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During the processes of nucleation and growth of a precipitate cluster from a supersaturated solution, the
diffusion flux between the cluster and the solution changes the solute concentration near the cluster-solution
interface from its average bulk value. This feature affects the rates of attachment and detachment of solute
atoms at the interface, and, therefore, the entire nucleation-growth kinetics is altered. Unless quite obvious, this
effect has been ignored in classical nucleation theory. To illustrate the results of this approach, for the case of
homogeneous nucleation, we calculate the total solubility and the nucleation rate as functions of two parameters
of the model (the reduced interface energy and the inverse second Damköhler number), and we compare these
results to the classical ones. One can conclude that discrepancies with classical nucleation theory are great in
the diffusion-limited regime, when the rate of bulk diffusion is small compared to the rate of interface reactions,
while in the opposite interface-limited case they vanish.
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Normally, first-order phase transitions within the binodal-
spinodal gap occur along the nucleation-growth-coarsening
sequence. If the chemical composition of the initial and final
phases is equal, the transition is called polymorphic (e.g.,
freezing and condensation). In this case, the transition kinetics
is controlled entirely by the rate of interface reactions, and the
transition occurs in the interface-limited regime. On the other
hand, the kinetics of precipitation from a solution depends
also on the rate of the bulk solute diffusion. A diffusion
flux between a precipitate cluster and an ambient solution
creates a nonuniform solute concentration profile around the
cluster. If the cluster is subcritical, the diffusion flux is
directed outside of it and the local solute concentration near
the cluster-solution interface exceeds the average one. In the
case of the supercritical cluster, the diffusion flux is directed
inside it and the local solute concentration near the interface
is less than the average one. This perturbation of the solute
concentration profile around the clusters has been recently
observed in kinetic Monte Carlo simulations [1]. Obviously,
this fact has to be taken into account when one calculates the
nucleation barrier. Nevertheless, this perturbation is neglected
in the classical nucleation theory (CNT), and the solute
concentration outside of the clusters is set equal to the average
one (see, e.g., Ref. [2] and references therein). To overcome
this disadvantage, different two-step nucleation pathways,
including intermediate-concentration states between the parent
solution and the final precipitate phase, were considered.
For example, Lutsko has recently shown that the nucleation
scenario including long-range low-amplitude concentration
fluctuations is much more probable than the direct classical
one [3]. Peters studied the coupling between slow diffusion
transport and nucleation using the diffusion equation with
the Ostwald-Freundlich boundary condition to show that
certain types of concentration profiles can drive a classically
precritical nucleus over the nucleation barrier [4]. With a
similar approach, Iwamatsu [5] introduced a kinetic critical
size different from the thermodynamic one, thus demonstrating
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the importance of kinetic effects for the choice of a nucleation
pathway. For an extended description of the recent progress
in nucleation theory and simulations, see, e.g., a review by
Agarwal and Peters [6]. Unfortunately, the models mentioned
above are restricted to the diffusion-limited case, when the
rate of diffusion is small compared to the rate of interface
reactions. In this case local thermodynamic equilibrium at
the cluster interface is assumed. To build a general theory,
applicable in the whole diffusion-limited to interface-limited
range, a linked-flux model has been introduced by Russell
[7] and further developed by Kelton [8]. It considers an
intermediate nearest-neighbor shell between the cluster and
the solution, which exchanges solute atoms with both adjacent
phases. A number (or a concentration) of solute atoms in this
shell is an additional characteristic of the cluster, which enters
the free-energy functional along with the number of atoms
inside the cluster. But again, the solute concentration outside
of the shell is set equal to the average one, giving a somewhat
artificial “staircase” picture of the solute concentration profile.
In this paper, the solute concentration profile is calculated
from a diffusion equation with an unusual boundary condition
[see Eq. (12) below], derived from the balance equation for
solute atoms inside the cluster. Modified expressions for
the attachment and detachment rates are then used in the
Becker-Döring scheme [9] to consider the kinetics of solute
precipitation and to compare the new results to the CNT ones.

The rate of precipitation, being the first-order phase
transition, is conventionally described by the value of the flux
of clusters in the dimension space [9]:

Jn,n+1 = w
(+)
n,n+1g(n,t) − w

(−)
n+1,ng(n + 1,t), (1)

where g(n,t) is a time-dependent distribution function (a
concentration of the clusters consisting of n atoms) and w

(+)
n,n+1

and w
(−)
n+1,n are, respectively, the rates of attachment and

detachment of solute atoms at the cluster-solution interface.
The special case when the flux (1) is zero for any n:

Jn,n+1 = 0, ∀ n, (2)

corresponds to the state of detailed balance, when the
precipitating phase is in equilibrium with the solution. The
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equilibrium [corresponding to the state of detailed balance
(2)] distribution function geq(n) can be expressed in Boltzmann
form [2]:

geq(n) = C exp[−G(n)/kBT ], (3)

where C is a normalization constant, kB is Boltzmann’s
constant, T is the temperature, and G(n) is a value of the
thermodynamic potential of a heterogeneous system consisting
of the n-atom cluster and the perturbed solution.

One can consider the process of clusterization as a sequence
of elementary reversible attachment reactions [see Eq. (8) be-
low], in which a dissolved atom, located at a one-elementary-
jump distance from the interface, joins the cluster. From the
thermodynamic point of view, the work of attachment of a
dissolved atom to the n-atom cluster is equal to the difference
of the thermodynamic potentials G(n + 1) − G(n). On the
other hand, in the continual approximation (n � 1), the work
of attachment is equal to the difference �μ(n) between the
chemical potential of a clusterized atom and that of a dissolved
atom, located at a one-elementary-jump distance from the
interface. Therefore, supposing that the cluster is a sphere
with a radius of

rn = r0
3
√

n, r0 = 3
√

3ω0/4π, (4)

ω0 being an average volume per atom of the cluster, in the
capillarity approximation the work of attachment is as follows
(see Appendix A for details):

G(n + 1) − G(n) =
n�1

�μ(n) = kBT ln

[
c

eq
s (rn)

cs(rn)

]
, (5)

where cs(rn) is a quasistationary concentration of dissolved
atoms near the interface [see Eq. (14) below] and

ceq
s (rn) = ceq

s exp

(
α
3
√

n

)
, α = 8πr2

0 σ

3kBT
(6)

is a size-dependent thermodynamic equilibrium solute con-
centration at the interface, with a reduced interfacial energy α,
being a dimensionless thermodynamic parameter of the model.
Equation (6) is a form of the Gibbs-Thomson relation, where
c

eq
s represents thermodynamic equilibrium solubility, and σ is

a coefficient of tension at the cluster interface. Therefore, in the
state of detailed balance (2), with the equilibrium distribution
function given by Eq. (3) and the work of attachment given by
Eq. (5), from Eq. (1) one can derive a ratio of the attachment
and detachments rates as follows:

w
(+)
n,n+1

w
(−)
n+1,n

= exp

[
−G(n + 1) − G(n)

kBT

]
= cs(rn)

c
eq
s (rn)

. (7)

Assuming that the solute concentration profile around the
cluster remains unperturbed, one can set cs(rn) = c̄s (c̄s being
the average bulk solute concentration) in Eq. (5) to obtain
from Eq. (7) the CNT result w

(+)[CNT]
n,n+1 /w

(−)[CNT]
n+1,n = c̄s/c

eq
s (rn)

[see Eqs. (21) and (22) below].
The elementary acts of attachment and detachment of solute

atoms at the cluster-solution interface can be considered as a
reversible chemical reaction:

As � Ac, (8)

where As and Ac denote a solute atom in the dissolved and
clusterized states, respectively. The elementary reactions (8)
take place within a spherical interface layer with a radius of rn

and a thickness equal to the mean elementary jump distance
d. Let the direct reaction (attachment) be characterized by a
reaction rate constant k. Since the concentration of dissolved
atoms As within the interface layer is cs(rn), the total rate of
attachment within the layer is

w
(+)
n,n+1 = 4πr2

n dkcs(rn). (9)

Now, using Eq. (7), one can derive the rate of detachment as
follows:

w
(−)
n+1,n = 4πr2

n dkceq
s (rn). (10)

The value of solute concentration at the interface cs(rn) can be
obtained as a result of solution of the quasistationary diffusion
boundary problem. A discussion of the range of validity of the
quasistationary approximation is presented in Appendix B.

The quasistationary spherically symmetric solute concen-
tration profile cs(r) around the cluster is subject to the diffusion
equation:

∂

∂r
[r2j (r)] = 0, j (r) = −D

∂cs(r)

∂r
, (11)

where D is a solute diffusion coefficient in the solution.
The normal component [10] of the solute flux across the

interface is proportional to the difference of the detachment
(10) and attachment (9) rates:

j (rn) = w
(−)
n+1,n − w

(+)
n,n+1

4πr2
n

= D

r0λ

[
ceq

s (rn) − cs(rn)
]
,

λ = D

r0dk
, (12)

where λ is a dimensionless kinetic parameter of the model,
proportional to the inverse of the second Damköhler number
DaII (see, e.g., Ref. [11]).

One can consider the second boundary condition as follows:

cs(∞) = c̄s. (13)

By solving the diffusion equation (11) with the boundary
conditions (12) and (13), and substituting Eq. (4) for the cluster
radius, one obtains the following expression for the value of
solute concentration at the interface (see, e.g., Ref. [12]):

cs(rn) = c̄s +
3
√

n
[
c

eq
s (rn) − c̄s

]
3
√

n + λ
. (14)

From Eq. (14) one can see that, for finite values of the
parameter λ, the quasistationary value of solute concentration
at the interface lies between the values of c̄s and c

eq
s (rn). In

the diffusion-limited regime, when the rate of diffusion is
much less than the rate of interfacial reactions, λ � 3

√
n and

cs(rn) = c
eq
s (rn). In the interface-limited regime, when the rate

of interfacial reactions is much less than the rate of diffusion,
λ � 3

√
n and the CNT assumption cs(rn) = c̄s holds. However,

in a general case, the parameter λ takes finite values (see,
e.g., Ref. [11]), so that neither a diffusion-limited nor an
interface-limited simplified picture is valid.

Below, as an example, we study the process of homo-
geneous precipitation from a supersaturated solution in the
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framework of the Becker-Döring approach [9]. The distribu-
tion function g(n,t) of the clusters is subject to the next kinetic
(master) equation [9], valid for n > 1:

dg(n,t)/dt = Jn−1,n − Jn,n+1. (15)

The system of Eqs. (15) must be supplemented with an
additional equation for the reduced bulk solute concentration

g(1,t) = c̄s(t)/c
eq
s (16)

to satisfy the law of conservation of the total solute concentra-
tion q [see Eq. (24) below]:

dg(1,t)/dt = −
∞∑

n=2

n dg(n,t)/dt. (17)

From Eqs. (9) and (10), taking into account Eqs. (14) and
(6), one finds

w
(+)
n,n+1 = 1

tnucl

3
√

n2

λ
exp

(
α
3
√

n

)

×
{

1 +
[
g(1,t) exp

(
− α

3
√

n

)
− 1

]
λ

λ + 3
√

n

}
,

(18)

w
(−)
n+1,n = 1

tnucl

3
√

n2

λ
exp

(
α
3
√

n

)
, (19)

where

tnucl = (
4πr0Dceq

s

)−1
(20)

is a characteristic nucleation time scale. With a different
approach, the same result was recently obtained for a particular
case of precipitation from solid solutions [13].

Equations (18) and (19) for the rates of attachment and
detachment at the interface need to be compared to the
corresponding equations, derived in the framework of the
CNT (see, e.g., Ref. [2] and references therein). In the present
notations, the CNT expressions for the rates of attachment and
detachment are as follows:

w
(+)[CNT]
n,n+1 = 1

tnucl

3
√

n2

λ + 3
√

n
g(1,t), (21)

w
(−)[CNT]
n+1,n = 1

tnucl

3
√

n2

λ + 3
√

n
exp

(
α
3
√

n

)
. (22)

From Eq. (21) one can see that w(+)[CNT]
n,n+1 = 0 for c̄s = 0, while,

according to Eq. (14), the quasistationary concentration of
solute atoms near the interface remains finite in this case:
cs(rn) = c

eq
s (rn) 3

√
n/( 3

√
n + λ). It means that, once a solute

atom has been detached from the interface (via one elementary
jump), in the framework of the CNT it has to diffuse into
the bulk of the solution, with no chance to be attached back
on the next step. Therefore, Eq. (21) is inconsistent with the
principle of reversibility of the interface reactions (8). On the
other hand, from general speculations it follows that the rate of
detachment (“evaporation”) must be proportional to the area
of the interface, i.e., w

(−)
n+1,n ∝ 3

√
n2. In the present theory, this

condition is satisfied for any n [see Eq. (19)], while in the
CNT it is satisfied only for 3

√
n � λ [see Eq. (22)]. Therefore,

by neglecting the perturbation of the solute concentration
profile near the interface, the CNT underestimates the rates of
detachment and attachment of solute atoms. One can note that
the pairs of Eqs. (18), (21) and (19), (22) are asymptotically
equivalent for λ � 3

√
n. Great values of the parameter λ

correspond to the interface-limited precipitation regime, when
the mobility of dissolved atoms at the interface is small
compared to the bulk one. In this case, the solute concentration
profile around the cluster is flat and one can get from Eq. (14)
cs(rn) = c̄s, in agreement with the CNT assumption. Therefore,
the present theory contains the CNT in itself as a limiting case.
At the same time, the value dn/dt = w

(+)
n,n+1 − w

(−)
n+1,n, which

is determined solely by the diffusion solute flux in the solution,
is equal in both the CNT and this theory. That is why both
theories give the same results in the asymptotic coarsening
regime, but they differ in the range of ultrafine clusters
(see Fig. 3 below).

Under the condition of detailed balance, when the flux of
clusters in the dimension space (1) becomes zero for any n

[see Eq. (2)], the equilibrium distribution function (3) can be
expressed as follows:

geq(n) =
{
geq(1), n = 1;
geq(1)

∏n
i=2 w

(+)
i−1,i

/
w

(−)
i,i−1, n � 2.

(23)

For a discussion of the range of validity of Eq. (23), see
Appendix C.

In the range of undersaturated and saturated solute concen-
trations, i.e., for 0 � geq(1) � 1, the equilibrium distribution
function is finite: limn→∞ geq(n) = 0, while in the range of
supersaturated concentrations, i.e., for geq(1) > 1, the equilib-
rium distribution function is divergent: limn→∞ geq(n) = ∞.

A total solute concentration (expressed in units of c
eq
s ) can

be calculated as follows:

q =
∞∑

n=1

ng(n,t). (24)

In the limiting case g∗
eq(1) = 1, corresponding to the

saturated solute concentration, Eq. (24) with g(n,t) = g∗
eq(n)

can be utilized to calculate the total solubility, taking into
account both the single dissolved atoms and heterophase
fluctuations (ultrafine clusters):

q∗ =
∞∑

n=1

ng∗
eq(n). (25)

Figure 1 shows the relative total solubility q∗/q∗[CNT] as a
function of two dimensionless model parameters α and λ. The
values corresponding to the present theory and the CNT are
calculated from Eq. (25) with the attachment and detachment
rates given by Eqs. (18), (19) and (21), (22), respectively. From
Fig. 1, one can see that the CNT systematically underestimates
the total solubility and that this discrepancy decreases with
an increase of λ. It should be noted that, within the present
model, a contribution from heterophase fluctuations to the
total solubility (25), depending on the values of the model
parameters, may exceed by several orders of magnitude the
solubility of monomers [13].
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FIG. 1. Relative total solubility q∗/q∗[CNT] vs model parameters
α and λ.

In the steady-state nucleation regime, the flux of clusters in
the dimension space (1) is constant for any n:

Jn,n+1 = J = const, ∀ n. (26)

The steady-state distribution function in this case is as
follows (see, e.g., Ref. [14]):

gJ (n)

geq(n)
= gJ (1)

geq(1)
− J

n∑
i=1

[w(+)
i,i+1geq(i)]−1. (27)

Following Zeldovich [15], one can set gJ (1)/geq(1) = 1 and
limn→∞ gJ (n)/geq(n) = 0 to obtain from Eq. (27) an explicit
form for the steady-state flux of clusters in the dimension space
(the nucleation rate):

J =
{ ∞∑

i=1

[w(+)
i,i+1geq(i)]−1

}−1

. (28)

Figure 2 shows the decimal logarithm of the relative
nucleation rate J/J [CNT] at the degree of supersaturation
geq(1) = 15 as a function of two dimensionless model pa-
rameters α and λ. The values corresponding to the present
theory and the CNT are calculated from Eq. (28), with the
attachment and detachment rates given by Eqs. (18), (19) and
(21), (22), respectively. From Fig. 2, one can see that the CNT
systematically underestimates the nucleation rate. While in
the range of small values of α this discrepancy is negligibly
small, it quickly increases and may achieve many orders of
magnitude with an increase of α and a decrease of λ. In the
diffusion-limited two-step nucleation model, a qualitatively
similar result was recently obtained by Lutsko [3].

Below, we compare the results of the present model for
precipitation kinetics with those of the CNT, for the same
values of the total solute concentration (24) q = 104 and the
model parameters α = 3 and λ = 1. Details of the numerical
method used in these calculations can be found in the paper by
Turkin and Bakai [16]. In each calculation, the homogeneous
state of the solution (only single atoms, no clusters) is
taken as an initial condition. The dashed and solid curves
in Fig. 3 show the solutions of the system of Eqs. (15)

FIG. 2. Decimal logarithm of the relative nucleation rate J/J [CNT]

at a constant supersaturation geq(1) = 15 vs model parameters α

and λ.

and (17) at t/tnucl = 1010, with the rates of attachment and
detachment, given by this model [Eqs. (18) and (19)] and
by the CNT [Eqs. (21) and (22)], respectively. The low-n
steep parts of the curves describe heterophase fluctuations
and coincide with the corresponding equilibrium distributions
(23), shown by symbols. At the same time, the high-n flat
parts describe the clusters, which evolve according to the
Lifshitz-Slyozov-Wagner (LSW) theory [17,18]. The inset in
Fig. 3 shows the numerical data recalculated according to
the rule f (x)dx = g(n)dn, where x = 3

√
n/nc is a reduced

cluster size, and nc = [α/ ln g(1,t)]3 is the cluster critical
size. One can see that the calculated curves approach the
Lifshitz-Slyozov (LS) distribution function [17], shown by
the dotted curve. One can note that this model gives a much
wider range of heterophase fluctuations than the CNT does.
This result qualitatively explains why this model gives larger

FIG. 3. A distribution of clusters vs number of atoms at t/tnucl =
1010, calculated in the framework of the CNT and this model. Symbols
show the corresponding equilibrium distributions of heterophase
fluctuations. The inset shows the calculated distributions in reduced
coordinates together with the LS distribution function.
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values for the total solubility (see Fig. 1) and the nucleation
rate (see Fig. 2) compared with the CNT results. At the same
time, in the high-n range both models give identical results,
in agreement with the LSW theory. This happens because the
difference of the attachment and detachment rates (the net
solute flux, which solely enters the LSW theory) is equal in
both this theory and the CNT.

In summary, the proposed model of precipitation from so-
lutions is grounded on the basic assumptions of the CNT, with
an exception of the postulate of a homogeneous distribution
of solute atoms around the clusters. Taking into account the
diffusion and reaction processes around the clusters allows the
correct derivation of the attachment and detachment rates at
the interface, which enter the master kinetic equation and
govern the process of precipitation. The reduced interface
energy and the inverse second Damköhler number are found to
be the appropriate model parameters. Numerical calculations
of the total solubility and the nucleation rate show that the CNT
systematically underestimates both of these values, and that the
corresponding discrepancies, depending on the values of the
model parameters, may achieve many orders of magnitude.
However, the discrepancies vanish in the limit of the interface-
limited precipitation, when the solute concentration at the
interface approaches its value in the bulk.

The main goal of this study is to consider the effect of
the diffusion-defined concentration profile around the clusters
on the nucleation kinetics. Further improvements of the CNT,
such as allowing the cluster-solution interface to be nonsharp
and the cluster shape to be nonspherical, are also expected
to be important, as was recently demonstrated for the case
of polymorphic transitions [19]. The internal structure of the
cluster and its chemical composition can be considered as
additional variables, extending the coordinate space in which
the nucleation pathway is determined [20].

I am grateful to A. Turkin for sharing his numerical code and
for helpful discussions. I wish to thank a referee for revealing
the relation between the kinetic parameter λ and the second
Damköhler number.

APPENDIX A: DERIVATION OF THE WORK
OF ATTACHMENT AT THE INTERFACE

The concentration profile of a heterogeneous system,
consisting of the spherical cluster with a radius of rn and the
perturbed solution around it, can be written as follows:

c(r) = θ (rn − r)cc(r) + θ (r − rn)cs(r), (A1)

where cc(r) is a concentration profile inside the cluster, and
cs(r) is a concentration profile in the solution. In Eq. (A1), the
Heaviside step function θ (x) is used to account for a singularity
of the concentration profile at the cluster interface at r = rn, in
agreement with the CNT assumption. Therefore, a number N

of solute atoms in a spherical region with a radius of R � rn

can be computed as follows:

N = 4π

∫ R

0
c(r)r2dr. (A2)

Therefore, using Eqs. (A2) and (A1), one can express the
law of conservation of the total number of solute atoms N in

the course of the precipitation process in the following form:

dN

dn
= 4πr2

n
drn

dn
[cc(rn) − cs(rn)] = 0. (A3)

Here and below, we utilize the well-known relations for the
singular functions:

d

dx
θ (x − b) = δ(x − b),

∫ c

a

δ(x − b)f (x)dx = f (b),

where δ(x) is the Dirac δ function and a < b < c.
From Eq. (A3) one can see that cc(rn) = cs(rn), meaning that

the concentration profile is continuous across the interface.
On the other hand, a number n of solute atoms inside the

cluster is

n = 4π

∫ R

0
θ (rn − r)cc(r)r2dr. (A4)

In the same way, from Eq. (A4) one finds that the next identity
at the interface holds:

dn

dn
= 4πr2

n
drn

dn
cc(rn) ≡ 1. (A5)

The volume density of the thermodynamic potential of
the heterogeneous cluster-solution system can be written as
follows:

f (r) = θ (rn − r)cc(r)μc + σδ(r − rn)

+ θ (r − rn)cs(r)μs(r), (A6)

where μc is the chemical potential of a clusterized atom, σ is
a coefficient of tension at the interface, and

μs(r) = μc + kBT ln
[
cs(r)

/
ceq

s

]
(A7)

is the chemical potential of a dissolved atom in the perturbed
solution. In Eq. (A7), kB is Boltzmann’s constant, T is
the temperature, and c

eq
s is the thermodynamic equilibrium

solubility. In Eq. (A6), the Dirac δ function δ(x) is used to
account for a singularity of the density of the thermodynamic
potential at the cluster interface, in agreement with the CNT
assumption. From Eq. (A7) one can find that, if the solute
concentration profile is uniform with cs(r) = c

eq
s , then μs =

μc, meaning that in this case the (macroscopic) cluster is in
the state of thermodynamic equilibrium with the solution.

Therefore, a value G(n) of the thermodynamic potential of
the cluster-solution system can be computed as follows:

G(n) = 4π

∫ R

0
f (r)r2dr. (A8)

Now, from Eq. (A8), the work of attachment in the continual
approximation can be derived as follows:

G(n + 1) − G(n) =
n�1

dG(n)

dn

= 4πr2
n
drn

dn
[cc(rn)μc − cs(rn)μs(rn)]

+ 8πσrn
drn

dn

using Eqs. (A3), (A5), and (A7),

= kBT ln
c

eq
s (rn)

cs(rn)
, (A9)
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where

ceq
s (rn) = ceq

s exp

(
8πσrn

kBT

drn

dn

)
(A10)

is a size-dependent thermodynamic equilibrium solute con-
centration at the interface. If the radius of the cluster is taken
in the simplified form (4), Eq. (A10) can be reduced to the
well-known Gibbs-Thomson relation (6).

APPENDIX B: KINETICS OF SOLUTE CONCENTRATION
AT THE INTERFACE

The time-dependent spherically symmetric solute concen-
tration profile cs(r,t) around the cluster is subject to the next
diffusion equation:

∂cs(r,t)

∂t
= − 1

r2

∂

∂r
[r2j (r,t)], j (r,t) = −D

∂cs(r,t)

∂r
. (B1)

The time-dependent normal component [10] of the solute
flux across the interface is proportional to the difference of the
detachment (10) and attachment (9) rates:

j (rn,t) = w
(−)
n+1,n − w

(+)
n,n+1

4πr2
n

= D

r0λ

[
ceq

s (rn) − cs(rn,t)
]
,

λ = D

r0dk
. (B2)

One can consider the second boundary condition as follows:

cs(∞,t) = c̄s. (B3)

Let the initial solute concentration profile be uniform:

cs(r,0) = c̄s. (B4)

By solving the diffusion equation (B1) with the boundary
conditions (B2) and (B3) and the initial condition (B4), and
substituting Eq. (4) for the cluster radius, one obtains the next
expression for the time-dependent solute concentration at the

interface (see, e.g., Ref. [12]):

cs(rn,t) = c̄s +
3
√

n
[
c

eq
s (rn) − c̄s

]
3
√

n + λ

×
[

1 − exp

(
t

tdiff

)
erfc

(√
t

tdiff

)]
, (B5)

where

tdiff = r2
0

D

(
1

3
√

n
+ 1

λ

)−2

(B6)

is a characteristic time scale of the diffusion process at the
interface.

Equation (20) determines the characteristic time scale tnucl

of the nucleation process in both the CNT and this theory.
Therefore, values such as c̄s vary on this time scale. To ensure
the treatment of c̄s in the diffusion boundary condition (B3)
as a constant, the diffusion time scale (B6) must be much less
than the nucleation one (20): tdiff � tnucl. From Eqs. (B6) and
(20), one finds that this adiabatic approximation holds when
the dimensionless kinetic parameter of the model λ is limited
as follows:

λ � (
3ω0c

eq
s

)−1/2
. (B7)

In this adiabatic approximation, the solute concentration at the
interface approaches its quasistationary value (14), which can
be obtained from Eq. (B5) in the limit t → ∞.

APPENDIX C: A “HYBRID” EQUILIBRIUM
DISTRIBUTION FUNCTION OF THE CLUSTERS

It is worth noting that the assumption n � 1, made during
derivation of Eq. (A9), makes the present approach (just like
the CNT one) inapplicable in practice for small clusters with
n � 1. Instead, one has to obtain the first several points of
the distribution function geq(n) in the range 1 � n � n∗ from
experimental or simulation (see, e.g., Ref. [21]) data and then
to proceed recursively to higher n. This “hybrid” distribution
function then reads

geq(n) =
{
g

exp
eq (n), 1 � n � n∗;

g
exp
eq (n∗)

∏n
i=n∗+1 w

(+)
i−1,i

/
w

(−)
i,i−1, n > n∗.
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