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As a simplified model of a liquid nanostripe adsorbed on a chemically structured substrate surface, a two-
dimensional Ising system with two boundaries at which surface fields act is studied. At the upper boundary,
the surface field is uniformly negative, while at the lower boundary (a distance L apart), the surface field is
negative only outside a range of extension b, where a positive surface stabilizes a droplet of the phase with
positive magnetization for temperatures T exceeding the critical temperature Tw of the wetting transition of this
model. We investigate the local order parameter profiles across the droplet, both in the directions parallel and
perpendicular to the substrate, varying both b and T . Also, precursor effects to droplet formation as T approaches
Tw from below are studied. In accord with theoretical predictions, for T > Tw the droplet is found to have the
shape of a semiellipse, where the width (distance of the interface from the substrate) scale is proportional to b

(b1/2). So, the area of the droplet is proportional to b3/2, and the temperature dependence of the corresponding
prefactor, which also involves the interfacial stiffness, is studied.

DOI: 10.1103/PhysRevE.93.052805

I. INTRODUCTION

Chemically structured surfaces are of great interest in the
context of various applications in nanotechnology, e.g., for
the fabrication of nanoscopic electronic devices, the develop-
ment of efficient processing techniques involving very small
amounts of matter (“lab on a chip”), etc. [1]. Nanofluids at
structured substrates, however, also pose challenging scientific
questions in statistical mechanics [2–5]. There is an interesting
interplay between surface effects due to the substrate and
interfacial effects due to the liquid-vapor interface of the fluid
film (or droplet) adsorbed on the substrate, and due to the
considered nanoscopic sizes both statistical fluctuations and
systematic finite size effects play an important role. Thus,
a chemical inhomogeneity of the substrate, e.g., when the
substrate potential discontinuously changes at a “defect line”
at the substrate surface, can cause pinning of a fluid-vapor
interface along this line, and then the line tension associated
with the substrate inhomogeneity matters (e.g., [6–17]). Note,
however, that this line tension due to a substrate chemical
inhomogeneity should not be confused with the line tension
associated with the three-phase contact line where the interface
due to a droplet (or liquid ridge) meets a homogeneous
substrate (see, e.g., [18–28]).

Progress in statistical physics problems often has been
boosted by considering simplified lattice models such as the
Ising model. In fact, for the Ising model in d = 2 dimensions
both the temperature dependence of the bulk order parameter
and the interfacial tension are known exactly [29,30], as well
as the (critical) wetting transition caused by applying a suitable
surface magnetic field Hw at the boundary of a semi-infinite

lattice [31,32]. This surface magnetic field represents the
potential acting by a solid substrate at the molecules of
a fluid, interpreting the Ising system as a lattice gas, the
states with positive and negative spontaneous magnetization
corresponding to coexisting liquid and vapor phases. For this
model, the contact angle of a sessile droplet at a homogeneous
substrate can be computed exactly [33], and the character
of interfacial fluctuations near the wetting transition is well
understood [34], although important facets have only been
discovered very recently [35].

The Ising model can also be studied in great detail
rather straightforwardly by Monte Carlo simulation [36], and
droplets and their fluctuations both in the bulk [37] and
attached at a wall [38] have been studied for a long time.
However, both recent experimental work [39], where the
density profile across liquid nanostripe was measured as a
function of strip width and temperatures near the wetting
transition temperature, and the availability of exact predictions
obtained for a solid-on-solid (SOS) model [40–43] is a
motivation to carry out a more complete Monte Carlo study of
droplets attached to a nanoscopic chemical inhomogeneity, in
the framework of the d = 2 Ising model where the surface field
takes a positive value along a distance containing b lattice sites
(Fig. 1) while everywhere else the surface field is negative.
We study the droplet properties here both as a function of
temperature across the wetting transition, as in the experiment
[39], and of the width b of the chemical heterogeneity of
the boundary. In the following section, we briefly summarize
the model and the choice of parameters, while in Sec. III
we describe our results, and in Sec. IV we summarize our
conclusions.
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FIG. 1. Schematic description of the system geometry. We choose
a rectangular M × L lattice with periodic boundary conditions in the
x direction and surface fields acting on the first and last row of spins
in the y direction. The surface field on the top row (Hw1) and outside
the inhomogeneity at the bottom row (Hw2) are both chosen negative,
so that a negative magnetization in the bulk of the system is stable,
while for b sites at the bottom row a positive field Hw3 = |Hw2| is
chosen. The strength Hw1 of the surface field on top is chosen smaller
(|Hw1| = |Hw2|/4), but for the large linear dimensions chosen the
precise choice of Hw1 does not matter with respect to the properties
of the droplet.

II. MODEL AND SIMULATION DETAILS

Since we wish to study a system with an inhomogenous
boundary field, we write down the Hamiltonian in terms of the
two indices (j,i) labeling the lattices sites in (x,y) directions,
with 1 � j � M and 1 � i � L, choosing always the lattice
linear dimensions (Fig. 1) L even and M odd, so that the
center of the droplet (where its y dimension is largest) is at
the lattice site j = (M + 1)/2, rather than in between two
lattice sites. In the x direction, periodic boundary conditions
are applied, while in y direction the rows i = 1 and i = L

simply have free boundaries but there the spins experience a
boundary field. At the upper boundary we choose a field Hw1 =
−0.225 to stabilize a domain with negative magnetization. At
the lower boundary (i = 1) we apply a field Hw2 = −0.90
outside the chemical inhomogeneity and Hw3 = +0.90 along
the chemical inhomogeneity [i.e., from the sites j = (M − b)/
2 + 1 to j = (M + b)/2, where b has also to be chosen as a
(large) odd integer].

Note that both temperature T and boundary fields Hw1,
Hw2, and Hw3 are measured in units of the critical temperature
Tcb of the bulk, i.e., [29] kBTcb/J = 2/ ln(1 + √

2) ≈ 2.27,
where kB is Boltzmann’s constant and J the exchange constant,
respectively. Thus, our Hamiltonian is

H = −J

L∑
i=1

M∑
j=1

S(i,j )[S(i + 1,j )

+S(i − 1,j ) + S(i,j + 1) + S(i,j − 1)]/2

−Hw1

M∑
j=1

S(L,j ) −
M∑

j=1

Hw(j )S(1,j ), S(i,j ) = ±1 ,

(1)

where Hw(j ) = Hw2 for 1 � j � (M − b)/2 and (M + b)/2 +
1 � j � M , while Hw(j ) = Hw3 for (M − b)/2 + 1 �

j � (M + b)/2. S(i,j ) = 0 is taken for missing
neighbors.

Note that the chosen value of Hw3 = 0.90 leads to a
wetting critical temperature tw = Tw/Tcb � 0.486 6 [31]. For
this choice, the order within the bulk domains is almost perfect,
and the correlation length in the bulk is of the order of the
lattice spacing. Thus, also reduced temperatures t = T/Tcb in
the wet phase t > tw still can be varied over a significant range
(where the interfacial tension changes already significantly)
without entering the regime of critical fluctuations in the bulk,
1 − t � 1. Note that typically we choose M much larger than
b (e.g., M = 303 for b = 51) to make sure that there are no
finite size effects associated with interfacial fluctuations. Also,
note that typical extensions of the droplet in the y direction
are only proportional to

√
b, and choosing L as large as at

least L = 120 ensures that the droplet is not at all affected
by the boundary at i = L, of course. To make it easier for
the reader to establish the connection to fluid droplets, we
will describe all our results in terms of local densities defined
via ρ(i,j ) = (〈S(i,j )〉 + 1)/2. Monte Carlo simulations were
carried out with standard single spin-flip algorithms [36],
carrying out runs typically with 2×107 Monte Carlo steps
per site, starting with an initial condition where all spins are
taken as S(i,j ) = −1, in accord with the nonwet ground state
of the system. Note that due to the presence of boundary fields
and the fact that we do not work close to Tcb, cluster algorithms
would not present any advantage [36].

III. NUMERICAL RESULTS

Figures 2–4 show typical density profiles for the case
L= 120, M = 303, b = 51, and various choices of the reduced
temperature t , focusing on either the density in the row i = 1
exposed to the surface field (Fig. 2) or perpendicular to the
wall in the center of the droplet, i.e., j = 152 (Fig. 3). From
Fig. 2 we see that even in the regime well above the wetting
transition, the local density in the center of the droplet has not
reached the density ρcoex

� of the liquid phase at coexistence
(that is very close to the maximum value, ρmax = 1). Also,
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FIG. 2. Density profile ρ(1,j ) in the first row in which the
surface fields Hw2 and Hw3 act, for the case L = 120, M = 303,
and b = 51, for various temperatures t both below and above the
wetting transition, as indicated in the key to the figure. In this case the
positive surface field (which favors the liquid) ranges from j = 127
to j = 177. Note that the statistical errors of the simulation data points
in this figure and the following figures typically are smaller than the
size of the symbols and therefore are not shown.
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FIG. 3. Density profile ρ(i,152) plotted vs i for the same system
as shown in Fig. 2, showing several temperatures, both below and
above the wetting transition. The insert shows, as an example, a fit
of the data to Eq. (2) at t = 0.55, with parameters A0 = 0.84 and
ξ⊥ = 2.36.

the local maximum (in the center of the droplet, j = 152
in this case) is approached as a function of j very slowly.
Furthermore, the regime to the left site j = 127, where the
chemical heterogeneity of the substrate starts, and the regime
to the right of the site j = 177, where it ends, are hardly
affected, and ρ(1,j ) stays very small. Figure 3 also shows
that the wetting film that is stabilized in between j = 127 and
j = 177 only is a few lattice spacings thick. We can fit the
decay of the density with the distance from the surface by a
simple exponential decay,

ρ[j = (M + 1)/2,i] = A0 exp[−x/ξ⊥(b,t)], (2)

where we have neglected the small background density of
the gas phase at large distances x (x = i, when distances are
measured in units of the lattice spacing). The length ξ⊥(b,t)
extracted from the fit will be discussed further below, here we
also note that similar fits can be performed for other values
of j in the region of the chemical inhomogeneity as well
(Fig. 4). As has already been discussed in detail in the literature
[14,34,38,40,41], it can be shown that the shape of a droplet
attached to a chemical inhomogeneity of extent b in the regime
of complete wetting of this inhomogeneity has the shape of a
semiellipse (as qualitatively shown on the inset of Fig. 4), with
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FIG. 4. Density profiles ρ(i,j ) for the case L = 300, M = 453,
and t = 0.50 plotted vs i, showing various choices of j . Note that
here the droplet center occurs at jcenter = 227. The inset shows the
correlation length ξ⊥ as a function of |j − jcenter|.
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FIG. 5. Plot of the length scale ξ⊥(b) vs b1/2 as evaluated for
t = 0.50,0.55, and 0.59, including two choices of L to show that the
systematic dependence on L is negligible. Full lines are drawn to
guide the edge only.

the small axis of the ellipse scaling as b1/2 as b → ∞. Figure 5
gives an example where ξ⊥(b,t) in the wet regime is plotted
vs b1/2; evidence for the expected scaling ξ⊥(b,t) ∝ b1/2 is
readily obtained. Of course, we do not expect that Eq. (2) is an
exact description for all values of x and all the cases studied,
and hence it is difficult to quote precise errors for the fitted
values of this transverse correlation length. We expect that the
errors of this correlation length typically will be of the order
of a few percent.

It also is interesting to study the variation of the density
distribution of ρ varying b right at the wetting transition
temperature [Fig. 6(a)]. Also, for T = Tw a scaling of the
approach of the data to the limiting behavior for b → ∞ with
b−1/2 is observed [Fig. 6(b)], and for b large enough there
works a superposition principle approximately [Fig. 6(c)]. This
is clearly not the case for T < Tw, where the profiles develop
a horizontal region at the top, showing a saturation at a value
ρmax far from the density of the bulk liquid phase [Fig. 7(a)]. In
contrast, for T > Tw the behavior is qualitatively similar to the
behavior at T = Tw [Fig. 7(c)]. But rather nontrivial shapes of
the density profile are obtained when one varies the distance i

from the surface [Fig. 7(d)].
Next we consider the scaling of the behavior of the droplet

formation as we approach the wetting transition from below
[Fig. 8(a)]. For T far below Tw, the maximum density ρmax in
the center of the droplet reaches a maximum value that is rather
small, and this maximum value is reached for b > b∗(t), where
b∗(t) is some characteristic crossover length of the chemical
inhomogeneity. For practical purposes, b∗(t) is determined
from the intersection between the initial slope and the plateau
line in plots such as those shown in Fig. 8(a). As one
approaches tw, ρmax increases and also the approach towards
the plateau with increasing b becomes very slow. As Fig. 8(b)
demonstrates, the estimation of ρmax(t) is still possible for
the shown data for t � 0.40, but already for t = 0.42 the
extrapolation towards b−1/2 → 0 already is very questionable,
and for t = 0.45 it is clearly impossible: considerably larger
values to b (and hence M) would be required.

In Fig. 9 we study the behavior shown in Fig. 8 more
closely, focusing on the temperature dependence of ρmax(t)
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FIG. 6. (a) Plot of ρ(1,j ) vs j for a system at t = tw = 0.486 6 for L = 300, M = 453, and various choices of b, as shown in the key. (b)
Plot of the maximum density ρmax = ρ[1,j = (M + 1)/2] of the data in part (a) versus b−1/2. Note that for b → ∞ ρmax differs from unity
only by a deviation of about 0.001 15, invisible at the scale of this plot. (c) Plot of the normalized density profile ρ(1,j )/ρmax vs the normalized
distance from the center of the droplet (jcenter = M+1

2 ), xnorm = (j − jcenter)/b, for the data of Fig. 6(a).
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FIG. 7. (a) Plot of ρ(1,j ) vs j for a system at t = 0.35 for L = 300, M = 453, and different values of b as indicated. (b) Plot of ρ(1,j )
vs j for a system at t = 0.60, i.e., in the regime of complete wetting, for L = 300, M = 453, and different values of b, as indicated. (c) Plot
of the normalized density profile ρ(1,j )/ρmax vs the normalized distance from the center of the droplet (jcenter = M+1

2 ), xnorm = (j − jcenter)/b,
for the data of Fig. 7(b). (d) Plot of ρ(i,j ) vs j for a system at t = 0.60, L = 300, M = 453, and b = 121, showing density profiles for various
choices of i, as indicated.
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FIG. 8. Plot of the maximum density ρmax(t) of the droplet,
measured at the center of the inhomogeneity, i.e. ρmax(t) = ρ(1,j =
(M + 1)/2), versus (a) b and (b) b−1/2, as obtained for different values
of temperature T taken below Tw . All data correspond to L = 300
and M = 453. Note that for large enough b for all temperatures
T < Tw a saturation at a value ρmax(t) < ρcoex

� (t) occurs, if b exceeds
a characteristic value b∗ (see text).

[Fig. 9(a)] and on the scaling behavior of the approach to
saturation [Fig. 9(b)]. Of course, reduced temperatures such
as t = 0.30 and t = 0.35 are rather remote from tw, and hence
systematic deviations from scaling clearly are obvious.

It is clear that the behavior seen in Figs. 8 and 9 is due
to the critical fluctuations associated with the critical wetting
transition at t = tw, and this fact becomes even more obvious
when we study the transverse correlation length ξ⊥(b,t) that we
may extract from Eq. (2), as discussed earlier (see Fig. 10). The
temperature dependence ξ⊥(b → ∞,t) ∝ (tw − t)−1 found in
Fig. 10(c), confirms our expectation that the length ξ⊥(b →
∞,t) extracted from Eq. (2) near t = tw is simply proportional
to the transverse correlation length of a (weakly bound) linear
interface near the boundary of a semi-infinite system close
to the wetting transition. Thus, it is tempting to assume
that on the nonwet side of the wetting transition, but rather
close to it, all distances describing the variation of the
local density ρ(i,�j,b,t), where �j = j − (M + 1)/2 and
M → ∞ is taken, should be scaled with the appropriate
correlation lengths ξ||(t) ∝ (tw − t)−2, ξ⊥(t) ∝ (tw − t)−1 [32]
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FIG. 9. (a) Plot of ρcoex
� (t) − ρmax(t) versus (tw − t)1/2. (b) Plot

of ρmax(t,b)/ρmax(t,b → ∞) vs b/b∗. Several values of t are used, as
indicated.
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FIG. 10. (a) Plot of the transverse correlation length ξ⊥(b,t), as
defined from the fit of ρ[i,j = (M + 1)/2] according to Eq. (2),
versus b1/2 and several choices of t , as specified in the key to
part (b). (b) Plot of ξ⊥(b,t)/ξ⊥(b → ∞,t) versus (b/b∗)1/2. Note
that both scaling parameters b∗ and ξ⊥(b → ∞,t) were obtained by
optimizing the data collapse on a common master curve. All data
refer to the choice L = 300, M = 453. (c) Plot of ξ⊥(b → ∞,t)
versus (tw − t)−1.

of the critical wetting transition,

ρ(i,�j,b,t) − ρcoex
vapor(t) = ρ̃

(
i

ξ⊥(t)
,

�j

ξ||(t)
,

b

ξ||(t)

)
, (3)

where ρ̃ is a corresponding scaling function. The scaling
behavior seen in the above figures clearly can all be deduced
from such a general scaling assumption. Right at t = tw, when
ξ||(t) and ξ⊥(t) diverge, one can eliminate one of these scaling
variables [note ξ⊥(t) ∝ [ξ||(t)]1/2] to find

ρw(i,�j,b) − ρcoex
vapor(tw) = ρ̃w

(
i

b1/2
,
�j

b

)
, t = tw. (4)

To investigate Eq. (4) more closely, the full distribution
ρw(i,�j,b) has been recorded (Fig. 11). Since the required
statistical effort due to the critical slowing down associated
with the critical wetting transition is quite large (15×106

Monte Carlo steps per spin were used in Fig. 11), no attempt
was made to test the scaling description of Eq. (4) in terms of
two scaling variables fully. But at least one can verify nicely
that the total density excess associated with the droplet shows
the expected scaling behavior [we symbolically replace here
summations over i,�j by integrations over continuous x,y

coordinates]

�ρ =
∫

dxdy
[
ρw(x,y,b) − ρcoex

vapor(tw)
] ∝ b3/2, (5)

which is implied in the semielliptical shape of having a droplet
of small axis proportional to b1/2 if the long axis is b.

In Figs. 12(a) and 12(b) we study the variation of �ρ

[cf. Eq. (5)] with b, both for T < Tw [Fig. 12(a)] and for
T > Tw [Fig. 12(b)]. In the latter case, clear evidence for a
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b3/2 law is found, as expected [38,40]. Note, however, that
we do not study here the crossover in the droplet shape from
semielliptical droplets to semispherical ones, when the length
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FIG. 12. (a) Log-log plot of the total density excess �ρ plotted
vs b for three choices of t , as indicated. Full straight lines indicate
a slope of 3/2, while broken straight lines indicate a slope of 1.
(b) Plot of �ρ vs b3/2 at temperatures t = tw = 0.486 6 as well as
t > tw , as indicated. (c) Slopes of the straight lines in part (b), [S(T )]
normalized by the spontaneous magnetization mspon(T ) plotted vs
(�/T )−1/2, where � is the interfacial stiffness known from the exact
solution [Eq. (9)] [44]. The leftmost symbol shown corresponds to
t = tw = 0.486 6 and the rightmost to t = 0.95. The straight line has
slope 0.318 5 and shows the best fit of the data for t � 0.80.

b is comparable to the correlation length in the bulk. Right at
bulk criticality, a semicircular droplet shape has been found
[41].

For T < Tw, on the other hand [cf. Fig. 12(a)], we observe
a crossover from a b3/2 law at small b to a behavior linear in
b at large values of b. For t = 0.30, this crossover occurs at
about bc ≈ 30, at t = 0.35 at about bc ≈ 52, and at t = 0.40
at about bc ≈ 83. Roughly speaking, we would expect such a
crossover when b/2 = ξ||(t), the correlation length associated
with critical wetting in the direction parallel to the boundary
from which the interface unbinds. Of course, the chosen
temperatures are clearly not close enough to t = tw, where
the power law ξ||(t) ∝ (tw − t)−ν|| with ν|| = 2 would hold.
For b < bc we have essentially a single droplet bound to the
“wall,” while for b � bc there occurs a liquid precursor film
of thickness ξ⊥(t) in the region from j = (M − b)/2 + 1 to
j = (M + b)/2, where the positive surface field acts. As is
well known [34], this liquid film in the partially wet region
which is a precursor of the wetting film that exists for t > tw
when the interface has become detached from the “wall” does
not have a uniform thickness but rather can be viewed as a
sequence of droplets; these droplets have a lateral size of order
ξ||(t) and a vertical size of order ξ⊥(t), and ξ||(t) ∝ ξ 2

⊥(t), so
that for bc = 2ξ||(t) a smooth crossover to a single droplet of
semielliptical shape can occur.

This problem of the temperature dependence of the droplet
shape of a wall-attached droplet has been studied previously in
the framework of the solid-on-solid model [40–43]. Burkhardt
[40] suggested that the typical droplet shape can be described
by an ellipse of the form

x2 + K

c

b

2
y2 = (b/2)2, (6)

where K is a constant of order unity (which can be related to the
inverse temperature J/T of the Ising model), and the constant
c = 1/

√
π = 0.564 2 for the average shape at T = Tw, while

for T > Tw a crossover to a larger value 2/
√

π occurs, in a
region of order unity in the crossover scaling variable b/ξ||.
Similarly, for T < Tw, a crossover scaling to c = 0 occurs
also when b/ξ|| is of order unity. This behavior is qualitatively
compatible with our findings. Note, however, that in the SOS
model the bulk critical temperature T SOS

cb → ∞; hence this
model does not exhibit a reasonable temperature dependence
for the interfacial free energy, as it occurs in the Ising model.

Jakubczyk et al. [42,43] have generalized this SOS model
approach in terms of an interface Hamiltonian approach,
addressing the problem in terms of a continuum variable �(x)
describing the distance of the interface between the liquid
phase (at density ρcoex

� ) and the vapor phase (at density ρcoex
v )

from the wall,

H[�(x)] =
∫ +M/2

−M/2
dx

[
�(T )

2

(
d�

dx

)2

+ V (x,�)

]
, (7)

where �(T ) is the interfacial stiffness, the potential V (x,�)
was taken piecewise constant, with one value for |x| � b and
another one for b < |x| � M/2, and H is already normalized
by T . From this treatment one finds the small axis of the ellipse
to be

√
b/[2π�(T )] in the regime of complete wetting, and
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hence the area then scales as

�ρ = (
ρcoex

� − ρcoex
v

)
1
4b3/2

√
π/2�(T ) . (8)

Figure 12(b) shows plots of �ρ vs b3/2 as obtained at the
wetting temperature as well as within the complete wetting
regime. The obtained straight lines and the temperature-
dependent slopes [S(T )] suggest that Eq. (8) holds. In fact,
for a deeper understanding we note that near the bulk critical
temperature the interfacial stiffness [44]

�(T ) = sinh {2J/T − ln[coth(J/T )]} (9)

agrees with the interfacial free energy of the Ising ferro-
magnet [44], and hence �ρ ∝ (1 − t)−( ν

2 −β) = (1 − t)−3/8,
when t = T/Tcb → 1, where we used the Ising model critical
exponents for order parameter and interfacial free energy given
by the following relationships: ρcoex

� − ρcoex
v ∝ (1 − t)β =

(1 − t)1/8, σ (T ) ∝ (1 − t)ν = 1 − t , respectively. This critical
behavior implicit in Eq. (8) is not compatible with the findings
of Burkhardt [40], which are only useful very close to the
wetting transition, while Eq. (8) does not describe the behavior
close to that transition. Of course, near bulk criticality also
crossovers involving the bulk correlation length ξb ∝ (1 − t)−ν

will come into play, which we have not attempted to address.
On the other hand, Fig. 12(c) shows plots of S(T )/mspon

vs [�(T )/T ]−1/2, as suggested by Eq. (8), where mspon
is the spontaneous magnetization of the Ising ferromagnet
[30]. The obtained slope in the high-temperature regime (t =
T/Tcb → 1), given by s = 0.318 5 agrees with the theoretical
calculation, namely, s = 1

4

√
π/2 � 0.313 33, cf. Eq. (8). Thus,

although the problem of droplets in the d = 2 Ising/lattice gas
model attached to a wall has been considered for a long time
with various methods, there still seems to be the need for
further work in order to obtain a unified description within the
range tw � t � tcb.

IV. CONCLUSION

In this work we have presented a Monte Carlo simulation
study of liquid adsorption on a structured substrate within
the framework of the two-dimensional Ising model, where the
substrate inhomogeneity is described by a positive boundary
field applied over a distance of b lattice sites, while outside
this region a negative boundary field acts such that in the bulk

of the system the vapor phase is stabilized. Consistent with
previous predictions based on SOS model treatments, we have
found that near the wetting transition adsorption starts right
at the inhomogeneity of the boundary field, and one has to
proceed away from this inhomogeneity over a distance ξ||(t),
where ξ||(t) is the correlation length associated with the wetting
transition, describing the correlation of interface fluctuations
in the direction parallel to the substrate, to reach a region
where the fluid density is constant. At the wetting transition,
the density distribution stays inhomogeneous over the whole
range of the inhomogeneity (b), and the perpendicular direc-
tion there is always an exponential decay of the density dis-
tribution, described by a correlation length ξ⊥(t) ∝ [ξ||(t)]1/2

(or by b1/2, in the regime where the correlation length ξ||(t)
would exceed the range b of the inhomogeneity). Also in
the regime of complete wetting, this droplet extension in
perpendicular direction stays of order b1/2 throughout, and
we have found that in this regime then the total adsorbed
amount scales like b3/2. The prefactor in this relation exhibits
an interesting temperature dependence as well as crossover
phenomena both near the bulk critical temperature and near the
wetting transition, respectively. Our numerical Monte Carlo
results describe correctly the behavior of the adsorbed fluid
on the inhomogeneous substrate close to both critical wetting
(theoretically described by means of a SOS approach [40–43])
and in the regime of complete wetting (theoretically addressed
by means of an interfacial Hamiltonian approach [42,43]). So,
the development of a unified theoretical treatment capable to
account for both regimes has not yet been fully explored and
will certainly be welcomed.

ACKNOWLEDGMENTS

E.V.A. is grateful to the Alexander von Humboldt Founda-
tion and to the Deutsche Forschungsgemeinschaft (DFG, SFB
TRR 146) for partial support of his research stays at the Institut
für Physik of the Johannes Gutenberg Universität Mainz.
Also, M.L.T. and E.V.A are grateful to the Consejo Nacional
de Investigaciones Cientı́ficas y Técnicas de la República
Argentina (CONICET) Project PIP 0143 and Universidad
Nacional de La PLata, La Plata, República Argentina, Project
X11-634 (Argentina) for financial support.

[1] Handbook of Nanophysics, Principles and Methods, edited by
K. D. Sattler (CRC Press, Boca Raton, FL, 2011).

[2] Nanoscale Liquid Interfaces: Wetting, Patterning, and Force
Microscopy at the Molecular Scale, edited by Th. Ondarçuhu
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