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Mass fractal scaling, reflected in the mass fractal dimension df , is independently impacted by topology,
reflected in the connectivity dimension c, and by tortuosity, reflected in the minimum dimension dmin. The
mass fractal dimension is related to these other dimensions by df = cdmin. Branched fractal structures have a
higher mass fractal dimension compared to linear structures due to a higher c, and extended structures have a
lower dimension compared to convoluted self-avoiding and Gaussian walks due to a lower dmin. It is found, in
this work, that macromolecules in thermodynamic equilibrium display a fixed mass fractal dimension df under
good solvent conditions, regardless of chain topology. These equilibrium structures accommodate changes in
chain topology such as branching c by a decrease in chain tortuosity dmin. Symmetric star polymers are used to
understand the structure of complex macromolecular topologies. A recently published hybrid Unified scattering
function accounts for interarm correlations in symmetric star polymers along with polymer-solvent interaction
for chains of arbitrary scaling dimension. Dilute solutions of linear, three-arm and six-arm polyisoprene stars are
studied under good solvent conditions in deuterated p-xylene. Reduced chain tortuosity can be viewed as steric
straightening of the arms. Steric effects for star topologies are quantified, and it is found that steric straightening
of arms is more significant for lower-molecular-weight arms. The observation of constant df is explained through
a modification of Flory-Krigbaum theory for branched polymers.
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I. INTRODUCTION

The physical properties of branched polymers are different
from linear chains of comparable molecular weight [1–3].
Amongst various possible branched architectures, symmetric
star polymers are one of the simplest topologies and have been
widely studied from the perspective of synthesis, structure,
properties, and application [4–8]. Star polymers are branched
macromolecules with all branches or “arms” emanating from
a core. The presence of structural constraints, owing to the
presence of a common branch point, leads to differences in
chain conformation and thermodynamics in star polymers
compared to their linear counterparts [9–15]. Moreover, the
number and structure of arms have been found to have direct
consequences on rheological properties of branched polymers
[16–18].

Zimm and Stockmayer (ZS) evaluated the radius of gyration
Rstar

g , of a star polymer with f arms in dilute solution assuming
that intra- and interarm spacings follow Gaussian statistics
[11,12],

Rstar
g = Rarm

g

(
3f − 2

f

)1/2

, (1)
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where Rarm
g is the radius of gyration of a Gaussian linear chain

in dilute solution with the mass of one arm. A notable result
inferred from Eq. (1) is that the ratio Rstar

g /Rarm
g has a maximum

limiting magnitude of
√

3 as f → ∞ under a Gaussian
assumption. This result is rather meaningless since steric
constraints would render the arms highly non-Gaussian at high
f . Moreover, the results from the Gaussian approximation for
stars may not hold under virtually any conditions since the
intramolecular excluded volume becomes more significant due
to increase in segment-segment interactions near the branch
point and the Gaussian assumption fails to recognize the
singular nature of the branch point [19]. For stars with higher
functionality, the arms of the star might behave as stiff chains
with a limiting conformation of rigid straight arms for very
high f . Assuming a limiting rigid straight-arm configuration
for stars, Rstar

g /Rarm
g ∼ √

zarm, for f → ∞, where zarm is the
mass associated with each arm and Rarm

g is assumed to be
Gaussian. This is significantly larger than the prediction of
Eq. (1) at large f .

Daoud and Cotton (DC) and later Birshtein and Zhulina
addressed the issue of minimization of the free energy due to
intermolecular interactions by generalizing the de Gennes’s
scaling (blob) model for star polymers [12–14,20]. The
interarm repulsive interaction was minimized by assuming that
equal segments of the arms are confined to growing spherical
blobs that can fit into a cone as the arms extend away from the
branch point (core). The star polymer adopts a conformation
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in which each of the f arms is constrained within a cone of
solid angle 4π/f radiating from the branch point, which leads
to increases in the mean separation between the arms with the
distance from the center [13,19]. As per the DC model, the star
polymer is confined to shells of decreasing chain density. There
is no scattering function associated with the DC model so it is
difficult to directly verify this structural model. Under another
widely used theory for the star polymers, the chain structure
does not display core-shell morphology but it rather acquires a
uniform chain density as per Benoit’s model for star polymers
[21,22]. The Benoit model assumes Gaussian conformation
consistent with the Zimm and Stockmayer model but allows for
interarm correlations that have been experimentally verified.

The Daoud and Cotton model describes the conformation
of a star polymer with f arms with l and v as the monomer
length and excluded volume [13,14,20]. According to the DC
model, a star polymer has a solid core of radius r2 ∼ f 1/2l,
where the monomer concentration φ(r) is constant since
φ(r) ∼ M/V and for a three-dimensional solid M ∼ (r/ l)3

and V ∼ (r/ l)3. Thereafter, φ(r) varies as (r/ l)−1 between r2

and r1 which fits Gaussian scaling since for a Gaussian chains
M ∼ (r/ l)2 and V ∼ (r/ l)3, leading to φ(r) ∼ (r/ l)−1, where
r1 ∼ f 1/2v−1l. Finally, φ(r) ∼ (r/ l)−4/3 for r > r1, which
suggests good solvent scaling for larger distances from the core
since for a chain under good solvent conditions M ∼ (r/ l)5/3

and V ∼ (r/ l)3, leading to φ(r) ∼ (r/ l)−4/3. The modified
Flory-Krigbaum model, presented below, predicts that φ(r) ∼
(r/ l)−4/3 irrespective of distance from the core, similar to the
Zimm-Stockmayer and Benoit models [11,21], with packing
constraints accommodated by straightening out of the arms
near the core. The Kuhn unit density is constant with good
solvent scaling throughout the star. The model follows the
same scaling laws as the large-distance prediction of the DC
model.

For the “swollen region” [13] of the star, the DC model
predicts

R ∼ f 1/5

(
z

f

)3/5

V
1/5
C lk ∼ f −2/5z3/5V

1/5
C lk, (2)

where R is the chain end-to-end distance and VC is the
excluded volume per Kuhn unit of length lk . z = f zarm is the
total mass associated with all the f arms of the star polymer.
On the other hand, for the “unswollen” region,

R ∼ f 1/4

(
z

f

)1/2

lk ∼ f −1/4z1/2lk. (3)

For comparison, using Zimm and Stockmayer’s Eq. (1),
Orofino predicts the size of symmetric star polymers to be
[11,23,24],

R ∼
(

3f − 2

f

)1/2(
z

f

)1/2

lk ∼ (3f − 2)1/2

f
z1/2lk (4)

for θ solvent conditions.

Modification of the Flory-Krigbaum model for star polymers

Flory and Krigbaum [25–27] predicted that the expected
mass fractal dimension for a linear chain (c = 1, defined
below) in a good solvent is 5/3 (dmin = df = 5/3, defined

below). This is obtained by modification of the Gaussian
chain probability function by a term reflecting self-avoidance,
resulting in the expression

W (R) = kR2 exp

(
−3R2

2zl2
k

− z2VC

2R3

)
, (5)

where k is a constant. The first term describes Gaussian
scaling and the second term reflects the excluded volume by
considering the probability of one Kuhn unit being excluded
by one of the other Kuhn units of the chain. Assuming that,
due to symmetry, a linear chain of length 2z/f has the same
size as a star of mass z if the two structures have the same
degree of tortuosity reflected in dmin, (2z/f ) is substituted for
z in Eq. (5). In the symmetric star, VC from a linear chain of
length 2z/f is amplified by f . So f VC substitutes for VC ,

W (R) = kR2 exp

(
−3f R2

4zl2
k

− (2z/f )2f VC

2R3

)

= kR2 exp

(
−3f R2

4zl2
k

− 2z2VC

f R3

)
(6)

Equation (5) can be minimized to find the most likely chain
end-to-end distance R∗, ignoring higher-order terms,

R∗ = R∗
0

(
2z1/2VC

l3
k

)1/5

= kz3/5V
1/5
C l

2/5
k . (7)

A similar minimization of Eq. (6) yields

R∗ = k

(
z

f

)3/5

(f VC)1/5l
2/5
k = kf −2/5z3/5V

1/5
C l

2/5
k . (8)

Equation (8) predicts that df is independent of f since R∗ ∼
z1/df , and that df = 5/3 for macromolecules in good solvents
regardless of topology. Equation (8) also predicts a dependence
on functionality similar to that of the DC model described by
Eq. (2). It is expected that Gaussian chains will display a mass
fractal dimension of 2 regardless of chain topology, as assumed
by the DC and Zimm and Stockmayer models. For chains with
a fixed mass fractal dimension and variable branch content,
the connectivity dimension will increase with branching, and
since dmin = df /c, a reduction in dmin and straightening out of
the star arms is expected, as discussed below. Table I shows the
three predictions for chain size from the ZS, DC, and modified
FK models.

II. SCALING MODEL FOR SYMMETRIC
STAR POLYMERS

In this paper, a recently proposed model to analyze
scattering from star polymers is used based on a scaling

TABLE I. Summary of R dependence on scaling parameters, f ,
z, lk , and VC .

Model Theta solvent Good solvent

Zimm-Stockmeyer (3f −2)
f

1/2
z1/2lk –

Daoud-Cotton f −1/4z1/2lk f −2/5z3/5Vc
1/5lk

Modified Flory-Krigbaum (3f −2)
f

1/2
z1/2lk f −2/5z3/5VC

1/5l
2/5
k
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model that allows for study of steric chain extension as well
as accounting for polymer-solvent interactions. The scaling
approach quantifies the topological as well as thermodynamic
parameters for different molecular weights for their linear,
three-arm, and six-arm polyisoprene stars under good solvent
condition at 34.5 ◦C in deuterated p-xylene [28].

In the scaling model a macromolecular chain composed of z

Kuhn units of length lk [29] is considered. Figure 1 shows a six-
arm symmetric star polymer. The structure displays tortuosity
in the chain path associated with a competition between
thermal randomization of the chain structure, chain continuity,
and steric constraints. The structure also displays topological
connectivity that is independent of these thermodynamic and
steric constraints. These features can be distinguished by
considering the average minimum path of p Kuhn units
through the structure [30–32]. One possible minimum path
is shown in units with dark borders in Fig. 1. In addition to
an average minimum path, an average connectivity path of s

Kuhn units composed of straight lines connecting the branch
point and chain end points is considered as shown by solid
black lines in Fig. 1. In the case of symmetric star polymers,
the minimum path is composed of two arms of the star polymer
(dark units in Fig. 1). For a symmetric star polymer, the average
minimum path p is given by

p = 2

(
z

f

)
. (9)

In general, the minimum path p is related to the mass z

through the connectivity dimension c, which represents the
mass fractal dimension for the connectivity path. On the other
hand, the connectivity path of s is related to the mass through
the minimum dimension dmin, which represents the mass
fractal dimension for the minimum path. Two pairs, s : dmin

and p : c, work in tandem to represent the whole structure as a
mutually conjugate set of parameters such that the mass z can

FIG. 1. Schematic of a six-arm PI star polymer of fractal
dimension df and composed of z Kuhn units of length lk . The structure
can be decomposed into two sets of conjugate parameters describing
connectivity (s,c) and tortuosity (p,dmin). The connective path is
composed of s units and has its nascent fractal dimension called the
connective dimension c; and describes the branching characteristics
in the chain, shown in straight black dashed lines. Any two branches
of a symmetric star form a minimum path across the whole structure
composed of p Kuhn units with a nascent fractal dimension called
the minimum dimension of dmin. p describes the average topological
tortuosity and is shown in units with dark borders.

be obtained by raising the connectivity path, s to the minimum
dimension dmin, or alternatively raising the minimum path p to
the topological connectivity dimension c, giving, [31,33,34]

z = pc = sdmin . (10)

The connectivity dimension c quantifies the structural
connections between the various arms of the polymer and is
related to the fractal dimension df by [31]

df = cdmin. (11)

c increases with increased branching or connectivity, while
df increases with tortuosity in the chain. For a linear polymer
chain, dmin = df and c = 1, while, for a completely connected
regular object like a sphere or a collapsed coil, df = c and
dmin = 1, since the minimum path becomes a straight line
across the whole mass. For a chain under good solvent
conditions, dmin = 5/3 [31].

For symmetric stars, the mole fraction branch content (φBr)
is given by [31]

φBr = (z − p)

z
= 1 − z−(1−1/c) = (f − 2)

f
, (12)

where (z − p) represents the mass of the coil that does not lie
on the minimum path. Further, the connectivity dimension c

may be evaluated for symmetric stars from Eq. (12) as [28]

c = ln z{
ln z + ln

(
2
f

)} . (13)

A “meandering” mole fraction (φM ) can be defined as the
fraction that accounts for mass that is not used in direct or
linear connectivity [28],

φM = (z − s)

z
= 1 − z−(1−1/dmin). (14)

As the functionality f increases, dmin and φM are expected
to decrease since steric constraints on the chain conformation
increase in comparison to linear chains. For linear chains in the
absence of steric effects, ideal scaling behavior is expected. For
a good solvent, dmin ≈ 5/3. Steric interactions between arms in
a star have the effect of extending the star arms towards dmin →
1 for a fully extended chain. The limits of an unperturbed
(linear) chain and a fully extended chain can be used to define
a measure of steric interaction between the arms of a star as
[28,35]

φSi = 〈�s〉f
〈�s〉∞

= sf − slinear

s∞ − slinear
= z1/dmin − z1/df,l

z − z1/df,l
, (15)

where df,l is the fractal dimension of an unperturbed arm under
the given solvation conditions [28] and therefore, df,l ∼ 5/3
under good solvent conditions, and 2 under theta solvent
conditions. φSi is a unique quantitative measure of steric
effects in stars (extendible to any branched structure). For
star polymers, φSi is the ratio of the extra extension 〈�s〉f in
an arm induced due to the presence of other connected arms in
the chain to that of the maximum possible extension under the
condition f → ∞, 〈�s〉∞. It provides a quantitative measure
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of the extension of an arm induced due to the presence of other
arms in the chain. In the absence of other branches, i.e., for
linear chains, φSi is zero while it is maximum at 1, for a star
with straight arms.

A. Scattering functions for star polymers

Small-angle scattering can be used to quantify the scaling
model parameters [28,31,36–38]. For macromolecules in
dilute solution, contrast enhancement is often achieved by
examining hydrogen polymers in deuterated solvents using
neutron scattering (SANS).

In order to examine stars under good solvent conditions, a
fractal model by Teixeira et al. [39] has been employed [40],
which is based on the pair correlation function [41],

g(r) ∼ rdf −3e−r/ξ . (16)

This pair correlation function takes advantage of the simple
Fourier transform of a fractal scattering power law for the first
term. The problem with this transform is that it reaches infinity
at r = 0 making the inverse transform impossible. Since there
is no basis to “cut off” the power-law term at low r , an
ad hoc approach is introduced. In Eq. (2), r is the distance
between chain units, df is the fractal dimension, and ξ is
defined as the fractal correlation length which is an artificially
introduced size scale for the ad hoc exponential cutoff term in
Eq. (16). This exponential term was proposed by Debye and
Bueche when they observed the scattering profile of blue light
by Lucite [42]. Debye and Bueche treated g(r) in a similar
way to Debye’s charge screening function parametrized by
the screening length. They introduced an exponential cutoff
function as an “example” after defining ξ as a “kind” of
correlation length, in direct analogy to a screening length [42].
Equation (16) is used to obtain the scattered intensity given by
Teixeira et al. [39],

I (q) = 1 + 1

(qRm)df

df �(df − 1)

{1 + (qξ )−2}(df −1)/2

× sin{(df − 1)tan−1(qξ )}, (17)

where, q = (4π/λ) sin(θ/2), is the scattering wave vector for
a radiation of wavelength λ and Rm is the mean radius of
the particle. Equations (16) and (17) are based on the ad
hoc exponential cutoff term e−r/ξ , which was an empirical
proposition of Debye and Bueche [42]. The exponential
function has no connection to physical structure and the length
scale ξ lacks physical meaning.

Benoit evaluated intensity for a star poymer with f arms by
modifying Debye’s scattering function for a Gaussian polymer

chain to account for interarm interactions [21,22,43],

〈I (q)〉 ≈ 2

f x2

[
{x − (1 − e−x)} + f − 1

2
{(1 − e−x)2}

]
(18)

with x = f/(3f − 2)q2〈R2
garm

〉, where 〈R2
garm

〉 is the Gaussian
mean squared radius of gyration of an arm. Equation (18)
includes two terms in the main bracket, the first of which
reflects scattering from the f arms as individual Gaussian
chains, I1(q) ≈ (2/f x2){x − (1 − e−x)} and is similar to
Debye’s scattering function for linear chains. This term
dominates the scattering at very high q. The second term in
the main bracket, I2(q) ≈ [(f − 1)/f x2]{(1 − e−x)2}, reflects
interference between chain units on different arms of the star
polymer and dominates the scattering at intermediate and low
q but imparts negligible contribution to the scattered intensity
at high q. Therefore Eq. (18) predicts a slope of −2 at high q

associated with a Gaussian chain. This is consistent with the
modification of the Flory-Krigbaum theory presented above
for star polymers and the Zimm-Stockmayer prediction for
star size. The Benoit model is a fractal model with constant
chain scaling, that is, it does not agree with the DC model.
For Gaussian stars the Benoit model has been widely used to
model scattering data.

B. Hybrid Unified Fit function

Generally, SANS data from a dilute polymer solution
displays two structural levels [28,32,35]. In each structural
level, a Guinier law I (q) ∼ G exp(−q2R2

g/3) and a power law
I (q) ∼ Bf q−df are observed at lower and higher q values,
respectively, where G, Rg , Bf , and df are the Guinier law
prefactor, radius of gyration, power-law prefactor, and fractal
dimension (1 � df � 3), respectively. Together, these laws
give an account of local features like size (Rg and persistence
length lp = lk/2) and mass fractal dimension. However, in
star polymers, owing to the common branch point for the
arms, Benoit found that another set of Guinier and power laws
are induced due to interarm interactions [21]. This has been
experimentally demonstrated. In addition to these structural
parameters, the Flory interaction parameter χ can be quantified
using the random phase approximation ( RPA) equation,
accounting for the enthalpy of mixing for a polymer in solution.
Taking into account these interactions in the star polymer under
dilute solvent conditions, Rai et al. obtained [28]

1

I (q)
= 1

Gf

⎛
⎜⎝

⎡
⎣ f −1

2

{
e−(qRg )2/3 + d2

min�(df −1)

Rg
2df

e−(qlp)2/9(q∗
f )−2df

}

+{
e−(qRg)2

/3 + Kf e−(qlp)2
/9(q∗

f )−df
} + 1

z

{
e−(qlp)2/9 + zKp(q∗

p)−1}
⎤
⎦

−1

+ zφKv

(
1 − 2χ√

Kv

)⎞
⎟⎠, (19)

where � is the Gamma function, q∗
i = q/{erf(qkscRg,i/

√
6)}3

,
ksc ≈ 1.06, and erf is the error function [33,34]. Equation (19)
has three structural levels in the square bracket along with a

term outside of the square brackets that accounts for the en-
thalpy of mixing. χ is the Flory-Huggins interaction parameter
per Kuhn unit and is based on the zero-conformational-entropy
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units, the Kuhn units, rather than the chemical mer units, φ

is the polymer volume fraction, and Kv = vpol/vsol, where
vpol and vsol are the segmental volumes of the Kuhn unit and
the solvent molecule, respectively. Amongst the three pairs
of structural terms in the square brackets, the first term with
lead factor of (f − 1)/2 accounts for the interarm interactions
similar to Benoit’s second term in Eq. (18). The second
term accounts for scattering from the star in the absence of
correlations between arms while the third term with subscript
p represent the rodlike persistent scaling regime. In each
bracket, the first term represents the Guinier exponential decay
and the second term yields the power law. z = Gf /Gp, is the
weight-average number of Kuhn units in the star molecule [31].
Kf and Kp are ratios of the power-law prefactor to the Guinier
prefactor for the fractal and persistent regimes. lp and Rg are
the persistence length and the radius of gyration of the fractal
star polymer, respectively [32]. It is assumed here that the Kuhn
length lk = 2lp is the zero-entropy unit [29] for the star. The
Guinier prefactor for the fractal regime, Gf , is given by [28]

Gf = vpolzφNA(bpol − bsol)
2, (20)

where bpol and bsol are the scattering length densities of
the polymer Kuhn unit and solvent molecule, respectively
[28,44]. dmin for a monodisperse star is given by [28,31,32,45]

dmin = Bf R
df

g

Gf �
( df

2

) . (21)

Equation (21) is valid for monodisperse samples [32,45].
The second virial coefficient (A2) is related to Flory χ

parameter by [28]

A2 =
(

1
2 − χ

)
Vpolρ

2
pol

, (22)

where Vpol and ρpol are the molar volume of the solvent and
the density of polymer, respectively.

III. MATERIALS AND METHODS

Small-angle neutron scattering was performed on 1 wt%
solutions of polyisoprene stars in deuterated p-xylene at
34.5 °C. Deuterated p-xylene was purchased from Cambridge
Isotopes. A small amount of 500 ppm of butylhydroxytoluene
was added as a stabilizer before addition of the polymer. It
was experimentally determined that the solutions were below
the overlap concentration. SANS experiments were carried
out at the HFIR CG-2 General Purpose SANS facility at
Oak Ridge National Laboratory (ORNL) and at the NCNR
NG7 SANS facility at the National Institute of Standards and
Technology (NIST). At CG-2, SANS experiments were run
at sample-to-detector distances of 18.5 and 0.75 m, while at
NG7, experiments were done at 15, 7, and 1 m. The low-q data
were calibrated with an aluminum standard to obtain absolute
intensity.

Two linear standards were purchased from Polymer Stan-
dards Service (PSS) GmbH, Mainz, Germany with Mw of (i)
23.6 kg/mole, Mn of 23.3 kg/mole, polydispersity index (PDI)
of 1.01 and (ii) 85.4 kg/mole, Mn of 84.2 kg/mole, PDI of
1.01. Other linear, three-arm, four-arm, and six-arm polyiso-
prene stars were synthesized by anionic/living polymerization
utilizing high-vacuum techniques and standard chlorosilane
chemistry [46]. In brief, all polymerizations and linking
reactions were carried out in evacuated n-Butyllithium(BuLi)-
washed and solvent-rinsed glass homemade reactors. Reagents
were introduced via break seals and aliquots for charac-
terization were removed by heat sealing of constrictions.
First, narrow-molecular-weight-range linear living (active
macroanion) polyisoprenes (PIs) were prepared, with sec-BuLi
as initiator, in benzene at 25 °C. A small aliquot of the living

TABLE II. Synthesis and characterization details for linear, three-arm, four-arm, and six-arm PI star polymers each with arm molecular
weights of ∼10.5,38, and 46 kg/mole.

Final star-branched
Mn arm (kg/mol), SEC PI (SEC-MALS) f = Mn,star/Mn,arm

Arm 1,4 PI type Calc.a SECb Mw/Mn Mn (kg/mol) Mw/Mn Calc.c SECd

10.5k Lineara 23.6 – 1.01 – – Linear –
3-arm 10 10.5 1.02 30.27 1.02 2.88 3.03
4-arm 10 10.5 1.02 39.76 1.03 3.79 3.98
6-arm 10 10.5 1.02 64.05 1.02 6.10 6.41

38k Linear 74 68 1.01 68.13 1.02 Linear –
3-arm 35 38 1.03 101.0 1.01 2.66 2.89
4-arm 35 38 1.03 133.2 1.01 3.51 1
6-arm 35 38 1.03 201.4 1.01 5.30 5.75

46k Linearb 85.4 – 1.01 – – Linear –
3-arm 50 46 1.01 132.7 1.03 2.88 2.65
4-arm 50 46 1.01 181.7 1.01 3.95 3.63
6-arm 50 46 1.01 267.7 1.01 5.82 5.35

aPurchased from PSS Polymer Standards Service GmbH (Mw of 23.6 kg/mole, Mn of 23.3 kg/mole).
bPurchased from PSS Polymer Standards Service GmbH (Mw of 85.4 kg/mole, Mn of 84.2 kg/mole).
cCalculated values from chemical stoichiometry.
dSEC-MALS-determined values.
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PI was removed, terminated with degassed methanol (MeOH),
and used for molecular weight characterization (arm of the
star). The living polyisoprenyllithium, prior to reaction with
the multifunctional chlorosilane compound, was end capped
with a few butadiene (Bd) units, in order to increase the
living site reactivity. Trichloromethylsilane (CH3SiCl3), tetra-
chlorosilane (SiCl4), and 1,2-bis(trichlorosilyl)ethane (6SiCl)
were used as coupling agents for the synthesis of three-,
four-, and six-arm star PIs, respectively. About 10% excess
of the living end-capped PI to the SiCl, was used in order
to force the linking reaction to completion. The excess living
chains were terminated with degassed methanol and the final
products (star + excess arm) were extensively fractionated
(solvent-nonsolvent: toluene-methanol) to remove the arm
chains [46].

All intermediates and final products were analyzed by
size exclusion chromatography (SEC) and nuclear magnetic
resonance (NMR). SEC experiments were carried out at
25 °C with a Waters model 510 pump, a Waters model 410
differential refractometer, and three Styragel columns having
a porosity range from 103 to 106 Å. The carrier solvent was
a mixture of chloroform and triethylamine (95/5, v/v) at a
flow rate of 1.0 ml/min. Polystyrene standards were used for
calibration; the Mn was obtained after applying appropriate
correction coefficients. For all arms and stars the polydispersity
index was lower than 1.1. The details of the samples are given
in Table II. NMR spectra, generated with a Bruker 400-MHz
instrument in CDCl3 at 25 °C, revealed that all PIs have a high
1,4 content (93%–94%).

IV. RESULTS AND DISCUSSION

The distinguishing feature of the SANS data on all samples
is a power-law decay of slope close to −5/3, reflecting a mass
fractal dimension of 5/3 following the prediction of Eq (8), as
shown in Fig. 2. In addition to this feature a prominent knee is
observed at low q,reflecting correlations between the star arms.
The effect of arm length can be seen in Fig. 2(b) where the
knee shifts towards lower q for higher arm molecular weights.
The “k” in figure legends and discussion indicates kg/mole for
each arm of the star polymers. Equation (19) was used to fit the
experimental curves for the star samples listed in Table II, also
shown for four-arm stars in Fig. 2(b). The fitting and evaluated
scaling parameters from the hybrid unified fit are tabulated in
Table III.

For constant arm length, both z and Rg increase with
increase in functionality, as shown in Figs. 3(a) and 3(b). The
persistence length lp varies in the range of ∼12.5 ± 1.5 Å
except for the linear sample for the 38k series. z,Rg, and lp all
are somewhat higher for this sample.

The χ parameter was constant within error limits at
∼0.22 ± 0.04, shown in Fig. 4(a). This agrees rather well
with the reported values of 0.27 in the literature [47,48]. It
should be pointed out that the χ parameter evaluated here is
based on the zero-entropy Kuhn unit rather than the chemical
mer unit. The second virial coefficient A2 shown in Fig. 4(b)
has a value of ∼0.0026 ± 0.0004 mol cm3/g2. None of these
local enthalpic parameters are affected by the functionality or
molecular weight of the star polymers.

FIG. 2. (a) SANS data from ∼1 wt% 38k-arm star polyisoprene
polymer solutions in xylene for linear, three-arm, four-arm, and six-
arm polymers shown in black and dark gray dots, gray dash-dots, and
light gray dashes, respectively. (b) SANS from a solution of ∼1 wt%
for four-arm star polyisoprene in xylene for 10.5k, 38k, and 46k

arms in black triangles, dark gray squares, and light gray circles with
respective Hybrid Unified Fits [Eq. (19)] in solid contrast lines. The
data and their respective fits are offset for visual clarification. Slopes
of −5/3 and −1 are also shown for reference.

The data show a rather constant fractal dimension df , close
to 5/3 across all sets of samples [Fig. 5(a)], consistent with
Eq. (8). The natural tendency for the structures to equilibrate
to df = 5/3 is remarkable, supporting the modified Flory-
Krigbaum prediction. The connectivity dimension c, shown
in Fig. 5(b), is bound by Eq. (12) to the functionality f and
z. Therefore differences between the three sets of samples
with the same functionality reflect the effect of mass alone.
Figure 5(b) also shows that c is high for short-armed stars
which is consistent with Eq. (13). dmin [Fig. 5(c)] is a conjugate
parameter reflecting the average tortuosity in the structure.
The decrease in tortuosity with functionality indicates that the
arms straighten out as functionality increases, maintaining a
constant mass fractal dimension. As c is high for short-armed
stars, dmin actually decreases since the overall mass density
remains constant. It essentially means that, at an average,
the arms of stars with higher mass are comparatively more
tortuous.

The minimum path p is the number of Kuhn units from
one side of the star to the other, so two arm lengths, Fig. 6(a).
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FIG. 3. (a) Mass z, (b) radius of gyration, Rg , and (c) persistent
lengths lp as functions of functionality f .

FIG. 4. (a) Flory-Huggins interaction parameter χ and (b) second
virial coefficient A2 as functions of functionality f .
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FIG. 5. (a) Fractal dimension df , (b) connectivity dimension c,
and (c) minimum dimension dmin as functions of functionality f .

This remains constant with functionality for a fixed arm mass,
as anticipated. The connective path s quantifies the mass of
a stick figure structure connecting end points and the core in
terms of the number of Kuhn units, shown in Fig. 6(b). When
normalized by the number of arms, s/f , it can be clearly
seen that the arms straighten out with increasing functionality,
as shown in Fig. 6(c). s increases with functionality due to
straightening of the arms. s also increases with the mass of
the arms. The meandering mole fraction φM , which is the
fraction of the chain that accounts for mass that is not used
in linear (stick figure) connectivity, can be evaluated using
Eq. (9). φM decreases with increase in functionality, as shown
in Fig. 6(d), indicating that the arms become less convoluted
with increasing functionality.

The monomer density of the chain is a function of the mass,
ρ = z1−1/df . The stars display constant mass fractal dimension
according to Eq. (8). Since the mass fractal dimension is
constant, there is no significant change in local density as
a function of radial position in the star, as was predicted by the
DC model. Rather, the stars behave similar to the Benoit fractal
model, but with good-solvent scaling. The radially varying
feature of the star structure is an increase in chain tortuosity
with distance from the core rather than the density gradient

FIG. 6. (a) Minimum path p, (b) connectivity path s, (c) s/f , and
(d) meandering mole fraction (φM ) as functions of functionality f .

assumed in the DC model. The radial increase in tortuosity
allows for a constant radial density profile.

The scaling parameters consistently point toward straight-
ening of the arms with functionality, shown in Fig. 5. The
local mass density, reflected in the mass fractal dimension,
remains the same, Fig. 5(a), while the minimum dimension
decays with functionality, indicating a reduction in tortuosity
with functionality. Such a steric phenomenon can be quantified
using Eq. (15). φSi is a mole fraction quantifying steric effects
and shown in Fig. 7(a). Steric effects are greater at higher
functionalities and lower arm molecular weights. φSi values
for the six-arm stars rise to 0.36 ± 0.06, 0.181 ± 0.007, and
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FIG. 7. (a) φSi, and (b) s/z as functions of functionality f .

0.135 ± 0.004 for 10.5k−,38k−, and 46k-arm stars respec-
tively. The corresponding φSi for four-arm stars are 0.17 ±
0.02, 0.101 ± 0.001, and 0.085 ± 0.005 and those for three-arm
stars are 0.104 ± 0.006, 0.059 ± 0.003, and 0.049 ± 0.002. φSi

for the six-arm 10.5k sample is about 36% of a fully extended
arm structure!

Figure 8 is a schematic, projected in two dimensions (2D)
for clarity, summarizing the scaling parameters considered
in the present investigation. The local mass density of the
structure remains radially the same. In order to accommodate
an increase in conical volume with radius, the chain becomes
more tortuous. The results may be compared and contrasted
with the Daoud and Cotton model where the local density is
predicted to decrease with radial position away from the center.

The DC model predicts three regimes based on relationships
between density, f , and z. In contrast, the modified Flory-
Krigbam approach and results shown here predict that the
density is given by φ(r) ∼ (r/l)−4/3 irrespective of distance
from the core.

V. CONCLUSION

Molecular topology generally has a direct influence on the
mass fractal dimension and other scaling dimensions for fractal
structures. In this paper it is shown that polymers at thermal
equilibrium are a distinct class of fractals where the mass
fractal dimension is not affected by chain topology. The con-
sequence of this is chain straightening with increasing chain
complexity. A theoretical basis for this observation comes from
a slight modification to the Flory-Krigbaum theory.

The chain scaling dimensions and interaction parameter
of star topologies were obtained using a Hybrid Unified
scattering function that accounts for interarm correlations
in symmetric star polymers along with the polymer-solvent
interaction parameter for chains of arbitrary scaling dimension.
The structural and thermodynamic parameters for different
molecular weights and functionality polyisoprene stars were
considered under good solvent conditions.

The results were compared and contrasted with the Daoud
and Cotton model where equal segments of the arms are
confined to blobs of radially increasing size, which can
fit within a cone, leading to a radially decreasing chain
density. Our results contradicted the presumption that a radial
density gradient exists. The results demonstrate the ability of
star topologies to redistribute the mass through changes in
chain tortuosity such that the mass fractal dimension remains
constant throughout the structure and for stars of different
functionality.

For symmetric star polymers the branch fraction φBr can
be directly calculated from the star functionality, leading to a
verification of the structure. Our results quantify steric effects
in symmetric stars and show that steric straightening in star
polymers is more significant for lower-molecular-weight arms
and stars with higher functionalities. A modification of the

FIG. 8. Schematic demonstrating changes in scaling and thermodynamic parameters with functionality for the same arm length. The scaling
model for the six-arm star polymer is compared with that of the Daoud-Cotton model [13]. l and v are the monomer length and excluded
volume associated with each monomer.

052501-9



DURGESH K. RAI et al. PHYSICAL REVIEW E 93, 052501 (2016)

Flory and Krigbaum theory showed that the size of stars
depends on the mass, functionality, and Kuhn length with a
similar dependence to that of the DC model except that the
dependence on Kuhn length is slightly different.
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