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Rotational relaxation time as unifying time scale for polymer and fiber drag reduction
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Using hybrid direct numerical simulation plus Langevin dynamics, a comparison is performed between polymer
and fiber stress tensors in turbulent flow. The stress tensors are found to be similar, suggesting a common drag
reducing mechanism in the onset regime for both flexible polymers and rigid fibers. Since fibers do not have
an elastic backbone, this must be a viscous effect. Analysis of the viscosity tensor reveals that all terms are
negligible, except the off-diagonal shear viscosity associated with rotation. Based on this analysis, we identify
the rotational orientation time as the unifying time scale setting a new time criterion for drag reduction by both
flexible polymers and rigid fibers.
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I. INTRODUCTION

When a Newtonian fluid transitions from laminar flow to
turbulent flow, changes in pressure and velocity fields become
chaotic, and eddies, coherent patterns of flow velocity and
pressure, start to form. As eddies break up into smaller eddies,
an energy cascade forms, which transports the kinetic energy
of the flow to smaller and smaller time and length scales.
Eventually, at the smallest scales, also called the Kolmogorov
scales, this kinetic energy gets dissipated into heat due to
viscosity. Once a flow is turbulent, the energy cascade is
sustained through the turbulence regeneration cycle [1]. Drag
reduction is the phenomenon where, by either modifying
the boundary conditions on the wall [2,3] or by adding
additives [4–7] to the flow, the turbulence regeneration cycle
is disrupted and the dissipation of turbulent kinetic energy
is reduced. Because of their effectiveness as drag reducing
agents, polymers are a popular type of additive [4]. By adding
only a couple of parts per million of certain polymers to a
fluid, well below their overlap concentration where polymer-
polymer interactions are negligible, a drag reduction of up to
80% can be observed [8]. Fibers are another additive that also
generate drag reduction [7], and one of the open questions in
drag reduction is whether fibers and polymers share the same
drag reduction mechanism. Considering that fibers are simply
very stiff polymers, one could regard fiber drag reduction
as a limiting case of polymer drag reduction and make the
assumption that they share the same drag reducing mechanism.
On the other hand, it has been reported that polymers have an
onset criterion [9], while fibers do not [10]. Additionally, it
has been found that fibers are not as effective drag reducing
agents as polymers [10], and there is the viscosity [11] versus
elasticity [12] debate.

Because polymers are typically a lot smaller than the
Kolmogorov length scale, while their relaxation times overlap
with the Kolmogorov time scale, the onset of drag reduction
for polymers is determined by a time criterion [11]. Fibers
are not elastic and thus do not have an onset criterion like
flexible polymers do. However, their molecular weight does
have an effect on their drag reducing effect [13], and a critical
aspect ratio for fibers has been found [7]. Since fibers are
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also typically smaller than the Kolmogorov scale, rather than
a length scale, it can be expected that, like polymers, there is
a fiber time scale associated with their effectiveness as drag
reducing agents.

The viscosity versus elasticity debate is centered around
the question as to whether polymer drag reduction is a
local phenomenon caused by extensional viscosity or a
nonlocal phenomenon caused by the transport of turbulent
kinetic energy into the polymer chain. In an extensional flow,
when a critical shear rate is reached, polymer coils stretch
significantly compared to their equilibrium state, which results
in a significant increase of the elongational viscosity [14].
Replacing the inverse critical shear rate with the Kolmogorov
time scale, this viscosity increase was proposed by Lumley
[11] as a mechanism for drag reduction. The first to suggest that
elasticity is essential for drag reduction was De Gennes [12].
Based on work by Daoudi and Brochard [15], he concluded that
the elongational viscosity theory could not be correct due to the
absence of the coil-stretch transition for polymers undergoing
randomly fluctuating stresses in a turbulent velocity field and
reasoned that drag reduction had to be the result of the elastic
properties of polymers instead [16,17]. Based on experimental
work, theory, and simulations, there is support for both theories
[18]. Since fibers do not have an elastic backbone, their drag
reducing effect is caused by viscosity effects, and if elastic
theory is right, it has to be concluded that fibers and polymers
have different drag reducing mechanisms. However, if the drag
reducing mechanism for polymers and fibers is the same, the
conclusion has to be that for polymers the drag reducing effect
is also caused by viscosity.

The present work investigates the effect of elasticity on drag
reduction by studying the stress tensor, effective viscosity, and
torque generated by different polymers and fibers in turbulent
pipe flow. To model the polymers and fibers, a hybrid direct
numerical simulation plus Langevin dynamics approach is
taken. In this way no closure models are needed to calculate
the stress tensor for either the polymers [19,20] or the fibers
[10,21], and a direct comparison of the polymer and fiber
stress tensors is possible. While the polymers or fibers and
solvent are two way coupled, the number of molecules in the
system is too small to observe drag reduction in the velocity
profile of the flow [18]. This means that the results presented
here are applicable to only the onset of drag reduction and not
the maximum drag reduction (MDR) regime, the maximum
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amount of drag reduction that can be observed in turbulent
flow [22].

The MDR regime has been previously addressed by L’vov
et al. [23] and Benzi et al. [24]. They have used the Doi and
Edwards [25] stress tensor to model the fibers and the Giesekus
[26] stress tensor, assuming that the flexible polymers are in
the Hookean regime [27], for the elastic flexible polymers.
They have reported that the physical origins of the stresses
of flexible polymers and rigid fibers are different and have
proposed different scaling laws for the Reynolds stresses at the
wall for elastic polymers and inelastic fibers. Nevertheless, in
the regime of the maximum drag reduction (MDR) asymptote,
they argued that both flexible polymers and rigid fibers give
rise to an effective viscosity and that this viscous effect is
responsible for drag reduction in the MDR regime for both
flexible polymers and fibers.

In the present work, we focus on the onset regime of
drag reduction, as pointed out above. Both the flexible
polymer and fiber are modeled as finitely extensible nonlinear
elastic (FENE) dumbbells with different Deborah numbers
distinguishing them. The main conclusion from the present
direct numerical simulation plus Langevin dynamics approach
is that both flexible polymer and fiber stress tensors have the
same shape. This suggests that the drag reduction mechanism
for the flexible polymers and fibers are the same in the
drag reduction onset regime. Furthermore, analysis of the
conformations of the dumbbell model representing flexible
chains shows that it is first stretched into an anisotropic state
with sufficiently large aspect ratio, thus contributing to torque
similar to fibers. In agreement with Sibilla and Baron [28]
and Kim et al. [29], based on the work by L’vov et al. [23],
De Angelis et al. [30], and Gillissen et al. [31], we report
that the off-diagonal stress component is dominant in drag
reduction. According to the Kramers-Kirkwood equation [32],
the off-diagonal stress component is associated with rotation.
Therefore, the dominant mechanism for drag reduction in the
onset regime is the rotation for both flexible polymers and
fiber. We also propose that the rotational relaxation time is the
unifying time scale between polymer and fiber drag reduction.

II. MODEL

Different drag reduction methods act by reducing the
momentum flux towards the wall [33]. Since drag reduction is
a wall phenomenon, time and length scales are nondimension-
alized as

t+ = tu2
τ

ν1
, x+ = xuτ

ν1
. (1)

In the above equations uτ = √
d1/(4ρ1)|�p/�x| is the friction

velocity, and ν1 is the kinematic viscosity [22]. The subscript
1 is used to indicate that the variables describe the solvent,
while the polymer and fiber variables have a subscript 2. d1 is
the diameter of the pipe, ρ1 is the density of the solvent, and
�p/�x is the pressure gradient. All variables in this paper are
in + units, i.e., nondimensionalized with the friction velocity
and kinematic viscosity, but for improved readability the +
superscript has been omitted. In nondimensional form, the
Navier-Stokes equation describing the momentum balance of

the solvent is
∂u1

∂t
+ u1 · ∇u1 = −∇p + ∇2u1 + f2, (2)

and conservation of mass is guaranteed by the continuity
equation. In the above equation, u is the velocity, t is time,
p is the pressure, and f2 is the polymer dumbbells acting on
the solvent. Polymers and the solvent are two way coupled; that
is, both the solvent acting on the polymers and the resulting
reactive force are accounted for. To minimize the number of
variables, gravity is neglected.

To be able to describe the forces of the polymer dumbbell
back onto the solvent, the polymer dumbbells are described
by Langevin dynamics. Because the dominant time scale for
polymer drag reduction is the longest relaxation time [11],
they are modeled as FENE dumbbells [27], and their longest
relaxation time is the Zimm relaxation time. The two beads
of the dumbbell are called A and B, and the drag force on
the beads is assumed to be Stokes drag. Polymer-polymer
interactions are neglected. Writing the equation of motion for
bead A in wall units gives

τ2ẍ2,A = −(ẋ2,A − u1,A)

− 1

De

x2,AB

1 − (x2,AB/x2,Max)2
+ fR(t), (3)

with x2,AB = (x2,B − x2,A) − x2,0. x2 is the position of a bead,
x2,0 is the equilibrium distance between beads A and B, x2,Max

is the maximum extension, and u1,A is the fluid velocity at
the position of bead A. Dots signify derivatives with respect
to time. The random force fR(t) is zero on average, and each
hit by a solvent molecule is assumed to be independent of
all others. For the fibers, the spring force is left out of their
equation of motion, and the beads are kept at a fixed distance
using the RATTLE algorithm [34].

The simulations are modeled after a system of polyethylene
glycol (PEG) in water, and the following nondimensional num-
bers result from making the above equations dimensionless.
The friction Reynolds number

Reτ = d1uτ

ν1
= 560 (4)

corresponds to a bulk Reynolds number of Re = 8800 and
is equivalent to the nondimensional diameter of the pipe. A
constant friction Reynolds number implies a constant pressure
gradient and variable bulk velocity. The Deborah number

De = τZ = 0,1,10 (5)

is defined as the ratio of the characteristic time scales of
the polymers and the solvent and is a measure of polymer
elasticity. Since the characteristic time scale of the fluid in
wall units is equal to 1, the Deborah number is equal to the
Zimm relaxation time in wall units τZ . De = 1 defines the
onset of drag reduction, De = 10 is a value well within the
drag reduction regime, and De = 0 is the value for fibers. The
particle relaxation time

τ2 = 1

ρ∗d∗2

Re2
τ

18
= 1.789 × 10−3, (6)

with ρ∗ = ρ1/ρ2 and d∗ = d1/d2, is a measure of how sensitive
a bead is to velocity fluctuations in the fluid. The last
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dimensionless group, the diffusion constant, equals

D = (kBT )+

ζ
= 8.133 × 10−4, (7)

with (kBT )+ = kBT uτ /ρ1ν
3
1 , kB being the Boltzmann con-

stant, T being the temperature, and ζ = 3πReτ /d
∗ be-

ing the nondimensional friction factor. This number deter-
mines whether diffusion or advection is dominant. With
changing Deborah numbers, the molecular weight of the
dumbbells has been kept constant, which results in the
following equilibrium lengths in order of increasing Debo-
rah number: x2,0 = 4.000 × 10−1, x2,0 = 2.836 × 10−2, and
x2,0 = 6.110 × 10−2. The maximum extensions are x2,Max =
1.000x2,0, x2,Max = 14.10x2,0, and x2,Max = 6.546x2,0. The
number of dumbbells in the system is N2 = 9.600 × 105.
Keeping the molecular weight constant is equivalent to the
experiments performed by Virk [35] on drag reduction by
rod-like and coiled polyelectrolytes.

The code solves the Navier-Stokes equations in cylindrical
coordinates using direct numerical simulation and is based
on work by Eggels [36]. r , φ, and z, are the radial, angular,
and streamwise directions, respectively, and u, v, and w are
the corresponding velocity components. The code is a fourth
order predictor-corrector finite volume code working on a
nonhomogeneous staggered grid with leapfrog time stepping.
Bead tracking uses the velocity Verlet algorithm and is based
on work by Boelens and Portela [37]. Simulations are run on a
grid of 128 × 256 × 256. This is a coarse mesh, but the results
are expected to hold for higher resolutions [3]. More detailed
information about the code can be found in Boelens [38].

III. RESULTS

In Figs. 1 and 2 the diagonal and off-diagonal components
of the polymer and fiber stress tensor σ2 are shown as
functions of the dimensionless distance from the wall. Taking
the difference in coordinate systems into consideration, the
different components of the stress tensor are in agreement
with literature [31]. It can be observed that dumbbells with
Deborah number De = 0 have the largest, De = 10 the second
largest, and De = 1 the smallest stress tensor components.
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FIG. 1. Diagonal components of the polymer and fiber stress
tensor.
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FIG. 2. Off-diagonal components of the polymer stress tensor.

This is consistent with the results of Virk [35], who found
that for low concentrations in the onset regime rod-like poly-
electrolytes have a stronger drag reducing effect than coiled
polyelectrolytes with the same molecular weight. In addition,
the behavior of the polymer stress tensors is also as expected
because the dumbbell with De = 1 was parameterized to be
the dumbbell at which drag reduction onset occurs, and thus,
polymer stresses are the weakest. Comparing the stress tensor
for De = 0 with the other two stress tensors for De = 1 and
De = 10, it can be seen that, apart from different values for
the maxima and minima, the different stress tensor components
have exactly the same shape. Since the stress tensor describes
the full interaction of the dumbbells with the solvent, this
suggests that the polymers and fibers share the same drag
reducing mechanism in the drag reduction onset regime. In
addition, since the elastic theory does not apply to fibers, it can
be concluded that drag reduction is a local phenomenon and is
caused by viscous effects. This is in agreement with Gillissen
et al. [31]. After recognizing that the r axis points to the wall
while the y axis points out of the wall and considering whether
the forces are on the beads or on the solvent, our results of the
stress tensor are completely consistent with Fig. 3 of Gillissen
et al. [31]. On the other hand, our results are different from
those of L’vov et al. [23] and Benzi et al. [24]. In their work,
they use the Doi and Edwards [25] stress tensor for the fibers
and the Giesekus [26] stress tensors for the elastic polymers.
In their analysis they find a coupling between the diagonal and
off-diagonal components of the conformation tensor which is
linear for elastic polymers and quadratic for rod-like polymers.
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FIG. 3. Effective polymer viscosity.
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Benzi et al. [24] propose a different scaling for the Reynolds
stresses at the wall for elastic and rod-like polymers. Since
the velocity profile at the wall in + units is expected to be
independent of the details of the drag reduction agent [33], this
means that the stress tensors for our rigid and elastic dumbbells
should show different scaling as well. We do not observe this
difference in scaling in our simulations. A possible origin of
this difference is that the Giesekus tensor assumes that the
polymers are in the Hookean regime [27], while in our system
the polymers are modeled as finite extensible nonlinear elastic
dumbbells. Another difference is that the work of L’vov et al.
[23] and Benzi et al. [24] concerns the MDR regime, while our
simulations are in the onset regime. Furthermore, our results
show that the stress for rod-like polymers is higher than that
for flexible polymers. This is in agreement with Virk [35],
where polyelectrolyte chains in salt-free conditions (rod-like)
and salty conditions (coil-like) were investigated.

A follow up question that one can ask is where the effective
viscosity originates from. Both polymers and fibers are known
to show a large increase in viscosity in extensional flow,
associated with the diagonal components of the stress tensor
[14], but there is also the shear viscosity which is associated
with the off-diagonal stress tensor component and rotation.
To analyze this question, we evaluate the contribution of the
effective viscosity to the momentum balance in its most general
form:

∇ · σ2 = 2∇ · (ν2 : s1), (8)

with s1 = 1/2(∇u1
T + ∇u1) being the rate-of-strain tensor

and ν2 being the fourth order viscosity tensor. Performing
a Reynolds decomposition on this equation and taking into
account the symmetries of our system give

∇ · σ2 = ∇ ·
[
ν̃2(r)

∂〈w1〉
∂r

+ 2〈ν ′
2 : s′

1〉
]
. (9)

Here the prime (′) denotes the fluctuating part, and 〈·〉 is the
average with

ν̃2(r) =
⎡
⎣ν̃2,rr (r) 0 ν̃2,zr (r)

0 ν̃2,θθ (r) 0
ν̃2,zr (r) 0 ν̃2,zz(r)

⎤
⎦. (10)

Further expanding the above equation gives the following
contributions to the Navier-Stokes equations:

(∇ · σ2)r = 1

r

∂

∂r

[
rν̃2,rr (r)

∂〈w1〉
∂r

]

− ν̃2,θθ (r)

r

∂〈w1〉
∂r

+ 2(∇ · 〈ν ′
2 : s′

1〉)r , (11)

(∇ · σ2)θ = + 2(∇ · 〈ν ′
2 : s′

1〉)θ , (12)

(∇ · σ2)z = 1

r

∂

∂r

[
rν̃2,zr (r)

∂〈w1〉
∂r

]
+ 2(∇ · 〈ν ′

2 : s′
1〉)z. (13)

These equations show how, in addition to viscosity-velocity
correlations, both the diagonal and off-diagonal components of
the stress tensor act on the solvent. While it has been shown that
at least at the maximum drag reduction limit all components
of the polymer stress tensor are coupled [39], one can expect
that by leaving out different terms in the above equations their

contribution to drag reduction can be investigated. Based on
work by L’vov et al. [23], the results of this can already be
found in literature [30,31], where the above viscosity tensor is
replaced by a scalar viscosity function ν̂2(r). The contribution
to the Navier-Stokes equations can then be written as

∇ · σ2 = ∇ · [ν̂2(r)s1], (14)

which, after Reynolds decomposition, gives a contribution of
the form

(∇ · σ2)r = 0, (15)

(∇ · σ2)θ = 0, (16)

(∇ · σ2)z = 1

r

∂

∂r

[
rν̂2(r)

∂〈w1〉
∂r

]
. (17)

The above equations contain only the off-diagonal shear
viscosity component and none of the extensional viscosity or
viscosity-velocity fluctuations. Calculating the fiber viscosity
function and using this as an input in a new simulation, all the
characteristics of the drag reduced flow can be recovered [31].
De Angelis et al. [30] showed that a viscosity gradient at the
wall is also able to reproduce the characteristics of a polymer
drag reduced flow. This not only means that fluctuations can
be ignored [31] but also shows that the diagonal components
of the stress tensor, and thus extensional viscosity, can be
neglected.

Figure 3 shows the effective polymer and fiber viscosities
calculated from the stress tensor. Their shape of a gradient
at the wall and a plateau in the center is consistent with the
viscosity profile used by De Angelis et al. [30].

To further explore the idea of polymers and fibers creating
drag reduction by rotation, the average relative length of
the end-to-end vector of all dumbbells normalized by their
maximum extensions is shown in Fig. 4. Because the molecular
weight is kept constant between the different simulations,
the maximum extension is 1 for all cases. The dumbbell
with a Deborah number of De = 0 is always fully extended.
Because it represents the most elastic dumbbell with the
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FIG. 4. Average relative length of the end-to-end vector of the
polymer dumbbells.
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FIG. 5. Standard deviation of the torque exerted by the polymer
dumbbells on the solvent.

longest relaxation time, the dumbbell with a Deborah number
of De = 10 gets stretched farther than the dumbbell with a
Deborah number of De = 1. This is in agreement with the
results shown in Fig. 2, which showed that De = 0 displays
the largest amount of drag reduction, followed by Deborah
numbers De = 10 and De = 1. Both elastic dumbbells are
stretched the most when close to the wall, where gradients are
the largest, and relax towards the center of the pipe. That the
amount of drag reduction is proportional to the average relative
length of the end-to-end vector of the fibers and dumbbells, i.e.,
their moment arm, and not to the amount of turbulent kinetic
energy that can be stored in the backbone is an additional
indication that polymer rotation is essential for drag reduction
in the onset regime.

In addition to the end-to-end vector, one can also look into
the standard deviation of the torque, which is shown in Fig. 5.
The torque on the solvent is defined as

T2 = − n

2V

〈
�x2 × �Fh

2

〉
, (18)

where n is the number of polymer dumbbells in volume V ,
�x2 = x2,A − x2,B is the moment arm (i.e., the end-to-end
vector), �Fh

2 = Fh
2,A − Fh

2,B , with Fh
2,i being the hydrody-

namic drag force on bead i, and 〈·〉 indicates an ensemble
average. Because of the symmetry of the polymer stress
tensor, all components of the torque vector on average are
zero. By looking at the standard deviation of the torque, it is
possible to gain more insight into polymer- or fiber-solvent
interactions. Away from the wall the standard deviation of
each torque component is about the same for each polymer,
indicating that they are freely tumbling around in the bulk.
However, as the wall is approached, the different components
diverge. The torque has three contributions: (i) the length of
the moment arm or end-to-end vector, (ii) the magnitude of
the hydrodynamic forces, and (iii) the wall blocking rotation.
For the radial component, the wall does not block rotation,
and the arm is maximized due to alignment in the streamwise
direction. This results in a strong increase of the radial torque
fluctuations at the wall. In the streamwise direction, on the

other hand, the wall is blocking full rotation, which gives
fluctuations which decline monotonically to zero at the wall.
For the angular torque fluctuations, the component associated
with the shear viscosity close to the wall rotation is blocked,
so the fluctuations go to zero. However, farther away from the
wall, the maximum moment arm causes a large increase in the
torque fluctuations. This shows that, although elasticity is not
strictly necessary for drag reduction, the coil-stretch transition
is important for polymer drag reduction because it generates a
moment arm. Another way of looking at this is that a polymer
coil without any stretching can be thought of as a rough sphere
which has no drag reducing effect. Fibers, on the other hand,
because of their aspect ratio, always have a drag reducing
effect. Polymer elasticity allows the roughly spherical coil to
stretch into an anisotropic state with an aspect ratio larger
than unity. It is not the elasticity that makes a polymer drag
reducing but the fact that it can transform into anisotropic
conformations. This is consistent with the results of Sibilla
and Baron [28], who suggested that shear viscosity cannot be
neglected, and Kim et al. [29], who found that countertorque
by polymers suppresses the formation of hairpin vortices at
the wall.

IV. CONCLUSIONS

To summarize, analyzing the polymer stress tensor, it can be
observed that polymer and fiber stress tensors show the same
characteristics. This indicates that, at least in the low drag
reduction regime, polymers and fibers show the same drag
reduction mechanism. Because fibers cannot store turbulent
kinetic energy in their backbone, this mechanism has to be
caused by viscosity effects. We find that the viscous effect
arises from rotational motion of fibers and partially stretched
flexible chains, which is taken as the unifying drag reduction
mechanism in the onset regime. Although viscous effects
have been previously attributed to drag reduction in the MDR
asymptote regime by L’vov et al. [23] and Benzi et al. [24],
they have argued that the physical origins of drag reduction by
flexible polymers and rigid fibers are different. The difference
in scaling between elastic and rod-like polymers suggested by
Benzi et al. [24] is not observed in our simulations. It must be
emphasized that the conclusions of Benzi et al. [24] deal with
the regime of the MDR asymptote, whereas our present work is
in the onset regime of drag reduction. In addition, Benzi et al.
[24] assume the polymers are in the Hookean regime, while
our dumbbells are modeled as FENE springs. Our result in the
onset regime is qualitatively different from the arguments in
[33] that for flexible polymers the main source of interaction
with turbulent fluctuations is the stretching of polymers by the
fluctuating shear and for rod-like polymers dissipation is only
taken as the skin friction along the polymer. We find that the
molecular rotation is the microscopic mechanism for the onset
of drag reduction. By analyzing the different contributions to
the effective viscosity tensor, based on work by L’vov et al.
[23], De Angelis et al. [30], and Gillissen et al. [31], it is found
that all terms can be neglected except for the off-diagonal
component associated with polymer and fiber rotation. To
further explore the idea of polymer and fiber rotation being
important in the onset of drag reduction regime, polymer and
fiber torque fluctuations were investigated. The results suggest
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that the reason that the coil stretch transition is important for
polymer drag reduction is that it generates a moment arm. This
is consistent with the results of Kim et al. [29].

Based on the findings in this work, we propose the
rotational orientation time [40,41] as a time criterion for drag
reduction.
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