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Monte Carlo investigation of critical properties of the Landau point of a biaxial liquid-crystal system
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Extensive Monte Carlo simulations are performed to investigate the critical properties of a special singular
point usually known as the Landau point. The singular behavior is studied in the case when the order parameter is
a tensor of rank 2. Such an order parameter is associated with a nematic-liquid-crystal phase. A three-dimensional
lattice dispersion model that exhibits a direct biaxial nematic-to-isotropic phase transition at the Landau point
is thus chosen for the present study. Finite-size scaling and cumulant methods are used to obtain precise
values of the critical exponent ν = 0.713(4), the ratio γ /ν = 1.85(1), and the fourth-order critical Binder
cumulant U ∗ = 0.6360(1). Estimated values of the exponents are in good agreement with renormalization-group
predictions.
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I. INTRODUCTION

According to Landau mean-field theory (MFT) [1], an
isolated singular point can exist on any first-order phase-
transition line. This point is produced by the vanishing of
the coefficient of the cubic term in the expansion of the free
energy in powers of the order parameter φ, which is

f (φ) = f0 − hφ + 1
2τ0φ

2 + u3φ
3

+u4φ
4 + u5φ

5 + u6φ
6 + · · · . (1)

If φ is a tensor, the third-order term u3φ
3 cannot be removed

and a first-order transition line is obtained by varying τ0 and
u3. For the case when τ0 = u3 = 0, an isolated singular point
arises on the first-order transition line, and at this point the
jump in φ vanishes. The critical singular point is known as the
Landau point.

The presence of the Landau point in the phase diagram of a
lattice model for a fluid of biaxial particles was confirmed by
Alben [2]. He employed a type of mean-field approximation
to obtain the qualitative features of the phase diagram, and
he pointed out that mean-field studies are not sufficient to
see the special nature of the second-order transition at the
Landau point because of strong fluctuations. In his paper,
Alben suggested that liquid crystals could be a suitable system
to manifest the predicted behavior. A phenomenological
description [3–5] of the uniaxial and biaxial nematic phases
of liquid crystals can be obtained by a sixth-order Landau–de
Gennes free-energy expansion in powers of the symmetric and
traceless tensor order parameter Q. The tensor Q can be written
as

Q = q0√
6

(3n̂ ⊗ n̂ − 1) + q2√
2

(l̂ ⊗ l̂ − m̂ ⊗ m̂), (2)

where {l̂,m̂,n̂} are the three orthonormal directors that are
identified with eigenvectors of Q corresponding to three real
eigenvalues (in the general case of the biaxial phase havingD2h
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symmetry, the three eigenvalues are different). This simple
model predicts a direct I ↔ NB second-order transition at
the Landau point. In the phase diagram of a liquid-crystal
system, the Landau multicritical point exists where biaxial
nematic (NB), uniaxial nematic [NU± ; for systems of prolate
molecules (+) and oblate molecules (−)], and isotropic (I )
phases are in equilibrium. At this special critical point, two
second-order NU± ↔ NB lines meet two first-order I ↔ NU±

lines. In another mean-field type study, Straley [6] generated
a topologically identical phase diagram of rectangular hard
parallelopipeds. A system of asymmetric ellipsoids interacting
with infinite-range forces was studied by Boccara et al. [7]
to give an identical phase diagram. These studies show that
the Landau point, at which a direct I ↔ NB second-order
transition occurs, corresponds to a given (definite) molecular
shape, which can be parametrized by a single molecular
biaxiality parameter. At this point, the biaxial molecules are
neither very rodlike nor very much disklike (the so called
self-dual geometry). Thus in terms of the molecular biaxiality
parameters, the location of the Landau point in the phase
diagram can be predicted. All the above studies are mean-field
type and hence did not take into account fluctuations.

The Landau point was investigated by several authors
using renormalization-group (RG) methods [8–11]. Vigman
et al. [8] have shown that the possibility of the existence
of the Landau point also remains valid when fluctuations
are taken into account. They studied the Landau point by
the ε expansion method. For their study, they chose a
liquid-crystalline system because the order parameter that
describes the nematic-isotropic transition in liquid crystals
is a symmetric, traceless tensor of rank 2, order 3. In 1978,
Vause and Sak [11] extended the theory to order ε2, ε = 4 − d.
Apart from the usual critical exponents η (the correlation
function exponent) and ν (the correlation length exponent),
these authors evaluated a new exponent �3 that determines the
shape of the co-existence curve between the isotropic and the
uniaxial phases. In their work, they reported that the exponents
η and ν are the same as those for the isotropic n-vector model,
with n = 5 (in three-dimensional space, the nematic order
parameter has five independent components). The n-vector
model had been studied by Wilson with Feynman-graph
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techniques [12], and the usual critical exponents for the
Landau point in liquid crystals with n = 5 can be expressed
as γ = 1 + 7

26ε + 1309
2197ε2 + O(ε3), γ being the susceptibility

exponent, and η = 7
338ε2 + O(ε3). The numerical values of

these exponents for ε = 1 (d = 3) are γ = 1.418 (to order
ε2) and η = 0.0207 (to order ε2). For the correlation-length
exponent, the scaling law γ = ν(2 − η) is used, and this gives
ν = 0.716.

On the experimental front, the realization of the Lan-
dau point has long been a challenging task. The recent
claims [13,14] of finding the direct I ↔ NB transition in
thermotropic liquid crystals for bent-core molecules, a new
class of liquid crystals, has brought back fresh interest in this
field of research. Several theoretical studies and experimental
searches for biaxial nematics have been reported, although
many open questions still remain to be solved [15]. Computer
simulation studies [16,17] have shown that the presence of a
strong transverse dipole moment associated with the bent-core
molecules splits the Landau point in the phase diagram into
a Landau line, and these studies suggest that the formation of
a Landau line could help in the detection of biaxial order.
The bent-core molecules can be modeled as V-shaped for
theoretical studies. Maier-Saupe molecular theory as well as
the computer simulation studies predict that the Landau point
in the phase diagram for the V-shaped molecules without any
permanent dipole moment, and where both mesogenic arms are
equivalent, occurs when the interarm angle is at the tetrahedral
value [18–20].

Although several computer simulation studies [21,22] close
to the Landau point have been reported to find its exact
location in the phase diagram and to verify the second-order
nature of the I ↔ NB phase transition, none of these works
investigated the critical properties of the Landau point. To be
more specific, to the best of our knowledge there is no such
computer simulation study that is involved in extracting the
critical exponents for the Landau point.

The purpose of this paper is to estimate the usual critical
exponents associated with the Landau multicritical point by
Monte Carlo simulation. For this purpose, we have chosen a
simple lattice model of symmetric V-shaped biaxial molecules
interacting with a second-rank anisotropic pair potential.
Monte Carlo (MC) study of such a system has been reported by
Bates and Luckhurst [20], and it has been shown that this model
contains almost all the features of the biaxial molecule that are
essential to its liquid-crystal character. The phase behavior of
symmetric V-shaped biaxial molecules is determined by the
interarm angle θ . The Landau point in the phase diagram for
such a system occurs when θ = θC = cos−1(−1/3) [19].

We have performed extensive MC simulations in the vicin-
ity of the Landau point for symmetric V-shaped molecules.
Throughout our study, θ is set at the tetrahedral value (θC).
In our model, system molecules are placed at the sites of a
simple cubic lattice where they have only orientational degrees
of freedom. From the simulated data, relevant thermodynamic
quantities have been calculated using the multiple histogram
reweighting technique [23]. We then analyzed the reweighted
values of thermodynamic quantities for different temperatures
by finite-size scaling [24,25] and cumulant methods. The
critical temperature has been estimated with high accuracy.
The universality of the Landau multicritical point is de-

termined from the values of the critical exponents and by
analyzing the value of the fourth-order Binder cumulant at the
critical point at the thermodynamic limit.

II. MODEL AND THE OBSERVABLES

We use a lattice model, which is a biaxial generalization of
the Lebwohl-Lasher potential [26] as proposed in Ref. [20].
Each arm of the symmetric V-shaped molecules interact with
those of the nearest neighbors via a potential that goes like
−P2(cosβ), where P2 is the second Legendre polynomial and
β is the angle between the interacting arms. Therefore, the
symmetric V-shaped molecules are interacting with six nearest
neighbors 〈ij 〉 via the pair potential

Uij = −ε
∑
m

∑
n

P2(cos βmn
ij ), (3)

where m,n represent two arms of the ith and j th molecules,
respectively, and ε is a strength factor that is identical for
all interactions between the arms of symmetric V-shaped
molecules having the same anisotropy in the interactions. The
present lattice model is equivalent [20] to the widely studied
dispersion model introduced by Luckhurst et al. [27,28]. An
extensive Monte Carlo simulation study [29] revealed that the
phase diagram for the dispersion model contains the Landau
point occurring at λ = 1/

√
6, where λ represents the molecular

biaxiality parameter. In the present study, the fixed angle θ

between two symmetric arms of a V-shaped molecule plays
the role of the molecular biaxiality parameter λ, and θ = θC

corresponds to λ = 1/
√

6.
To identify nematic phases, second-rank order parameters

associated with the long as well as the transverse molecular
axes must be defined. Straley [6] introduced four order
parameters for the full description of an ordered phase of
liquid crystal composed of biaxial particles. Thereafter, several
notations [30] have been used to denote the same set of order
parameters with different numerical prefactors and symbols.
The second-rank orientational order parameters of a rigid
biaxial molecule in a biaxial phase expressed in terms of
the Saupe ordering matrix [3,20] are directly related with the
measurements of the experiments and therefore are widely
used. These order parameters are defined by using four inde-
pendent principal components of the Saupe ordering matrix.
Following the prescription of Dunmur and Toriyama [31],
order parameters can be expressed in terms of the Saupe
ordering matrix as S = SZZ

zz , D = SZZ
xx − SZZ

yy , P = SXX
zz −

SYY
zz , and C = (SXX

xx − SYY
xx ) − (SXX

yy − SYY
yy ), where x,y,z and

X,Y,Z denote, respectively, the principal molecular (symme-
try) axes and the principal laboratory axes. For a symmetric
V-shaped molecule, the z axis is chosen along the vector
joining the midpoints of the arms of the molecule, the y axis
is chosen along the bisector of the interarm angle, and the x

axis is along the perpendicular direction of the plane of the
molecule (Fig. 1). The principal axes are labeled so that the
biaxiality of the phase is positive, i.e., SZZ

zz > SXX
zz − SYY

zz > 0.
In an isotropic phase, all the order parameters S, D, P ,

and C are zero. For a uniaxial phase comprised of uniaxial
molecules, only the major order parameter S is nonzero, and
the relation SXX

zz = SYY
zz = − 1

2SZZ
zz is maintained. On the other

hand, if the molecules are biaxial but the phase is uniaxial, then
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FIG. 1. Schematic diagram of a symmetric V-shaped molecule.
The three molecular principal (symmetry) axes are x, y, and z with
the x axis normal to the plane of the page.

both S and D are nonzero. If the molecules and the phase are
both biaxial, then all four order parameters S, D, P , and C
are nonzero. In the limiting case of perfect ordering, S → 1,
D → 0, P → 0, and C → 1. P and C are the measure of the
phase biaxiality of the system. Of these two order parameters,
P is independent of molecular biaxiality whereas the other
parameter C depends considerably on it. Considering the
extensive simulations involved in extracting critical exponents
at the Landau point, we have determined the critical behavior
of quantities directly related to C only.

We point out that the alignment tensor Q used in the Landau
expansion and defined in Eq. (2) is of macroscopic nature. The
connection between Q and the four molecular scalar order
parameters S, D, P , and C for the dispersion model has been
described in Refs. [32] and [33].

The observables related to the order parameter, such as the
order-parameter susceptibility χ and the reduced fourth-order
Binder cumulant U4, are defined as

χ = N (〈C2〉 − 〈C〉2)

T ∗ (4)

and

U4 = 1 − 〈C4〉
3〈C2〉2 , (5)

where N is the number of molecules, T ∗ = kBT /ε is the
dimensionless temperature, and 〈· · ·〉 denotes the ensemble
average.

Another important observable [34] relevant to the present
study is the thermodynamic derivative of U4 with respect to the
inverse of temperature, K = 1/T ∗, and this can be obtained
from the relation

dU4

dK
= (1 − U4)

[
〈E〉 − 2

〈C2E〉
〈C2〉 + 〈C4E〉

〈C4〉
]
. (6)

III. COMPUTATIONAL ASPECTS

We have performed Monte Carlo simulations on simple-
cubic lattices consisting of N = L3 particles for five different
sizes L = 28, 30, 32, 36, and 40 using the conventional
METROPOLIS algorithm. Periodic boundary conditions in all

 20

 40
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 120

 1.12  1.14  1.16

χ

T*

L=28
L=30
L=32
L=36
L=40

FIG. 2. The susceptibility of biaxial order parameter χ (T ∗,L)
generated by multiple histogram reweighting plotted against dimen-
sionless temperature, T ∗, for five lattice sizes.

directions have been used. In an attempted move, a site is
selected randomly at first and then a randomly chosen arm
of the V-shaped molecule at that site is rotated following the
Barker-Watts method [35] subject to the constraint that the
angle between the arms of the molecule is fixed.

For each lattice size, simulations for several values of T ∗
(at least six temperatures) in the vicinity of the transition
region have been carried out for generating a one-dimensional
histogram N (E) and three constant energy averages—〈C〉(E),
〈C2〉(E), and 〈C4〉(E). From these four one-dimensional arrays,
we calculate all thermodynamic quantities of interest.

The maximum autocorrelation time of the system for the
largest system size, L = 40, is 1500 Monte Carlo steps per
site (MCS) corresponding to the energy variable, whereas it
is 6970 MCS corresponding to the order-parameter variable.
MC runs with, at least, 9 × 106 MCS have been performed for
a single temperature for the larger lattices, which took about
90 h of CPU time for L = 40, where the simulations were
performed on Intel Core i7 processors clocked at 3.2 GHz.

Since the energy in this model is continuous, we need to di-
vide the whole energy range (Emin/N = −4.0 and Emax/N =
0) into bins of appropriate width. For example, the energy

bin-width per particle for L = 40 is set to 3.125 × 10−5.
We also checked using ten times finer bins that this binning

 0.58

 0.6

 0.62

 0.64

 0.66

 1.12  1.125  1.13  1.135  1.14  1.145

U 4

T*

L=28
L=30
L=32
L=36
L=40

FIG. 3. The Binder cumulant U4(T ∗,L) generated by the multiple
histogram reweighting plotted against dimensionless temperature,
T ∗, for five lattice sizes.
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FIG. 4. The derivative of the Binder cumulant dU4/dK is plotted
as a function of the dimensionless temperature, T ∗, for five lattice
sizes.

is small enough to ensure negligibly small discretization
error. Various thermodynamic quantities have been computed
using the multiple-histogram reweighting method proposed by
Ferrenberg and Swendsen [23].

IV. RESULTS AND DISCUSSION

We first present some raw simulation data displaying how
the various observables of interest depend on temperature and
system size. In Fig. 2 , the susceptibility χ corresponding to
the biaxial order parameter C is plotted versus T ∗ for various
system sizes. We observe that χ shows a maximum, which
becomes more pronounced as L increases. Also the peak
position shifts toward the lower values of T ∗ as L increases.

The fourth-order Binder cumulant U4 is plotted in Fig. 3
for various system sizes. We observe that the curves for the
cumulant approximately cross each other at a single point.
This exhibits the typical behavior of the cumulants near a
continuous phase transition. The thermodynamic derivative
dU4/dK is determined using Eq. (6), and we plot it in Fig. 4 as
a function of T ∗ with increasing system size L. The derivative
shows a maximum at the transition.

 0.63

 0.635

 0.64

 1.13  1.131

U 4

T*

L=28
L=30
L=32
L=36
L=40

FIG. 5. Plot of U4(T ∗,L) vs T ∗ for several lattice sizes. For
increasing lattice size, a shift of the intersection toward higher values
of U4 becomes visible as a larger scale is chosen. The intersections
with the cumulant for L = 28 are shown by triangles.
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 1.1308
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T C
(L

)

1/log 10b

FIG. 6. Extrapolation of the temperature values of the crossings
of the L = 28 curve of U4 with all other curves against the inverse
logarithm of b = L′/L. The critical temperature TC = 1.1298 ±
0.0001.

In the vicinity of the critical point, the reduced fourth-order
cumulants U4 show a strong dependence of the system sizes
(see Fig. 3). However, at the critical point the cumulants adopt
a nontrivial value U ∗, known as the critical Binder cumulant,
which does not depend on system sizes in the scaling limit.
From the value of U ∗, we can identify the universality class
of the continuous transition. The crossings of the U4(L,T ∗)
curves (see Fig. 3) give a first estimate of U ∗ and the critical
temperature TC , which are 0.63 and 1.13, respectively. To get
more precise values of these quantities from our simulation
data, we have used an extrapolation procedure, which is
necessary due to the presence of finite-size corrections to
scaling.

Four data points are obtained from the crossings of the
L = 28 curve with the others (see Fig. 5) having a higher L

value (L′), and these are used for two straight-line fits (Figs. 6
and 7). The first extrapolation leads to an estimate of the critical
temperature TC = 1.1298 ± 0.0001 at the thermodynamic
limit. A similar analysis of the variation of cumulant crossings
gives an accurate estimate of the critical Binder cumulant
U ∗ = 0.6360 ± 0.0001. As far as we know, there are no

 0.634

 0.636

 0.638

 0  10  20  30

U 4

1/log10b

FIG. 7. Extrapolation of the fourth-order Binder cumulant values
of the crossings of the L = 28 curve of U4 with all other curves against
the inverse logarithm of b = L′/L. The critical Binder cumulant
U ∗ = 0.6360 ± 0.0001.
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FIG. 8. Variation of ln χmax with ln L (slope, γ /ν = 1.85 ± 0.01).

previous results for U ∗ at the Landau point with which we
can compare our estimate. We only mention that this is a little
higher than the universal value of U ∗ for the conventional
Heisenberg-like transition (U ∗ ≈ 0.62), which corresponds to
n = 3. Also, for the Ising-like transition, U ∗ ≈ 0.46 in three
dimensions (n = 1, d = 3) [34].

The finite-size scaling analysis of various thermodynamic
quantities has been performed by the standard method [24] to
estimate the critical exponents.

The susceptibility peak χmax scales as

χmax ∝ Lγ/ν. (7)

The slope of the straight line in the log-log plot of χmax(L)
(Fig. 8) gives the value of the ratio γ /ν = 1.85 ± 0.01.

Determination of the correlation-length exponent from the
usual MC simulation data is quite a difficult task. Use of
the derivative of the Binder cumulant improves the situation.
The maximum value of dU4/dK has a nice scaling property,
that it scales as L1/ν . In Fig. 9 we plot (dU4/dK)max as a
function of system size on a log-log scale. The linear fit of
the logarithm of the derivatives as a function lnL yields ν =
0.713 ± 0.004. This is remarkably close to the ε-expansion
prediction (to order ε2) ν = 0.716 [12]. Taking the product of

 1.2

 1.4

 1.6

 1.8

 3.3  3.4  3.5  3.6  3.7

ln
(d

U
4/

dK
) m

ax

lnL

1/slope=0.713(4)

FIG. 9. ln(dU4/dK)max vs ln(L). The exponent ν = 0.713 ±
0.004.

the MC estimates of γ /ν and ν, we obtain γ = 1.319, which
is a little lower than the ε-expansion prediction (to order ε2)
γ = 1.418.

V. CONCLUSION

We have shown that the multiple-histogram reweighting
technique and finite-size scaling analysis allow us a precise
determination of the critical exponents ν = 0.713(4), γ =
1.319, and the fourth-order critical Binder cumulant U ∗ =
0.6360(1) at the Landau point. Our simulation results confirm
that the I ↔ NB transition predicted by the dispersion model
belongs to the 3D-isotropic Heisenberg universality class with
order-parameter dimensionality n = 5 as predicted earlier by
renormalization-group methods [9,12].
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