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Shear modulus of structured electrorheological fluid mixtures
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Some immiscible blends under a strong electric field often exhibit periodic structures, bridging the gap between
two electrodes. Upon shear, the structures tilt, and exhibit an elastic response which is mostly governed by the
electric energy. Assuming a two-dimensional stripe structure, we calculate the Maxwell stress, and derive an
expression for the shear modulus, demonstrating how it depends on the external electric field, the composition,
and the dielectric properties of the blend. We also suggest the notion of effective interfacial tension, which
renormalizes the effect of the electric field. This leads to a simple derivation of the scaling law for the selection
of the wavelength of the structure formed under an electric field.
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I. INTRODUCTION

When applying an electric field to some specific fluids, their
apparent viscosity increases sharply [1]. The fluids exhibiting
such an effect are called electrorheological fluids (ER fluids).
There are movements to apply ER fluids to some products,
such as a brake and clutch system [2,3]. Ordinary ER fluids
are suspensions which consist of insulating liquids such as
a silicon oil and nonconducting small particles and exhibit a
high apparent viscosity by the following mechanism [4]: Once
an electric field is applied to the suspensions, electric dipoles
appear in the particles. Dipoles aligned with the electric field
attract each other, while dipoles with their lines of center
normal to the electric field repel each other. Because of the
interactions, the particles aggregate into fibrous columns per-
pendicular to the electrodes and construct structures spanning
the electrode gap. This dramatic change in the structures
increases the apparent viscosity of the suspensions. There are
some disadvantages of ER suspensions, however, related to a
degradation of the ER effect due to aggregation, sedimentation,
solidification of the particles, the wear and tear between the
particles and the electrodes, etc. [5]. Different types of ER
fluids have been developed to solve these kinds of problems [6–
9]. Binary mixture fluids such as polymer blends are one of
the candidates [10–16]. A mixture of dielectric fluids 1 and 2,
which are immiscible, exhibits an electrorheological response
when their dielectric constants ε1 = ε̄ + δε and ε2 = ε̄ − δε

are different. Here, the electrorheological response arises from
Maxwell stress acting on the interface.

Recently, we have suggested that the effect of Maxwell
stress on the average stress can be effectively treated as
anisotropic interfacial tension [17]. In Ref. [18], we then
proposed a set of constitutive equations describing the elec-
trorheological behavior of immiscible binary fluid mixtures
when the effect of the electric field is relatively weak. However,
the notion of anisotropic interfacial tension due to Maxwell
stress would be most useful under a strong electric field. In
fact, the condition of a weak electric field is expressed as
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S � 1, with the dimensionless number

S ≡ KεE
2
exλ

�
, (1)

where Kε = (δε)2/ε̄, Eex is the external electric field (defined
as the voltage difference across the capacitor divided by its gap
width), � is the interfacial tension, and λ is the typical domain
size in the mixture. In such a situation, S � 1, the electric
field weakly perturbs the domain morphology. Note that under
a weak electric field, the domain size in steady shear flow
(with shear rate γ̇ ) is determined by the balance between the
interfacial and viscous stresses, i.e., λ � �/η0γ̇ , where η0 is
the viscosity of fluids 1 and 2, which is assumed to be the same,
for simplicity. Therefore, Eq. (1) becomes S = KεE

2
ex/(η0γ̇ ).

In the present paper, we shall look at the other limit of
the strong electric field, S � 1. Here, the mixture typically
forms a columnar structure, which has a resistance to shear
deformation, i.e., the mixture exhibits a solidlike response.
Experimentally, a plateau shear modulus is observed over a
wide frequency range [19]. By considering a two-dimensional
(2D) stripe geometry, we derive several important features of
the binary fluid mixture under a strong electric field, including
the wavelength of the stripe and the plateau shear modulus.
In Sec. III, we first calculate the Maxwell stress of the system
based on the perturbation theory. In Sec. IV, we perform a
standard electrostatic analysis, which provides an alternative
derivation of the Maxwell stress. In Sec. V, we then argue
that the Maxwell stress can be expressed using an interfacial
tensor, which leads to the notion of renormalized effective
interfacial tension. This allows us to evaluate the typical wave
number of the stripe structure. The analysis of the 2D stripe is
mostly motivated by its simple tractability, but we expect that
the essences of the obtained results apply to the 3D case as
well, as briefly discussed in the last part of Sec. III.

II. ELASTIC STRESS IN DIELECTRIC FLUIDS
UNDER STRONG ELECTRIC FIELD

We consider a binary fluid which consists of components 1
and 2, and introduce the order parameter φ(�r) = φ1(�r) − φ2(�r),
where φ1(�r) and φ2(�r) are local volume fractions of compo-
nents 1 and 2, respectively. Note that the order parameter φ(�r)
is normalized to lie between −1 and 1, and the condition
φ1(�r) + φ2(�r) = 1 is always satisfied. We consider the sharp
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interface limit, where the phase-separated domain structure
is characterized by the interfacial tensor (see below). The
elastic shear stress of the mixture can be decomposed into
the interfacial stress σ I

αβ and the Maxwell stress σM
αβ .

Interfacial stress. The average stress arising from the
interfacial energy depends on the configuration of the interface.
Introducing an interfacial tensor [20]

qαβ = 1

�

∫
dS(nαnβ), (2)

where
∫

dS( ) is the surface integral, � is a volume of the
system, and �n is the unit vector normal to the interface, the
interfacial stress σ I

αβ is given as

σ I
αβ = −�qαβ. (3)

Maxwell stress. The local Maxwell stress σM
αβ(�r) =

ε(�r)Eα(�r)Eβ(�r) depends on the dielectric constant and the
electric field at the local position, which depend on the
domain structure of the mixture in a nontrivial way. There is a
useful formula to calculate the average Maxwell stress σM

αβ =
�−1

∫
d�r σM

αβ(�r) in terms of the structure factor 〈δφ�k δφ−�k〉 of
the system [17,21]:

σM
αβ = − Kε

�

∫
�k

(kαEex,β + kβEex,α)(�k · �Eex)

k2
〈δφ�k δφ−�k〉

+ Kε

�

∫
�k

kαkβ(�k · �Eex)2

k4
〈δφ�k δφ−�k〉. (4)

Here, φ�k = ∫
d�rδφ(�r)ei�k·�r with δφ(�r) = φ(�r) − φ0, where φ0

is a spatial average of φ(�r) defined as φ0 = �−1
∫

d�rφ(�r). This
formula is based on the perturbative calculation of the local
electric field, and would be valid for δε/ε � 1. As already
stated, �Eex is the external electric field, which is constant in
space, and accordingly all the spatial structural information is
contained in the structure factor 〈δφ�k δφ−�k〉 in this formula.

In the present situation, the sample with the volume � = Sl

is confined between two parallel plates with area S with their
separation l, and a constant voltage difference V is applied
between the plates. We take the normal to the plate direction as
the y axis, and shear the sample to the x direction. Then, �Eex =
t (0,V/l,0), and we define Eex ≡ | �Eex| = V/l. The superscript
t represents a transpose sign. In this case, the above formula
becomes

σM
xy = −Kε

�
E2

ex

∫
�k

[
kxky

k2
− kxk

3
y

k4

]
〈δφ�k δφ−�k〉. (5)

III. PERTURBATION CALCULATION
OF MAXWELL STRESS

Let us consider the 2D system, where the fluid mixture
forms a stripe structure with the spatial period λ under a strong
electric field. The mixture is confined between parallel plates
with a separation l and a surface area (length in 2D) S. The
voltage drop V across the plate is constant. The geometry of
the system is shown in Fig. 1.

When small shear deformation with shear strain γ is
imposed on the system, δφ(�r), the spatial modulation from

l

λ

λφ1

l γ

e//

e

V

V

FIG. 1. Geometry of the system. Upper: No shear strain. Lower:
Weak shear strain γ is applied.

φ0 is represented as

δφ(�r) = 2

N
2∑

n=− N
2

H

(
x − γy − nλ + a

2

)

×H

(
γy + nλ + a

2
− x

)
− 1 − φ0, (6)

where H (x) is the Heaviside step function, a = λφ1 represents
a width of a region with a high value of the order parameter,
φ1 is a spatial average of φ1(�r), and φ2 is defined in the same
way as φ1. We consider that the number of stripes N is large,
i.e., N � 1. Due to its periodicity, δφ(�r) can be expanded to
the Fourier series,

δφ(�r) =
∑
m,n

Cm,n exp

(
2πimx

λ

)
exp

(
2πinγy

λ

)
, (7)

where the Fourier coefficients are

Cm,n = γ

λ2

∫ λ

0

∫ λ/γ

0
δφ(x,y) exp

(
−2πi(mx + nγy)

λ

)
dxdy.

(8)

With δφ(�r) given by Eq. (6), one finds Cm,n is nonzero only if
m + n = 0. Thus, Cm,n can be represented as Cn and

Cn =
{

2
nπ

sin
(

nπa
λ

)
(n 	= 0),

0 (n = 0).
(9)

Hence, Eq. (7) becomes

δφ(�r) =
∑
n	=0

2

nπ
sin

(
nπa

λ

)
exp

(
2nπi

λ
(x − γy)

)
, (10)
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and the Fourier transformation of δφ(�r) is

δφ�k = 8π2
∑
n	=0

1

nπ
sin

(
nπa

λ

)
δ

(
kx + 2nπ

λ

)

× δ

(
ky − 2nπγ

λ

)
, (11)

where δ(x) is the Dirac delta function. Therefore, 〈δφ�k δφ−�k〉
in Eq. (5) is given as

〈δφ�k δφ−�k〉 = 64π4
∑
n	=0

1

n2π2
sin2

(
nπa

λ

)
δ2

(
kx + 2nπ

λ

)

× δ2

(
ky − 2nπγ

λ

)
. (12)

By rewriting the square of the delta function as

δ2(k) = δ(k)
1

2π
lim

L→∞

∫ L/2

−L/2
eikx

= δ(k)
1

2π
lim

L→∞
L, (13)

with a linear system size L, that is, S (l) in the x (y) direction,
we obtain

〈δφ�kδφ−�k〉 = 16π2�
∑
n	=0

1

n2π2
sin2

(
nπa

λ

)
δ

(
kx + 2nπ

λ

)

× δ

(
ky − 2nπγ

λ

)
. (14)

We substitute Eq. (14) into Eq. (5) and write the Maxwell
stress as

σM
xy � B2KεE

2
exγ, (15)

with a factor

B2 = 4
∑
n	=0

1

π2n2
sin2 (πnφ1), (16)

up to the first order of a shear strain γ . For a symmetrical blend
φ1 = 1/2, one can evaluate the factor as

B2 = 4
∑
n	=0

1

2π2n2
[1 + (−1)n+1] = 1, (17)

with the following formula,

∞∑
n=1

1

n2
= π2

6
. (18)

For general φ1, we numerically evaluate the factor B2. The
result shown in Fig. 2 indicates the maximum stress at the
symmetrical composition.

In 3D systems, the mixtures often form a hexagonal
structure under a strong electric field [22]. In such a case,
too, it is rather straightforward to see that the scaling structure
of the Maxwell stress given by Eq. (15) is preserved. Now,
before shear deformation, the columns are aligned to the y

direction, and the structure factor can be expressed as

〈δφ�k δφ−�k〉 = S⊥(kx,kz)δ(ky), (19)
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FIG. 2. The dependence of the Maxwell stress rescaled by KεE
2
ex

on volume fraction φ1. The dots are results from Eq. (15), where
we have carried out the summation in Eq. (16) from n = 1 to
n = ±105, and the solid line is Eq. (31) with Eq. (28). In both
cases, the parameters are chosen as follows: ε1 = 10.0, ε2 = 9.5,
γ = 0.1. The dashed line indicates Eq. (31) with Eq. (28) for the
case with a relatively large dielectric constant difference (ε1 = 10.0,
ε2 = 3.0, with other parameters being the same as before), where
the deviation from the perturbation calculation (maximum stress at
φ1 = 1/2) becomes evident.

where S⊥ reflects the in-plane (x-z plane) structure, which is
assumed to have a characteristic length scale λ. Considering
that the integral is dominated by the contribution from the first
peak in S⊥, we approximate the structure factor as

〈δφ�k δφ−�k〉 � �
δ(k⊥ − kλ)

k⊥
Sθ (θ )δ(ky), (20)

where k⊥ = (k2
x + k2

z )
1/2

, (kx,kz) = k⊥(cos θ, sin θ ), and
kλ = 2π/λ. When sheared, it becomes

〈δφ�k δφ−�k〉 � �
δ(k⊥ − kλ)

k⊥
Sθ (θ )δ(ky + γ kx). (21)

Plugging this into Eq. (5), one can show the second term is
negligibly small, and find

σM
xy � B3KεE

2
exγ + O(γ 3), (22)

where the numerical constant

B3 =
∫

dθ cos2 θSθ (θ ) (23)

reflects the in-plane structure of the mixture.

IV. ELECTROSTATIC ENERGY OF DIELECTRIC
FLUID CAPACITOR

The preceding calculation of the Maxwell stress is based
on the perturbation calculation of the electric field, the result
of which is thus valid only for the small δε/ε̄ case. Now we
provide an alternative derivation of the Maxwell stress which
is not limited to the small δε/ε̄ case. Again, we assume a 2D
stripe geometry (Fig. 1). The electrostatic energy of the system
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is

UE = −1

2

∫
d�r �E(�r) �D(�r)

= −1

2

∫
d�rε(�r)[E2

‖ (�r) + E2
⊥(�r)]

= −1

2
Sl

[
φ1

(
ε1Ē

2
‖ + 1

ε1
D̄2

⊥

)
+ φ2

(
ε2Ē

2
‖ + 1

ε2
D̄2

⊥

)]
,

(24)

where we decompose the electric field vector into the parallel
and the perpendicular components �E(�r) = (E‖(�r),E⊥(�r)) to
the tilted stripe direction. In the last expression, we introduce
the spatial averages of E‖ and D⊥, which are marked by the
bar.

To obtain Ē‖, we evaluate its line integral along the parallel
path to the tilted stripe (see Fig. 1). With the path length as
l‖ = l(1 + γ 2)1/2 � l(1 + γ 2/2), we have the relation

Ē‖l‖ = V ⇔ Ē‖ � Eex
(
1 − 1

2γ 2
)
. (25)

Similarly, D̄⊥ can be obtained by its line integral along the
perpendicular path to the stripe (see Fig. 1), whose length is
l⊥ = l(1 + γ −2)1/2 � l/γ . Noting that a fraction l⊥φ1 of the
total path length belongs to the domain of the component 1,
we find

Ē⊥,1l⊥φ1 + Ē⊥,2l⊥φ2 = V ⇔ D̄⊥ � Eexγ
ε1ε2

ε2φ1 + ε1φ2
.

(26)

Plugging Eqs. (25) and (26) into Eq. (24), we obtain the
following expression for the electrostatic energy of the system
subjected to a small strain γ � 1:

UE � − 1
2SlE2

ex[ε1φ1 + ε2φ2 − γ 2g(ε1,ε2,φ1)], (27)

with a function

g(ε1,ε2,φ1) ≡ − ε1ε2

ε2φ1 + ε1φ2
+ ε1φ1 + ε2φ2

= − ε1ε2

ε1 + (ε2 − ε1)φ1
+ ε2 − (ε2 − ε1)φ1. (28)

In the following, we just describe g(ε1,ε2,φ1) as g.
The Maxwell stress can be derived from the principle

of virtual work as in the following way. Let δUE be the
electrostatic energy increment due to a small change in the
displacement field δu(�r) in the system. Using integration by
parts, we have,

δUE = −
∫

d�r[∇j σ
M
ij (�r)

]
δui(�r)

=
∫

d�rσM
ij (�r)∇j δui(�r). (29)

In the present case, the sample is initially tilted with the
strain γ and we ask about the energy increase due to the
additional strain δγ , i.e., δ�u(�r) = t (δγy,0). Equation (29)
becomes

δUE =
∫

d�rσM
xy (�r)δγ = δγ σM

xy lS, (30)

where σM
xy = �−1

∫
d�rσxy(�r) is the spatial average of the

Maxwell stress. Using Eq. (27), we thus find

σM
xy = 1

lS

d

dγ
UE = gE2

exγ. (31)

The expansion of g up to a second order in δε/ε̄,

g = 4ε

[(
φ1 − φ2

1

)(δε

ε

)2]
+ O

((
δε

ε

)3) (
δε

ε̄
� 1

)
,

(32)

leads to the result already obtained in Sec. III, i.e., the
symmetric profile of Maxwell stress as a function of φ1. As
shown in Fig. 2, the profile almost agrees with that obtained
through the perturbation calculation in Sec. III. This implies
the relation g = B2Kε, which fixes the functional form of the
factor B2 introduced in Sec. III as

B2 = 4φ1(1 − φ1). (33)

When the difference in the dielectric constants between
the components becomes large, the symmetry in the Maxwell
stress profile as a function of φ1 is lost, as is exemplified in
Fig. 2. We, however, note the relation

g → δε2
1

ε
= Kε (φ1 → 0.5). (34)

It is possible to take into account the effect of electric
conductivity in Maxwell stress. We extend our result to a
weakly conductive case in the Appendix. As the result, we
obtain the dependence of the shear modulus G on the frequency
of the ac electric field ω as shown in Fig. 3. This dependency
can be compared with the experimental result reported in
Ref. [19]. Using material parameters in the experiment
of Ref. [19], the characteristic frequency is obtained as
ωc ∼ 60 s−1 (see the Appendix). This is comparable to the
frequency where the shear modulus exhibits a sharp change in
Ref. [19].
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FIG. 3. Rescaled shear modulus of weakly conductive blends
under ac electric field (frequency ω) calculated from Eq. (A4).
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V. MAXWELL STRESS AS ANISOTROPIC
INTERFACIAL TENSION

Next, we express the Maxwell stress in terms of the
interfacial tensor qαβ . Assuming the interface is flat, the
angle between the interface and the electric field (y axis)
ψ is defined by tan ψ = γ . Thus, ψ ∼ γ if the shear strain
γ is small enough (see Fig. 1). Since the interface is
parallel to (sin γ, cos γ ), the normal vector is given by �n =
(− cos γ, sin γ ) and the length of the interface is l

√
1 + γ 2.

To calculate the interfacial tensor, we consider a parallelogram
shaped region as a unit cell. The base of the parallelogram is
parallel to the x direction and its length is λ, the height is l,
and the sides adjacent to the base are parallel to �e‖ in Fig. 1.
As the result, the interfacial tensor in the region is given as

qαβ = 1

lλ

∫
nαnβdS

= 2l
√

1 + γ 2

lλ
nαnβ

= 2
√

1 + γ 2

λ

(
cos2 γ − cos γ sin γ

− cos γ sin γ sin2 γ

)

� 2

λ

(
1 −γ

−γ 0

)
. (35)

Thus, the Maxwell stress is expressed as

σM
xy = gE2

exγ � −�
gλ

2�
E2

exqxy = −�qxysyy, (36)

with a coupling tensor [17]

sαβ = gEex,αEex,βλ

2�
= B2KεEex,αEex,βλ

2�
, (37)

where the last equality with B2 given in Eq. (33) is valid in the
small δε/ε̄ case. Since the interfacial stress is represented as
Eq. (3), the total shear stress is given as

σxy = σ I
xy + σM

xy = −�qxy(1 + syy). (38)

Defining the shear stress as σxy = Gγ , we obtain the shear
modulus G of the system as

G = 2�

λ
(1 + syy) = 2

λ
� + gE2

ex. (39)

Equations (38) and (39) suggest that the effect of Maxwell
stress on shear stress could be viewed as the renormalization
of the interfacial tension with the effective value given by

�eff ≡ �(1 + syy). (40)

In the current geometry (Fig. 1), syy corresponds to the
dimensionless number S introduced in Eq. (1) aside from
the numerical constant of order unity. Therefore, in the
strong electric field condition S � 1, the Maxwell stress term
dominates the shear modulus.

To evaluate the number S, we need to know how the
wavelength λ is selected. To this end, we recall a more general
tensor form of the Maxwell stress

σαβ = −�(qαγ sγβ + qβγ sγα), (41)

which indicates that the renormalized interfacial tension is
anisotropic [17]. Let us consider the phase separation process

from the initial homogeneous mixture. Without the electric
field, the domains grow isotropically, driven by interfacial
tension. If, however, this growth process occurs under an
external electric field Eex, Eqs. (38) and (41) imply an
anisotropic growth due to the effective interfacial tension
of the Maxwell stress origin. Supposing that the field is
applied to the y direction, the stress σyy is determined by the
effective interfacial tension �(1 + syy), while only the bare
interfacial tension � is relevant to stress σxx . This indicates
the following relation for the “isotropic” growth under the
electric field �(1 + syy)l(x) � �l(y), where l(x) and l(y) are
the characteristic sizes of the domain in the x and y directions,
respectively. By setting l(x) = λ and l(y) = l (the distance
between plates), and assuming syy ∼ S � 1, we find

λ �
(

�l

gE2
ex

)1/2

. (42)

This leads to

S �
(

gE2
exl

�

)1/2

� l

λ
. (43)

With a different preparation condition, one may initially
have completely phase-separated mixtures with a flat interface,
and then apply the electric field to the direction normal to
the interface. The strong enough electric field destabilizes the
interface and the analysis of the fast growing mode leads to
essentially the same result as Eq. (42) [22,23].

In Ref. [19], it was suggested that both components in
the shear modulus (contributions from interfacial tension and
Maxwell stress) are proportional to the area density of the
column (in a 2D stripe structure, the analogous quantity is the
line density 1/λ of the stripe). As is evident from Eq. (39),
our result indicates that this does not apply to the term
from the Maxwell stress. This traces back to the fact that
the electrostatic interaction is long ranged. Therefore, unlike
the interfacial energy, the analysis of a single column (stripe)
problem multiplied by the area (line) density is not sufficient
to produce the collective effect of the ensemble of columns
(stripes). This remark is related to the fact that the effective
interface tension defined by Eq. (40) depends on the length
scale λ of the domain. Indeed, under S � 1, �eff ∼ λ, which
is essential to derive the scaling law Eq. (42).

VI. SUMMARY

We have investigated the elastic property of immiscible
blends under a strong electric field. Assuming a 2D periodic
structure, we have calculated the Maxwell stress and interfacial
stress, and derived the shear modulus expressed as Eq. (39).
Under the strong field condition S � 1, the Maxwell stress
(second term) dominates, where the factor g represents the
dependence on the composition and the dielectric properties
of the blend. We have argued that essentially the same scaling
form is expected for a 3D system as well, although the factor
g should be refined to take into account the in-plane ordering
of the columnar structures.

In addition, we have suggested the notion of an effective
interfacial tension �eff [Eq. (40)], which renormalizes the
effect of the electric field. With this notion, we have derived a
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scaling law for the preferred column (stripe) size formed under
the electric field.

To the best of our knowledge, so far, theoretical studies
including our previous [18] and present works are restricted to
the limit of either a weak or strong field. In the future, it should
be of great interest to investigate the intermediate regime,
i.e., S ∼ 1 under shear flow, where the interplay between the
electric field and flow field may lead to an intriguing dynamical
scenario. Another issue is related to the boundary effect. Al-
though in our present study we implicitly neglect it, the effects
associated with wetting and boundary layer formation may be-
come increasingly relevant for blends confined in a thin region.
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APPENDIX

One may be interested in the electrorhological behaviors
of dielectric fluid mixtures which contain a finite fraction
of charge carriers. In that case, the ac electric field is often
employed to avoid charge accumulation. As we mentioned in
Sec. IV, our model can be extended to include the conductivity
effect. When binary mixtures are conductive, Eq. (24) has to
be modified. Here, we introduce the electric conductivities
of components 1 and 2, κ1 and κ2, respectively. Then, D⊥
(the component of an electric flux density perpendicular to
the interface) obeys the following boundary condition at the
interface,

D⊥,1 − D⊥,2 =
(

ε1

κ1
− ε2

κ2

)
J⊥, (A1)

where J⊥ = κ1E⊥,1 = κ2E⊥,2 is the electric current density
perpendicular to the interface. The boundary condition of the
parallel direction is the same as the dielectric case. By using
Eq. (A1), one can rewrite Eqs. (24) and (26) so as to take into
account the electric conductivity. This leads to an expression
for g, which enters in the electrostatic energy of the sheared

sample (see Eq. (28)):

g̃ = − ε̃1κ̃
2
2 φ1 + ε̃2κ̃

2
1 φ2

(κ̃2φ1 + κ̃1φ2)2
+ ε̃1φ1 + ε̃2φ2. (A2)

Since the dielectric response generally involves the time delay
under an ac field, the dielectric constants ε̃i = εi − iκi/ω and
the conductivities κ̃i = κi + iωεi become complex numbers,
where ω is the frequency of the ac field. After some
calculations, we obtain

g̃ ≡ Re[g̃] + i Im[g̃],

Re[g̃] = φ1φ2

ε1φ2 + ε2φ1

{
(ε1 − ε2)2

−
(

ε1κ2 − ε2κ1

ε1φ2 + ε2φ1

)2 1

ω2 + ω2
c

}
,

Im[g̃] = ωc

ω

φ1φ2

ε1φ2 + ε2φ1

{
−

(
κ1 − κ2

ωc

)2

+
(

ε1κ2 − ε2κ1

κ1φ2 + κ2φ1

)2
ω2

ω2 + ω2
c

}
, (A3)

where Re[g̃] and Im[g̃] are a real part and a imaginary
part of g̃, respectively, and ωc = (κ1φ2 + κ2φ1)/(ε1φ2 + ε2φ1)
is a characteristic frequency at which the dielectric and
conductive response changes qualitatively. Modifying Eex as
Eex → Eex exp(iωt) in Eq. (39), the shear modulus G is
represented by

G = 2

λ
� + ∣∣g̃E2

ex exp(2iωt)
∣∣

= 2

λ
� +

√
(Re[g̃])2 + (Im[g̃])2E2

ex. (A4)

At high frequency ω � ωc, Re[g̃] approaches the constant
g̃(κi = 0) = g, while Im[g̃] goes to zero as ∼1/ω. Therefore,
the result of the purely dielectric case Eq. (28) is recovered.
On the other hand, the behavior in the low frequency limit
(ω � ωc) depends on the combinations of dielectric constants
and conductivities of mixtures; while Re[g̃] approaches
the constant g − φ1φ2(ε1φ2 + ε2φ1)−1[(ε1κ2 − ε2κ2)/(κ1φ2 +
κ2φ1)]2, Im[g̃] diverges as 1/ω in general cases (except for the
κ1 = κ2 case). This indicates that the out-of-phase (conductive)
response dominates in the low frequency regime, which results
in the enhancement of the shear modulus. We numerically
evaluate Eq. (A4) and plot it in Fig. 3, where the material
parameters are adopted from the experiment in Ref. [19].
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