500 kg/m3) of specified height of h0 = Fd [where
h0 is the number of particle layers; see Fig. 1(b)]. This particle-
filled container is mounted on an electromagnetic shaker (of
Ling Dynamics Systems) via a circular head expander [37,39],
and is vibrated vertically using a sine wave of the form

y = A sin(ωt) = A sin(2πf t), (1)

where A is the shaking amplitude and f is the frequency
of shaking. The shaker operates in a closed loop, controlled
by a controller and an amplifier through a software inter-
face. To generate a feedback signal of specified amplitude
and frequency of the sinusoidal vibration, a piezoelectric
accelerometer is mounted on the head expander.

There are four dimensionless control parameters in
this system. The dimensionless shaking acceleration or
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intensity,

� = Aω2

g
= 4π2Af 2

g
, (2)

is the primary control parameter in this problem. In addition,
(ii) the dimensionless shaking amplitude A/d, (iii) the initial
layer height,

F = h0

d
, (3)

where h0 is the number of particle layers at t = 0, and (iv) the
length of the container (L/d), which is of crucial importance
for the observance of certain patterns (see Sec. III B), constitute
the other three control parameters. In this paper, we have
restricted ourselves to a relatively narrow container of length
L/d ∼ (20,50). The last control parameter is the coefficient of
restitution (e) for particle collisions; all results are presented
for glass beads (e ≈ 0.95). [Previous works [36] as well as
the repetition of a few of the present experiments with steel
beads (e ≈ 0.9) suggest that our reported patterns are robust
irrespective of the choice of specific particles.]

Most of the experiments are carried out with d = 2.0 mm
diameter glass balls; the filling height F = h0/d is varied from
10 to 50. To check the robustness of reported results, additional
monolayer experiments with d = 5.0 mm diameter glass balls
are also done in a container with L = 100, W = 5.5, and
H = 100 mm, respectively, such that W/d = 1.1. Once the
container is filled with a specified number of layers of particles
F , the experiments are conducted at a specified shaking
amplitude A/d, but by increasing the shaking frequency f

(and hence increasing the shaking acceleration �) linearly at
a specified sweep or ramping rate. (This type of frequency
sweeping at a constant amplitude is achieved by our closed-
loop shaker system.) We have used a linear sweep rate of
0.01 Hz/s, unless stated otherwise, and the results are found to
be qualitatively similar for a sweep rate of 0.1 Hz/s. To obtain
the phase diagram of patterns to span the control parameter
space in the (�,A/d) plane, the experiments are conducted for
a range of � and A/d. The shaking intensity � is varied from
0 to 55, with its upper limit being set by the maximum payload
of our shaker; the shaking amplitude A/d is varied from 0.2 to
4.0, with its upper limit being set by the maximum permissible
limit (A = 9 mm) of our shaker.

The granular particles held in the vibrating container are
illuminated with two white LED light sources of power
25 W, positioned at an oblique angle facing towards the
container from both sides. Such type of lighting arrangement
provided uniform lighting over the region of interest [37,39].
We employed a high-speed camera (IDT MotionPro Y4S3),
mostly at a frame rate of 1000 frames per second, to capture
the temporal evolution of the collective motion of particles.
The series of snapshots are grabbed in on-board camera
memory and later on transferred to computer via USB for
postprocessing and data analysis.

B. Image analysis for particle tracking

The acquired images of the granular bed have been used
to calculate (i) the coarse-grained density and the granular
temperature fields (the results are discussed in Sec. III C),

(ii) the pair-correlation function (Sec. IV A), and (iii) the
oscillations within the Leidenfrost state (Sec. IV B). For all
cases, the particles’ detection and their position information,
frame by frame, are required to be extracted. Once the image
analysis is completed, the particle coordinates are fed into
a particle-tracking routine to calculate the velocity of each
particle in all frames.

A number of particle-tracking routines have been devel-
oped by various research groups and are available as open
source. In this study, we employed the Particle Detector and
Tracker open-source distribution [42], which consists of an
ImageJ plugin for particle detection and tracking from digital
videos. This plugin implements the feature point detection
and tracking algorithm as described in Ref. [43]. It presents
an easy-to-use, computationally efficient, two-dimensional,
feature point tracking tool for the automated detection and
analysis of particle trajectories as recorded by high-speed
imaging. The feature point tracking problem consists of
detecting images of particles in a digital image sequence
and linking these detections over time to follow the tracks
of individual particles.

III. PATTERN TRANSITION AND HYDRODYNAMIC
FIELDS

A. Transition from bouncing-bed to Leidenfrost state: Phase
diagram and scaling

The phase diagram in the (�,A/d) plane for F = 25 layers
of 2.0 mm diameter glass beads is displayed in Fig. 2. There
are three regimes in Fig. 2: the solid bed (SB), bouncing bed
(BB), and Leidenfrost state (LS). At any A/d with � � 1,
the granular bed moves synchronously with the shaker motion

FIG. 2. Phase diagram in the (�,A/d) plane for F = 25 layers of
d = 2.0 mm diameter glass balls confined in a Hele-Shaw container
of width W/d = 1.1 and length L/d = 20; inset shows the same
phase diagram in logarithmic scale. Regions of bouncing bed (BB)
and Leidenfrost state (LS) are hatched in the main panel; the
region below red circles represents “solid bed” (SB). The symbols
represent approximate locations of the respective transition; they are
obtained by running experiments at fixed values of A/d by increasing
frequency at a linear ramping rate of 0.01 Hz/s; the “up-sweeping”
and “down-sweeping” experiments yielded almost the same result for
the onset of patterns, suggesting a “supercritical” transition between
different states.
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FIG. 3. Snapshots of the bouncing bed (BB) at three successive
instants of the oscillation cycle: t = 0τ (left), t = τ/2 (middle), and
t = τ (right). The shaking acceleration and amplitude are � = 5
(f = 16.08 Hz) and A/d = 2.4, respectively, with other parameters
as in Fig. 2.

without getting detached from the container base; this is the
regime of the solid bed (SB). As the shaking intensity is
increased beyond some critical value (� > 1), the particles get
detached from the base of the container and start a collective
motion resembling that of a single particle bouncing off a
plate; this is dubbed the bouncing bed (BB) regime. Three
successive snapshots of the BB at t = 0, τ/2, and τ , where
τ = 1/f is the period of shaking, are displayed in Fig. 3
for parameter values of � = 5 and A/d = 2.4. The inset
in Fig. 2 indicates that the transition from the solid bed to
the bouncing bed regimes occurs at a shaking intensity �BB

SB
that remains relatively independent of the shaking amplitude
A/d. Note that the data points in Fig. 2 represent boundaries
between different states; they have been obtained (i) via a
visual inspection of running images on the computer while
carrying out experiments and (ii) later via a frame-by-frame
analysis of the acquired high-speed images (1000 frames/s); in
addition, we have also checked their accuracy by calculating
the coarse-grained density and velocity fields (see Sec. III C)
at two locations above and below several transition points.

If one increases the shaking intensity (�) from the BB
regime beyond some critical value (see Fig. 2), the bouncing
bed transits to a “density-inverted” state [8,26,31]. The
latter corresponds to a state in which a dense region of
nearly crystal-packed particles floats over a dilute region
of fast moving particles, dubbed the “floating-cluster” [26]
or granular “Leidenfrost” state (LS) [31]. The characteristic
features of the LS are evident from Fig. 4 which shows three
successive snapshots at t = 0, τ/2, and τ of the LS over an
oscillation cycle at a shaking acceleration of � = 30.

The blue squares in Fig. 2 (see also its inset) indicate that the
transition from the bouncing bed to the granular Leidenfrost
state depends strongly on the shaking amplitude A/d. The
inset on logarithmic scale confirms that the corresponding
critical shaking acceleration �LS

BB at which this transition occurs
follows a power law:

�LS
BB ≡ �c ≈ 20.74

(
A

d

)− 7
8

. (4)

At higher shaking amplitudes the onset of LS is expected
to occur at lower values of � since the input energy

FIG. 4. Snapshots of the granular Leidenfrost state (LS) at three
successive time instants of the oscillation cycle: t = 0 (left), t = τ/2
(middle), and t = τ (right). The shaking acceleration is � = 30 (f =
39.4 Hz), with other parameters as in Fig. 3.

(via shaker) to the granular materials is proportional to
�(A/d).

Similarly to Fig. 2, we have performed a series of
experiments by varying the initial filling height F of 2 mm
diameter glass beads as well as by varying the diameter of
beads. These data on the critical values of (�,A/d) for the
onset of the Leidenfrost state are displayed in Fig. 5 as denoted
by different symbols. It is seen that for a given A/d the
critical shaking acceleration for the BB → LS transition, �LS

BB,
increases with increasing F . This dependence on F is expected
since increasing F increases the weight of the granular bed
which, in turn, requires a higher shaking intensity (�) to get
transition.

To determine the dependence of �LS
BB on the initial filling

height F , we assume that the power-law scaling, Eq. (4), with
A/d holds for all F , to be verified a posteriori. All data of
Fig. 5 are now rescaled via

�̃ = �(A/d)7/8, (5)

and its variation with F is shown in the upper inset of Fig. 6 on
a logarithmic scale. It is clear that �̃ has a power-law scaling

FIG. 5. Effect of filling height F = h0/d on the BB → LS
transition; see the legend for F values, with other parameters as
in Fig. 2.
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FIG. 6. Master phase diagram in the (�̂,A/d) plane, where
�̂ = �/αF β . The bottom inset displays the same phase diagram
in logarithmic scale, with the blue line representing the power law
�̂ ∼ (A/d)−7/8. The top inset shows the variation of �̃, Eq. (5), with
F , with the red line being the best-fit curve. The star symbols refer
to the data in Fig. 9 (L/d = 40 and F = 12).

with F :

�̃ = αFβ. (6)

The slope and intercept of the best-fit curve (the red line in the
upper inset) yield

α ≈ 0.414, β ≈ 1.217. (7)

To demonstrate that the same power-law dependence on the
shaking amplitude [∼ (A/d)−7/8, Eq. (4)] holds for all F , we
plot the variation of the quantity

�̂ = �

αFβ
≡ (A/d)−7/8 (8)

with A/d in the main panel of Fig. 6. It is seen that all
experimental data for different F and d collapse very well on a
single curve. The same data are replotted on logarithmic scale
in the lower inset of Fig. 6 which reconfirms the universality
of the power-law scaling, Eq. (8), of �̂ with A/d.

In summary, the critical shaking acceleration, �LS
BB, for the

BB → LS transition satisfies the following master equation:

�LS
BB ≡ �c = 0.414F 1.217

(
A

d

)− 7
8

, (9)

representing the blue line in the lower inset of Fig. 6. Rewriting
Eq. (9) in terms of shaking strength S = � × (A/d) (which is
the ratio of the average kinetic energy injected to the system
via shaking and the potential energy of all particles [31,35]),
we obtain

SLS
BB ≡ �LS

BB × (A/d) = 0.414F 1.217

(
A

d

) 1
8

, (10)

which depends on A/d, albeit weakly. In contrast, the previous
work of Eshuis et al. [31] in a similar setup found the constancy
of S at the BB → LS transition [their experiments correspond

to lower values A/d ∼ O(0.1)]. This weak increase of S

with increasing A/d might be tied to (i) increased frictional
barrier at the front and back walls in the same limit and/or
(ii) the coupling with the “time-dependent” bottom boundary
condition. Ideally, the temperature boundary condition at the
vibrating wall should depend on both the shaking amplitude
A/d and its frequency f as well as on time; averaging over
one oscillation cycle leads to a time-independent constant
temperature at the base [31,35,40]. Additional experiments
along with theoretical analyses with time-dependent boundary
condition are needed to settle the issue of the increase of the
critical shaking intensity with increasing A/d, Eq. (10), in a
future work.

B. Genesis of convection from Leidenfrost state:
Multiroll transition

Now we probe the effect of the length of the container
on phase transition and related patterns (SB, BB, and LS)
observed in the previous section. The primary motivation
of using a larger box is to ascertain whether the monolayer
vibrofluidized bed admits convective motion whose origin may
then be tied to the instability of the Leidenfrost state. Similar
transition has been reported previously [36,37,39], however,
in a quasi-2D box (with a depth of a few particle diameters,
W/d ≈ 5) as well as in a 3D box. It was speculated in Ref. [36]
that the collective motion of particles along the depth of the
container could be a prerequisite for the onset of convection
motion at strong shaking.

We used the same glass beads (of diameter d = 2.0 mm) in
a box of length L/d = 40 which is twice that used (L/d = 20)
in Sec. III A, but other dimensions of the container (W/d = 1.1
and H/d = 100) remain the same as before. For the sake of
demonstration, we present one set of results for a filling height
of F = 12 layers at a shaking amplitude of A/d = 4. The
snapshots of patterns with increasing shaking � are shown
in Figs. 7(a)–7(e). The top row [panel (a)] of Fig. 7 depicts
three successive snapshots of the bouncing-bed (BB) state at
� = 2, whereas the second row [panel (b)] displays the same
temporal sequence of the Leidenfrost state (LS) at � = 30.
At a higher shaking intensity of � = 40, the system shows
a pair of convection rolls [Fig. 7(c); see also movie 1 in
the Supplemental Material [46]). Interestingly, the “2-roll”
convection coarsens into a “single roll” at even higher shaking
intensity, an example of which is shown in Fig. 7(d) at � = 45
(see movie 2 of the Supplemental Material [46]). There is a
dense cluster of particles at one side of the container and a
relatively dilute region at the other side; the hotter particles go
up from one side, and rain down from the other side, forming
a dense cluster. To our knowledge, such “1-roll” convection
pattern has not been reported in previous experiments on
vibrofluidized beds at strong shaking.

The 1-roll convection persists even at � = 50 (movie 3
of the Supplemental Material [46]), but the cluster on the
right side becomes relatively dilute (compared to the case
at � = 45). Further increasing � leads to extreme agitation
of beads, which in turn destroys the convective motion and
vaporizes the system into a gaseous state (a granular gas); the
snapshots of such a pattern are shown in Fig. 7(e) at � = 55.
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FIG. 7. Three successive snapshots of the bed at t = 0 (left),
t = τ/2 (middle), and t = τ (right). (a) Bouncing bed (BB) at
� = 2 (f = 7.8 Hz); (b) Leidenfrost state (LS) at � = 30 (f = 30.5
Hz); (c) convection with a pair of rolls at � = 40 (f = 35.24 Hz);
(d) convection with a single roll at � = 45 (f = 37.4 Hz); (e) gas
at � = 55 (f = 41.3 Hz). The curly arrows in panels (c) and (d)
represent the directional sense of convective motion. The length of
the container is L/d = 40 and the shaking amplitude is A/d = 4
for all cases; other parameters are F = h0/d = 12 and d = 2.0 mm
diameter glass beads. Movies showing patterns, as in panels (c) and
(d), are available as Supplemental Material [46].

The coarse-grained velocity fields of the snapshots of
Figs. 7(c) and 7(d) are displayed in Figs. 8(a) and 8(b),
respectively. The velocity of the collective motion of particles
has been determined by analyzing the acquired images
using commercial PIV (particle image velocimetry) software,
Dynamic Studio Software, Version 3.3, of Dantec Dynamics
A/S, Denmark [44]. For this purpose, the adaptive correlation
technique [44,45] was used in which the size of the interroga-
tion window was varied adaptively from 64 × 64 to 16 × 16
pixels, with 50% overlap. It is clear from Fig. 8(a) that the PIV

velocity field exhibits a pair of convection rolls. Note that this
represents an instantaneous velocity field, calculated over two
frames separated by 1 ms; however, due to the small number of
particles in the system, the accuracy of the calculated velocity
field is limited; here we are interested only in the gross features
of the hydrodynamic velocity field, i.e., whether it contains
a circulating motion or not. Further increasing the shaking
intensity to � = 45, the 2-roll convection degenerates into a
single roll as is evident from the PIV velocity filed in Fig. 8(b).
It is clear that the circulation of this roll is in the clockwise
sense; we have confirmed by repeating experiments that the
1-roll convection can also have a counterclockwise circulation
for which the dense cluster is formed on the left side of the
container.

For a filling height of F = h0/d = 12, we have conducted
a series of experiments covering a range of � and A/d;
various patterns observed and their transitions have been
assimilated to construct a phase diagram in the (�,A/d)
plane as shown in Fig. 9. It is seen that the critical shaking
intensity corresponding to the onset of LS (�LS

BB) follows the
same decaying trend with increasing shaking amplitude A/d

as reported for the previous set of experiments (refer to the
star symbols in Fig. 6). Further increasing �, first we find a
transition of the LS to the convection motion with a pair of
rolls spanning the length of the container, and subsequently
to a single-roll convection pattern. It may be noted that
the 1-roll convection patterns are observed at A/d > 2 and
� > 42 and the gaseous state is observed for A/d � 3.5 and
� > 50. We reckon that the absence of the LS → convection
transition in the phase diagram in Fig. 2 can be tied to the
fact that a pair of rolls [such as in Fig. 8(a)] cannot be
fitted into a container of length L/d = 20. In summary, a 2D
monolayer vertically vibrated granular system (of sufficient
length L) admits Rayleigh-Benard-type convection rolls at
strong shaking: the convection sets in from an instability
of the LS (beyond a critical shaking intensity), leading to a
pair of rolls, which degenerates into a single-roll pattern with
increasing � and subsequently to a granular gas. The route to
the gaseous state from a 2-roll convection to 1-roll convection
is a finding of our experiments. A similar transition has been
reported in a recent simulation work [47]; see the discussion
below.

It is interesting to compare our findings on the LS →
convection transition in a monolayer system with previous
experiments of Eshuis et al. [36] in a quasi-2D box of width
W/d = 5.5 and length L/d = 100. Returning to Fig. 9 we
find that the critical shaking intensity for the onset of 2-roll
convection, �con

LS (denoted by the plus symbols), decreases with
increasing shaking amplitude,

�con
LS = 42.7(A/d)−0.157, (11)

and therefore the related shaking strength,

Scon
LS ≡ �con

LS (A/d) = 42.7(A/d)0.843, (12)

increases strongly with increasing shaking amplitude. A
careful analysis of the experimental data [36] [compare their
data for A/d = 2 and 4 in their Fig. 11 for a range of
F ∈ (4,12)] reveals that Scon

LS increases weakly with increasing
A/d. The soft-particle molecular dynamics simulations (see
Fig. 2 in Ref. [40] and Fig. 9 in Ref. [41]) of the same
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FIG. 8. Coarse-grained PIV velocity fields for convection states. (a) Convection with a pair of rolls at � = 40 and (b) convection with a
single roll at � = 45. The left, middle, and right panels correspond to t = 0τ , t = τ/2, and t = τ , respectively. Parameter values for panels (a)
and (b) are the same as in Figs. 7(c) and 7(d), respectively.

quasi-2D system seem to support the dependence of Scon
LS on

A/d; on the other hand, the recent event-driven simulations
of Rivas et al. [47] (in a quasi-2D box as in experiments of
Eshuis et al. [36]) indicate that Scon

LS is almost independent
of the shaking amplitude if L/d > 20 (see their Fig. 3). The
differences between our finding, Eq. (12), and the previous
quasi-2D experiments [36,41] remain unresolved at present;
this calls for additional experiments and simulations.

Let us now discuss our finding of the “2 rolls → 1 roll”
transition with increasing �: since the length of the con-
tainer is held fixed (L/d = 40) in Fig. 9, the above-found

FIG. 9. Phase diagram in (�,A/d) plane for F = 12 layers of
2 mm diameter glass beads confined in L/d = 40 cell. Regions
of bouncing bed (BB), granular Leidenfrost state (LS), “2-roll”
convection, “1-roll” convection, and gas are marked. The symbols
represent approximate locations of transition while upsweeping at a
specified shaking amplitude A/d with a linear frequency ramping of
0.01 Hz/s.

coarsening of convection rolls is fundamentally different from
the appearance of different number of rolls with increasing
L/d [36]. Previous quasi-2D experiments (Fig. 12 in [36]
and Fig. 4 in [41]) suggest that the convection rolls appear
in pairs as the container length L/d is increased when the
shaking strength is larger than some minimum value. For
given L/d and F , they found that the number of rolls
decreases stepwise with increasing S: “the steps involve two
rolls at a time, since the pattern always contains an even
number of rolls due to the downward motion imposed by the
sidewalls” [36]; moreover, their phase diagram (Fig. 14) does
not indicate the presence of a gaseous state at larger values
of S beyond the convection regime. Interestingly, however,
the quasi-2D simulations of Rivas et al. [47] found that the
above type of coarsening transition with increasing S can
occur via a decrease in the number of rolls in step 1 (see
their Fig. 2 for A/d = 4), depending on the container length
L/d, as follows: (i) from “4 rolls → 3 rolls → 2 rolls → gas”
for 80 < L/d < 100, (ii) from “3 rolls → 2 rolls → gas” for
50 < L/d < 80, (iii) from “2 rolls → gas” for 20 < L/d <

50, (iv) from “2 rolls → 1 roll → gas” for 15 < L/d < 20,
(v) from “1 roll → gas” for 10 < L/d < 15, and (vi) “LS →
gas” for L/d < 10. Our 2D experiments with L/d = 40
correspond to case (iii) and hence a “2 rolls → gas” transition
is expected which is different from “2 rolls → 1 roll → gas”
transition that we found at A/d = 4 (see Fig. 9). On the
other hand, our experiments with L/d = 20 did not show any
transition to convection (Figs. 2 and 5) even at � = 55 and
A/d = 4 (i.e., S = 220).

It may be noted that all related simulations [40,41,47]
have been done in a quasi-2D box, closely following the
experimental setup of Eshuis et al. [36], and, moreover,
the driving in Ref. [47] is bi-parabolic [rather than via the
sine function as in Eq. (1)]. The recent simulations [47]
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predicted a transition route of “4 rolls → 3 rolls → 2 rolls →
gas” [the case (i) above, with increasing �] for a container of
length L/d = 100 which may be contrasted with the previous
experimental finding [36] of “6 rolls → 4 rolls → 2 rolls”
convection, indicating an anomaly in the simulated predictions
on the number of rolls in the same setup having similar
parameter values. In addition, our recent experiments [35]
in a quasi-2D box (W/d = 5.5) with L/d = 80 found that
the primary bifurcation from the Leidenfrost state is a 4-roll
convection pattern in contrast to the 3-roll pattern observed in
simulations [47].

Overall, the above comparative discussion suggests that, to
make a one-to-one comparison with our experimental findings
on the “multiroll” transition scenario (via “2 rolls → 1 roll →
gas” with increasing � at L/d = 80), future simulations should
be carried out in a monolayer box under harmonic shaking
with parameter values as in the present experiments. We also
recommend additional experiments by increasing the length
of the container L/d to see whether the multiroll transition
scenario as depicted in Fig. 2 of Ref. [47] survives in a two-
dimensional vibrofluidized bed.

C. Density, granular temperature, and temperature anisotropy

To assess the structure of the shaken granular bed with
varying � and A/d, we measured the coarse-grained density
and temperature profiles from image analysis using the ImageJ
software as described in Sec. II B. The density profiles along
the vertical direction have been calculated from the digitized
(binary) version of the experimental snapshots by determining
an “effective” normalized pixel density (i.e., by counting pixels
that constitute the beads) over a box of height 5 pixels and
width equal to the image width in pixels. The density profile
is subsequently smoothed by fitting the data via a polynomial.

The “granular” temperature is defined as the mean square
of the velocity fluctuations around the mean flow velocity:

T = 1
2m〈(v − u)2〉, (13)

where v is the instantaneous particle velocity and u = 〈v〉
is the hydrodynamic or flow velocity (which vanishes in the
present case of a harmonically shaken bed) and the angular
bracket denotes a suitable averaging over many snapshots of
the system. Once the individual particle position is extracted
for a batch of snapshots using the particle-tracking routines,
the individual particle velocity can be determined from two
successive frames, which are fed into Eq. (13) to obtain the
temperature field. More specifically, the granular temperature
at a specified height, T (y), is calculated by dividing the system
into a series of horizontal bins or layers of height of 2 particle
diameters and width as that of snapshot (assuming horizontal
homogeneity). In each bin (say, at y = yi), the averaging is
carried out (i) over all particles inside the bin in each snapshot
as well as (ii) over a batch of 400 snapshots or more that span
over many oscillation cycles.

Figure 10(a) displays the density profiles with increasing
shaking intensity � at a shaking amplitude of A/d = 2.4 (see
Fig. 2). The density profile in the BB state observed at � = 5
is indicated by the red curve in Fig. 10(a); the corresponding
snapshots of the system are shown in Fig. 3. The density
shows a slight increase from the base of the container to a

FIG. 10. Variations of (a) density and (b) granular temperature
with height for the various states in F = 25 layers of 2.0 mm diameter
glass beads at constant A/d = 2.4 with increasing shaking intensity
�. Here, T0 is the input shaking energy (per particle) at the base. (c)
Profiles of the temperature ratio Tx/Ty such that T = (Tx + Ty)/2;
note that the data for � = 30 and 50 almost overlap with each other.
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height corresponding to the maximum density, beyond which
it remains nearly constant over a certain height, representing
a region wherein the particles are packed hexagonally (see the
snapshots in Fig. 3). Beyond a certain height the density shows
a rapid fall indicating the existence of a dilute gas-like layer
of fast moving particles on the top of the bed. It is noteworthy
that the density profile of the BB state at a higher shaking
intensity � = 10 (just below the transition to LS; see Fig. 2)
shows a weak “density inversion.” Furthermore, the maximum
density which the bed has achieved is slightly smaller than
the maximum density attained at � = 5; this is expected since
the bed at higher � is likely be loosely packed due to the
relatively higher degree of fluidization. The density profile of
BB at � = 10 [see the red curve in Fig. 10(a)] follows almost
the same trend of the density decay as that of BB at � = 5
beyond the maximal density height. It is also noticeable that
the density profile at higher � spans a larger height due to the
higher input shaking energy (due to which the particles on the
top of the bed bounce off to a greater height).

Increasing the shaking intensity from � = 10 to � = 11,
an extreme density inversion [see the blue curve in Fig. 10(a)]
is found to occur. This signals that the system has transited to
the Leidenfrost state (LS) in which a dense cluster floats over
a dilute gaseous layer and the maximum density within the
floating cluster is much lower than that in the bouncing bed (at
� = 10). Further increasing � leads to an overall expansion
of the granular bed in which the extent of the floating cluster
gradually reduces and the dilute gaseous region beneath grows
in size. Comparing the green (� = 30) and light blue (� = 50)
curves in Fig. 10(a), we find that the density reduction above
the floating cluster becomes more gradual with increasing �,
implying that there exists a “saltating” layer of particles above
the dense cluster where the particles move ballistically; this is
dubbed the ballistic layer.

To summarize Fig. 10(a), we found that the granular
Leidenfrost state is characterized by three distinct regions:
(i) a dense floating cluster, (ii) a dilute gaseous collisional
layer adjacent to the base of vibrating container, and (iii) a
ballistic layer consisting of fluidized particles on the top of the
floating cluster. Note that the ballistic layer is also present in
the BB state above the crystal-packed layer (see the snapshots
in Fig. 3).

Corresponding to the density profiles in Fig. 10(a), the
profiles of granular temperature T (y) and the temperature ratio
[Tx/Ty , where Ti is the temperature along the ith direction such
that T = (Tx + Ty)/2] are shown in Fig. 10(b) and Fig. 10(c),
respectively. The temperature has been normalized by the
average input energy T0 at the base. In the case of BB states
at � = 5 and 10, the temperature remains nearly constant up
to the height of the “crystalline” packed bed, but increases at
higher elevations due to the higher kinetic energy possessed by
the fluidized particles at the top. In the case of LS, however, the
temperature monotonically decreases from the vibrating base
up to the top of the floating cluster. This confirms that a dense
cluster of particles floats over fast-moving/hotter particles in
the granular Leidenfrost state. Comparing the temperature
profiles between BB and LS in Fig. 10(b), we find that the
granular temperature in BB states is lower near the vibrating
base in contrast to the LS for which maximum temperature
occurs at the base; this is a distinguishing criterion between

BB and LS. The origin of the comparatively higher temperature
near the base in the LS can be tied to the hotter dilute region
which is absent in the BB state.

Figure 10(c) indicates that the temperature ratio in the BB at
� = 5 is small and remains almost constant (Tx/Ty ≈ 0.15);
however, at � = 10, this ratio increases with elevation from
the base. The latter observation also holds in the case of
LS at � = 11 and higher �. Overall, the temperature in the
vertical direction is larger than that in the horizontal direction
(Ty > Tx , which is expected since the energy is imparted to
particles via shaking along the vertical direction) except at very
high values of � where Tx > Ty near the top of the bed that
constitutes the ballistic layer. The latter finding is intriguing
since it implies that the vertical component of the temperature
can be lower than its horizontal component in the ballistic layer
of the vibrofluidized bed. It is conceivable that at large enough
� the particles in the ballistic layer can loose their momentum
in the vertical direction much more easily due to collisions
with the floating cluster; on the other hand, their collisions
along the horizontal direction are less likely due to the dilute
nature of the ballistic region, resulting in higher values of Tx

and consequently Tx/Ty > 1 in the ballistic region.
The above-discussed characteristic features of the density,

granular temperature, and temperature-ratio profiles hold even
if we traverse the phase diagram in Fig. 2 at a constant
shaking intensity � while increasing the shaking amplitude
A/d; see Figs. 11(a)–11(c) at � = 50 for various values of A/d

spanning both BB and LS. Increasing the shaking amplitude
(A/d) beyond a critical value causes a density inversion [see
Fig. 11(a)], marking the onset of LS in the system. The
maximum density occurs at a certain height away from the
base once it crosses the dilute collisional layer and the density
remains nearly constant at the maximal value up to a certain
thickness spanning the floating cluster, and subsequently drops
rapidly across the rarefied ballistic layer at the top of the
bed. Other features of the density profile with increasing A/d

are similar to those found for increasing � as in Fig. 10(a).
Figure 11(b) indicates that the temperature in the BB states
increases monotonically from the base to the top which is
different from the nonmonotonic temperature profiles found
in the BB states in Fig. 10(b) for the case of increasing
shaking frequency f at constant shaking amplitude. On the
contrary, in the LS, the temperature shows a decaying behavior
away from the base, attaining a minimum value at the end
of the collisional layer, and then increases, albeit mildly, at
higher elevations. The degree of increase of T (y) at higher
elevations, however, decreases with increasing A/d (compare
the T profiles at A/d = 0.5 and 1) and the temperature remains
almost constant near the top of the bed at A/d = 2.4. The
latter observations are also evident in Fig. 10(b); see the T

profiles at � = 20, 30, and 50. The temperature-ratio (Tx/Ty)
profiles in Fig. 11(c) show similar characteristic features as
those presented in Fig. 10(c).

It may be noted that the density profiles were first measured
in a 2D vibrofluidized bed by Warr et al. [12], and some
of their density profiles did show signatures of a density
inversion [see their Figs. 2(a) and 2(b)]. The overall shapes
of our density and granular temperature profiles [Figs. 10(a)
and 10(b)] with increasing � are found to be similar to those
in the 2D simulation of Yang and Hsiau [20] (see their Figs. 5
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FIG. 11. Same as Fig. 10 but with increasing shaking amplitude
A/d at a constant shaking intensity � = 50.

and 6); in particular, the increase of granular temperature at
higher elevations in the BB state looks strikingly similar to
that in Fig. 6 of Ref. [20]. The related NMR experiments
by Huan et al. [29] in a 3D vibrofluidized bed identified
similar nonmonotonic variations of density and temperature

with height. The latter experiments also measured the height
profiles of horizontal (Tx) and vertical (Ty) temperatures (see
their Figs. 12 and 13), but they always found Tx < Ty for all
case studies with Tx/Ty ≈ constant with elevation.

IV. MICROSTRUCTURE AND DYNAMICS IN GRANULAR
LEIDENFROST STATE

A. Microstructure and spatial-ordering of particles

An important quantity employed for studying the mi-
crostructural characteristics and the spatial order of a par-
ticulate system is the so-called pair correlation function
which describes how, on average, the particles are radially
packed around each other. Mathematically, the pair-correlation
function is given by [48]

g(r) = 1

Nρ(r)

N∑
i=1

N∑
j 	=i

〈δ(r + rj − ri)〉, (14)

where ρ(r)g(r) is the conditional probability of finding a
particle at a distance r away from the reference particle such
that ∫

ρ(r)g(r)dr = N − 1. (15)

Since the hydrodynamic fields are inhomogeneous along the
vertical direction, first we calculated the one-dimensional
pair-correlation function g(x) = g(x|yi) in a horizontal stripe
which is located at y = yi . In the granular Leidenfrost state,
the particles belonging to three regions [(i) collisional layer,
(ii) floating cluster, and (iii) ballistic layer] are considered
separately; we then evaluate g(x) = g(x|yi) at the center of
each region (y = yi) over a horizontal stripe of thickness
δy = 1.5d.

Figures 12(a) and 12(b) display the pair-correlation func-
tion g(x|yi) in three regions of the LS at � = 30 and 50,
respectively; other parameters are as in Fig. 10. In both cases,
the g(x) in the floating cluster contain an array of peaks: the
first peak is located at the contact point, the second peak at
r/d ≈ √

3, and other subsequent peaks occurring at regular
spacings, signifying a nearly hexagonal-packed structure. The
g(x) in the collisional and ballistic regions of the LS indicate
that both are gaseous in nature: there is a peak at r = d and
then it decays rapidly with distance until it asymptotes to
unity at r/d ≈ 2, suggesting that particles are uncorrelated
at large distances. Comparing the g(x) between the ballistic
and collisional regions of the LS in Fig. 12, we find that the
first peak of g(x) in the ballistic layer is larger than that
in the collisional layer. This suggests that the center of the
ballistic region [i.e., y = yi at which g(x|yi) is calculated] is
comparatively denser than that of the collisional region.

With increasing shaking intensity �, the collisional and
ballistic layers of LS expand and become relatively dilute due
to the higher degree of fluidization; consequently there is a
decrease in the contact value of g(x) as seen in the respective
red and black curves in Figs. 12(a) and 12(b). In a similar
manner, the packing within the floating cluster also becomes
more and more loose with increasing �, causing a minor
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FIG. 12. One-dimensional pair-correlation function, g(x|yi), in
three regions of the Leidenfrost state (LS) at (a) � = 30 and (b)
� = 50, with other parameters being A/d = 2.4, F = h0/d = 25,
and d = 2.0 mm. Note that g(x|yi) is evaluated in a horizontal
stripe (of thickness δy = 1.5d) whose vertical location, y = yi , is
approximately at the center of each region. In each panel, the open
blue circles refer to the floating cluster, the lower curve marked by
red plus symbols refers to the collisional layer, and the middle curve
marked by black squares refers to the ballistic layer.

drop in the contact value of g(x); compare the blue curves
in Figs. 12(a) and 12(b).

For a better understanding of the orientational ordering of
particles in the (x,y) plane, we probed the two-dimensional
pair-correlation function g(r,θ ) by mapping g(r) onto polar
coordinates (r,θ ). The radial-angular correlation distribution
g(r,θ ) is defined as [48,49]

g(r,θ ) = 1

Nρ(r,θ )

N∑
i=1

N∑
j 	=i

〈δ(r − rij )δ(θ − θij )〉, (16)

which gives correlations for the pair of particles i and j , the
distance between whose centers of mass is rij and the angle
between the plane containing particles i, j and the horizontal
plane is θij ; ρ(r,θ )g(r,θ ) is the conditional probability of
finding a particle at a distance r from a reference particle
and in a plane containing a reference particle which makes an
angle θ with respect to the horizontal plane. The contour plot

of the g(r,θ ) in the (r,θ ) plane is likely to reveal the “contact
network” of particles in the granular bed, indicating the most
probable spatial configuration of particles around a reference
particle.

To calculate g(r,θ ), in addition to binning the particles
in the radial direction, we also binned them in the angular
direction; the number of bins considered in the radial and
angular directions are 100 and 20, respectively. Let us first
probe the g(r,θ ) in the bouncing-bed state. The contour plots
of g(r,θ ) for different shaking amplitude A/d are shown in
Figs. 13(a)–13(c); the shaking acceleration is set to � = 5
such that the system is in the BB state (see Fig. 2). The sixfold
symmetry of the contact network, resembling the hexagonally
packed crystalline structure of the bouncing bed, is clearly
evident in Fig. 13(a). With increasing shaking amplitude
(A/d), the lattice points of the hexagonal-packing structure get
perturbed, thereby breaking the “exact” directional symmetry
as it is evident in Figs. 13(b) and 13(c). This is because, as A/d

increases, the particles get more loosely packed making them
more mobile to move around each other and thus destroying
the angular anisotropy of their positions.

The g(r,θ ) in three regions of the LS, namely, the collisional
layer, floating cluster, and ballistic layer, are presented in
Fig. 14. The reference particle considered in these polar plots
is located at the center of the circle. The g(r,θ ) in Fig. 14(a)
indicates that the floating cluster is highly anisotropic in nature,
showing directional dependence with increased probability of
“head-on” collisions (i.e., θ = π/2,3π/2). On the contrary,
the collisional and ballistic layers in Figs. 14(b) and 14(c),
respectively, show angular isotropy which implies that the
particles are more likely to be found at any angular orientation
on average; this is expected since these regions are in a gaseous
phase. A closer look at Fig. 14(a) reveals that the sixfold
symmetry of the contact network still survives in the LS, but
the hexagonal lattice structure seem to have been significantly
modified, with more collisions likely to occur at θ = 2π/3 and
4π/3 in addition to head-on collisions. This indicates that the
packing of particles in the LS is much looser than the “ideal”
hexagonal packing. The latter observation can be further
rationalized if we analyze the radial component of the g(r,θ )
[of Figs. 14(a)–14(c)] which is displayed in Fig. 14(d). Note
that g(r) ≡ 〈g(r,θ )〉θ , and hence it provides information on the
radial configuration of particles around a test particle over a
circular region of diameter equal to the height of the floating
cluster. The g(r) in the floating-cluster region [the blue curve
in Fig. 14(d)] resembles more a liquid-like structure, with its
second peak being located at r/d ≈ 1.9. Therefore the floating-
cluster region is in a liquid state, which hovers over a gas-like
collisional layer underneath, and this makes the connection
with the original Leidenfrost state [31,38] more appropriate.

B. Height oscillations in granular Leidenfrost state

A closer look at the snapshots (of the Leidenfrost state) in
Fig. 4 reveals that the top surface of the granular bed as well as
the interface separating the dense floating cluster and the dilute
collisional layer do vary with time within an oscillation cycle
of the external driving. It is interesting to find out whether there
is a definite frequency associated with such height oscillations
in the granular Leidenfrost state. To this end, we have tracked
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FIG. 13. The radial-angular distribution function g(r,θ ) in the “bouncing bed” state at a shaking acceleration � = 5 with increasing shaking
amplitudes: (a) A/d = 0.5, (b) A/d = 1, and (c) A/d = 2.4. Other parameters are as in Fig. 12.

the temporal evolution of two characteristic heights: (i) the
location of the top surface of the floating-cluster region yclus(t),
and (ii) the height of the collisional layer ycoll(t) (i.e., the
vertical location of the interface between the floating cluster
and the collisional layer beneath), with both being measured
from the base of the container; see the sketch in the inset of
Fig. 15. The high-speed images of the bed were analyzed to
measure ycoll(t) and yclus(t) at various time instants over a few
shaking cycles. The unsteadiness of the LS, if any, is likely to

be implicated in the temporal variations of ycoll(t) and yclus(t)
as we demonstrate below.

Let us consider the case of LS observed in experiments with
F = 25 layers of d = 2 mm diameter glass beads at a shaking
intensity of � = 30 with A/d = 1.6 (f = 48.26 Hz). The time
evolutions of ycoll(t) and yclus(t) are shown in Fig. 15; the time
has been scaled by time period of driving (τd = 1/f ≈ 20.72
ms). The experimental data (denoted by red circles) for both
ycoll and yclus are best fitted by sinusoids (the blue curves in

FIG. 14. The radial-angular correlation function g(r,θ ) in various regions of LS: (a) floating cluster, (b) collisional layer, and (c) ballistic
layer; other parameters are the same as in Fig. 12. (d) The radial component of the g(r,θ ) in the floating cluster (blue circles), collisional layer
(the lower curve marked by red plus), and ballistic layer (the middle curve marked by black squares).
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FIG. 15. Temporal variations of ycoll(t) and yclus(t) at � = 30 and
A/d = 1.6, with other parameters being F = h0/d = 25 and d = 2
mm diameter glass beads. The red circles represent experimental data
(with error bar) and the best-fitted curve is denoted by the blue line.
Inset depicts a sketch of the Leidenfrost state (LS): ycoll(t) is the
instantaneous height of the collisional layer and yclus(t) is the vertical
location of the top of the floating cluster.

Fig. 15) of the following form:

ycoll(t)/d = 2.5 + 2.4 sin(0.305t + 1.159), (17)

yclus(t)/d = 24.46 + 1.2 sin(0.307t + 1.231), (18)

where t is the time measured in ms. Note that the oscillation
amplitude of the top surface (〈yclus(t)〉) is smaller than that
of the interface (〈ycoll(t)〉). From the above equations, the
angular frequencies ωcoll and ωclus are 305 rad/s and 307 rad/s,
respectively, which closely agree with the driving angular
frequency (ωd = 2πf = 303). Thus, the interface and top
surface of the LS oscillates harmonically and is synchronized
with the frequency of the external vibration.

To check the robustness of above finding, we analyzed the
images of the LS observed in a second set of experiments
with 5 mm diameter beads. The temporal variations of ycoll(t)
and yclus(t) at � = 30 and 43.4 are shown in Figs. 16(a)
and 16(b), respectively; other parameters are A/d = 0.6 and
F = h0/d = 12 (refer to the phase diagram in Fig. 5). While
the experimental data for � = 30 are best fitted via the
sinusoids of the form

ycoll(t)/d = 2.2 + 1.84 sin(0.315t + 0.62), (19)

yclus(t)/d = 15.7 + 0.66 sin(0.31t + 0.864), (20)

the data for � = 43.4 are best fitted by

ycoll(t)/d = 2.7 + 2.53 sin(0.37t − 0.322), (21)

yclus(t)/d = 16.8 + 0.616 sin(0.377t + 0.118), (22)

FIG. 16. Same as Fig. 15, but for F = 12 layers of d = 5 mm
diameter glass beads with A/d = 0.6: (a) � = 30 and (b) � = 43.4.

where the time is measured in ms. At � = 30, we found that
ωcoll ≈ 314.7 rad/s and ωclus ≈ 310 rad/s, which are very close
to the driving frequency ωd = 313 rad/s. At � = 43.4, ωcoll =
370 rad/s and ωclus = 377 rad/s, and ωd = 376 rad/s ≈ ωcoll ≈
ωclus. Another noteworthy feature in Fig. 16(a) is the absence
of low-frequency modulation (even over 12 oscillation cycles)
in both ycoll(t) and yclus(t).

Collectively, the above analysis indicates that both the
interface between the collisional layer and the floating cluster
and the top surface of the floating cluster oscillate harmonically
and are synchronized with the frequency of the external
vibration. Therefore, the granular Leidenfrost state is a period-
1 wave (i.e., an f-wave) as is the case for the bouncing-bed.

Although the “synchronous” height oscillations of the
LS were never quantified previously, there are simulation
works in the same direction. The most recent simulation [47]
identified a low-frequency (semiperiodic) oscillation in the
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density-inverted state (in a quasi-3D setup of a narrow column
of length and width L/d = 5 − W/d). They also found delta-
like peaks at the driving frequency and its harmonics in the
power spectra of the temporal variation of the center of mass
of the system [see their Fig. 4(b)]; while the former may be
connected to the f -wave nature of the LS as found in our work,
the implications of the peaks at the harmonics of f remain
unclear. On the other hand, the simulation work of Bougie
et al. [50] probed the time dependence and density inversion
in a vertically vibrated 3D box filled with shallow layers
(F = h0/d = 4.3) of granular materials. While they found
that the density-inverted state is indeed an f wave in the low-�
regime (� = 5.68), the density profiles become time invariant
in the high-� regime (� = 56.5). The latter observation is in
stark contrast to our finding in Fig. 16 that increasing � from
30 to 43.4 does not seem to have an effect on the f -wave nature
of the LS. (It may be noted that the low- and high-� regimes
in the simulations of Ref. [50] correspond to the same shaking
strength [S = �(A/d) = constant] but having small and large
A/d, respectively.) To isolate the possible effects of the
two-dimensionality of our experiments on height oscillations,
additional experiments (not shown) were conducted in a quasi-
2D box (of width of about 5 particle diameter, W/d = 5.5,
and length L/d = 100) with a shallow granular layer (F =
h0/d = 6); increasing the shaking intensity from 30 to 40,
however, we found that the Leidenfrost state remains a period-
1 wave, implying that the LS is synchronized with the shaking
frequency even in a quasi-2D vibrofluidized bed. Simulations
in a 2D box and/or additional experiments may help to resolve
the disagreement between the above simulations [47,50] and
our experiments about the synchronous time dependence of
the Leidenfrost state.

V. SUMMARY AND CONCLUSIONS

We carried out detailed experiments on the pattern-
formation dynamics in a vertically shaken two-dimensional
monolayer granular system. A collection of spherical glass
beads was held in a Hele-Shaw-type container of certain
length (L) and height (H ), having a width (W ) such that it
can accommodate only one layer of beads across its width
(W/d ≈ 1.1); containers with two different lengths, L/d = 20
and 40, were investigated. The particle-filled container was
vertically vibrated harmonically, y = A sin(2πf t), via an
electromagnetic shaker, where A is the amplitude of shaking
and f is its frequency. The experimental results were presented
for a wide range of (i) shaking intensities � = Aω2/g ∈
(0,55), (ii) amplitude ratio A/d ∈ (0.1,4), and (iii) particle
loading or filling height F = h0/d (where h0 is the number of
particle layers at rest). In addition to showing the raw images
and movies of various patterns, the quantitative measurements
have been made on (i) the density and granular temperatures
and (ii) the pair-correlation functions using particle-tracking
algorithms.

For shaking accelerations � � 1, the granular bed moves
with the container base without detaching from it and this
is the regime of the solid bed which gave birth to the well-
known bouncing-bed state (in which the bed detaches from
the base and starts bouncing like a single particle) at � > 1.
At � ∼ O(10), the BB state transitioned into the so-called

Leidenfrost state [31,38] in which a dense cluster of particles
floats over a dilute gaseous layer [8,26,31]. The critical shaking
acceleration for the transition from BB to LS was found to
have a power-law dependence, �LS

BB ∼ F 1.217(A/d)−7/8, on the
particle loading depth (F = h0/d) and the shaking amplitude
(A/d). Therefore, the critical shaking strength [S = �(A/d),
which is a measure of the input kinetic energy via shaking]
increases weakly with increasing shaking amplitude [SLS

BB ∝
(A/d)1/8] for a specified particle loading F ; this result is in
contrast to the findings of Eshuis et al. [31], who showed
S = constant at the BB → LS transition. We speculate that
the frictional barrier at the front and back walls increases with
increasing shaking amplitude which might be responsible for
the weak increase of SLS

BB with A/d.
Carrying out experiments in a container of larger length

L/d = 40, we uncovered the complete sequence of bifur-
cations with increasing �: SB (solid bed) to BB (bouncing
bed) to LS (Leidenfrost state) to 2-roll convection to 1-roll
convection and finally to a granular gas. While the first two
transitions (SB → BB → LS) were also reported previously
(by Eshuis et al. [31]), the LS → convection transition and the
convection → gas transition are new findings in the context
of a monolayer vibrofluidized system at strong shaking. In
particular, for a given length of the Hele-Shaw container, the
coarsening of a pair of convection rolls leading to the genesis
of a single-roll structure (i.e., the multiroll transition) and its
subsequent transition to a granular gas were not reported in
previous experiments (although a recent simulation study [47]
did report on a similar multiroll transition in a quasi-2D box).
The shaking strength for the onset of the LS → convection
transition, Scon

LS ∼ (A/d)0.84, is found to increase strongly with
increasing shaking amplitude. The latter finding is in contrast
to the very weak dependence of the same found in the quasi-2D
experiments [36], and the related simulations [47] also indicate
that Scon

LS is almost independent of A/d.
The density and temperature profiles, obtained via particle-

tracking algorithms, revealed clear signatures of the transition
from the bouncing-bed state to the density-inverted Leiden-
frost state. The Leidenfrost state is characterized by three
distinct regions: (i) a dilute collisional layer of particles near
the vibrating base, (ii) a dense floating cluster above the
collisional layer, and (iii) a ballistic layer on the top of the
floating cluster (where the particles move around ballistically).
While the ballistic layer was also found to exist in the
bouncing-bed state (at large shaking strength), the crucial
distinction of the LS from the BB state is the existence of
the dilute collisional layer that acts as a cushion over which
a dense cluster floats [31]. Another distinguishing criterion
between LS and BB is that the granular temperature in the BB
state is lower near the vibrating base in contrast to the LS for
which the maximum temperature occurs near the base. The
temperature in both BB and LS was found to be “anisotropic”
in the sense that the vertical component (Ty) of temperature
is, in general, larger than its horizontal component (Tx).
Interestingly, in the LS, the temperature ratio Tx/Ty increased
with increasing elevation, and can even exceed unity (i.e.,
Tx > Ty) in its ballistic layer at very strong shaking. We note in
passing that the modeling of such anisotropic temperature field
would require a continuum theory that goes beyond traditional
Navier-Stokes-order hydrodynamics [51,52].
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The microstructure within the bouncing-bed and the Lei-
denfrost state were probed by evaluating the two-dimensional
pair-correlation function g(r,θ ) which provided information
on the particle configuration (i.e., both the spatial and
orientational ordering of particles). The sixfold symmetry of
the g(r,θ ) in the BB state was tied to the hexagonally packed
crystalline structure of the bed, and the degree of anisotropy
of this crystalline state was found to decrease with increasing
shaking amplitude (A/d) at a fixed shaking intensity � and
vice versa. The g(r,θ ) in the collisional layer and the ballistic
layer of the LS displayed angular isotropy, and are therefore
in a gas-like state. The analysis of the radial distribution
function, g(r) ≡ 〈g(r,θ )〉θ , in the floating-cluster region of
the LS revealed a clear liquid-like structure [the blue curve
in Fig. 14(d)]. Therefore the floating cluster is indeed in a
liquid state, which hovers over a gas-like collisional layer
underneath, and this makes the connection with the original
Leidenfrost state [31,38] more succinct.

We uncovered an unsteady behavior associated with the
Leidenfrost state, wherein the height of the collisional layer
(i.e., the interface that separates the floating cluster from the
dilute collisional layer underneath) as well as the height of the
floating cluster oscillated sinusoidally with time. The oscilla-
tion frequencies closely matched the frequency of the shaker.
Therefore, the granular Leidenfrost state is not a stationary
state; rather it is a period-1 or f wave; i.e., the temporal
order of the LS is the same as that of the bouncing-bed state.
This finding has important implications for the theoretical
analysis [35,40] that has been carried out in the recent past.
On the other hand, the recent simulations [47] (in a narrow
quasi-3D column) identified a low-frequency oscillation in
the density-inverted state which we did not observe in our
experiments, presumably due to very low values of the
underlying frequency and/or due to the lateral confinement of
the vibrated column; these issues require future investigations.

In this work we have restricted our experiments to a
relatively narrow aspect ratio (L/h0 < 7) container, and did
not observe subharmonic patterns such as f/2 undulatory
waves, f/4 spikes, etc. Such patterns are known to ap-

pear [3,30,36,37] in experiments with a large aspect ratio
(L/h0 > 15) container for a range of � lying between the
BB state and the LS, and hence they may be expected in
the present 2D setup too if we further increase the length of
the container. These experimental issues can be taken up in
a future work. A recent simulation work [53] has probed the
role of noise on the LS → convection transition, and modeled
it via a quintic-order stochastic amplitude equation. It may
be possible to derive such a quintic-order equation from the
underlying hydrodynamic equations [54–58]. Lastly, we recall
that the theoretical works on granular convection based on
linear and nonlinear stability analyses [35,40] do not show
any dependence of the critical shaking strength Scon

LS (for the
onset of convection) on the shaking amplitude A/d [in contrast
to present findings, Eq. (12)]. This may be due to the over-
simplified boundary conditions imposed at the vibrating wall
(constant temperature) in all theoretical analyses. Therefore,
the present work also opens up important theoretical issues
that need to be addressed in the future. Lastly, it would
be interesting to investigate the related pattern-formation
dynamics in a binary granular mixture [39,59] under harmonic
shaking. Works along these directions are in progress.
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