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Effects of long-range interactions on curvature energies of viral shells
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We formulate a theory of the effects of long-range interactions on the surface tension and spontaneous curvature
of proteinaceous shells based on the general Deryaguin-Landau-Verwey-Overbeek mesoscale approach to colloid
stability. We derive the full renormalization formulas for the elastic properties of the shell and consider in detail
the renormalization of the spontaneous curvature as a function of the corresponding Hamaker coefficient, inner
and outer capsid charges, and bathing solution properties. The renormalized spontaneous curvature is found to
be a nonmonotonic function of several parameters describing the system.
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I. INTRODUCTION

It has recently become clear that long-range interactions
are extremely important also in the self-assembly of capsid
proteins into viral shells and that they determine the self-
assembly phase diagram [1]. Electrostatic interactions that
originate in the effective charge on the capsid proteins [2],
as governed by the pH and the ionic strength of the bathing
solution, can fundamentally change the phase diagram of the
capsid protein of the cowpea chlorotic mottle virus (CCMV),
yielding single-wall and multiwall capsids, as well as tubes and
free protein [3]. These results seem to implicate that a change
in the spontaneous curvature of the capsid as a function of
the charge asymmetry of the proteinaceous shell as well as
the solution conditions regulates the size of the shell [4,5].
We thus focus our attention on precisely how, in the context of
empty capsid shells, the long-range electrostatic and van der
Waals (vdW) interactions together conspire to modulate the
mesoscopic properties of spheroidal aggregates, specifically
their spontaneous curvature.

Standard principles of colloid and nanoscale stability
theory in fact identify grosso modo two types of interactions
that together govern the self-assembly and disassembly of
biological macromolecules and their molecular aggregates [6]:
the electrostatic interactions depending on the specific nature
of molecular charges [7] and the ubiquitous vdW interactions
depending on the dielectric response properties of molecular
material [8,9]. This is also the most fundamental assertion
of the DLVO (Deryaguin-Landau-Verwey-Overbeek) theory
of macromolecular stability [10]. When macromolecular
aggregates are net charged, the ensuing (screened) Coulomb
interactions between identical molecules are usually repulsive,
with solvent effects due to hydrophillic moieties contributing
an additional short-range component to the overall molec-
ular repulsions [11]. On the other hand, neutral molecular

*hshojaei@physics.umass.edu
†anze.bozic@ijs.si
‡muthu@polysci.umass.edu
§podgornik@physics.umas.edu

aggregates usually interact via nonspecific vdW attractions
[12], augmented again by the solvent effects engendered by
the hydrophobic moieties along the solvent-exposed surfaces
[13]. In fact, in the context of proteins, the interactions
are mostly entropy driven [14,15], usually interpreted to
originate in water-mediated hydrophobic interactions. As part
of the vdW interactions, the s.c. zero frequency term is
also entropic in origin; it is with some difficulty that one
can differentiate between this part of the vdW interactions
and the hydrophobic interactions proper [16]. Of these four
interactions hydrophobic and/or hydration forces correspond
to an effective interaction arising from the statistical properties
of water molecules around the dissolved macromolecular
moieties, while the electrostatic and vdW forces are indeed
“true” forces that act even in the absence of any solvent. The
overall stability condition then proceeds from comparing the
strengths of these interactions.

Since the bathing solution in the biological milieu contains
various dissolved ionic species the electrostatic interaction
depends on its exact composition [17], i.e., the concentration
and valency of salt ions due to Debye-Hückel screening,
but also on the amount of charge they carry, which can
be modified by shifting the dissociation equilibrium via the
solution pH [18,19]. At the same time the vdW interaction is
a complicated functional of the dielectric response function of
the components of the macromolecular aggregates [8] as well
as of the bathing solvent, which can be modified by solutes,
e.g., low molecular weight solutes such as glucose and sucrose
[20].

While there are obvious similarities, there are neverthe-
less fundamental differences between the elasticity of rigid
proteinaceous shells of tethered capsomeres [21] and that
of spheroidal lipid vesicles which are composed of a quasi-
two-dimensional fluid layer of lipid molecules [22]. The
electrolytes on the two sides of an impermeable membrane
can, in principle, differ, an assumption usually unrealistic
for viral shells, which are typically completely permeable to
various ionic species (however, see Ref. [23]). The contribution
of electrostatic interactions to spontaneous curvature as well
as the bending rigidity renormalization of lipid membranes
was analyzed in standard fashion within the mean-field
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Poisson-Boltzmann (PB) framework, starting from the seminal
work of Winterhalter and Helfrich [24] and later generalized
to more realistic scenarios [25–30]. In what follows we also
delimit ourselves to monovalent electrolytes described at
the level of the mean-field PB theory. Though the effects
of multivalent electrolytes have been studied in standard
fashion on the PB level [29], they cannot in general be
analyzed within the mean-field framework [17] and lead to
instabilities which have no counterpart in the behavior of the
monovalent salts [31]. The contribution of vdW interactions
to spontaneous curvature and bending rigidity renormalization
of lipid membranes has also been extensively analyzed on a
variety of levels, starting with the approach of Parsegian and
Weiss, based on Lifshitz theory of vdW interactions [32], and
later generalized at different levels [33–38].

The main differences between the two-dimensional fluid
layer of soft lipid molecules and crystal-like assemblies of
tethered capsomers boil down to the fact that the latter are
usually permeable to salt ions (even to larger ones), being
in thermodynamic equilibrium with the bulk reservoir, which
sets the ions’ chemical potential. The effective surface charge
density of capsomers can thus be viewed as highly constrained
and as not responding to small curvature deformations. These
specific features of proteinaceous shells lead to important
differences and make the available theoretical results valid for
lipid layers, in general, not applicable. We consider spherical
shells only and calculate the contribution of vdW interactions
to spontaneous curvature on the level of the Lifshitz theory
for general asymmetric layers and, at the same time, use
the linearized PB theory to evaluate also the contribution of
asymmetric charged shells with a fixed surface charge density.
This will allow us to derive the full DLVO expression for the
change in the spontaneous curvature while assuming a known
experimentally determined value for the bending rigidity. In
this way, we bypass the unknown position of the “neutral
surface,” which actually changes the exact renormalization of
the bending rigidity only (see below).

II. THEORY

A. Curvature expansion of the free energy

We analyze a thin spheroidal charged shell and expand its
vdW-Lifshitz interaction free energy as well as its electrostatic
free energy in terms of the reciprocal radius of curvature R.
The total interaction free energy of the spheroidal shell can be
written as

F =
∫

S

dS

(
σ0 + a

R
+ b

R2
+ . . .

)
, (1)

where S is the area of the shell, dS is its element, and σ0,
a, and b are constants that depend on the details of the long-
range interactions. This expansion should be compared with
the mesoscopic elastic deformation free energy [39],

F =
∫

S

dS

(
σ + 1

2
Kc

(
1

R
− 1

R0

)2

+ . . .

)
, (2)

where σ is the surface tension, Kc is the bending rigidity,
and R0 is the spontaneous radius of curvature, allowing us
to identify the interaction renormalization of the mesoscopic

bending rigidity and spontaneous radius of curvature as

σ −→ σ0 + Kc

R2
0

, Kc −→ Kc + 2b,
1

R0
−→ 1

R0
− a

Kc

.

(3)

All the mesoscopic parameters of shell elasticity thus contain
a bare part, due to short-range interactions, that is not
taken into account specifically, and a renormalized long-range
DLVO interactions part, just as in the case of semiflexible
polyelectrolytes [40]. While the electrostatic renormalization
of mesoscopic elasticity parameters has been analyzed at
various levels of sophistication (see above), the complete
DLVO assessment of elastic parameter renormalization has
not been properly addressed.

It is obvious from the expansion, Eq. (1), that, depending
on how we define the origin of the radius of curvature,
or by making the substitution R −→ R + δR, part of the
a coefficient can migrate into the b coefficient and thus
the renormalization of the bending rigidity depends on the
details of the deformation process, i.e., what part of the layer
remains unaffected by the deformation and the exact position
of this “neutral surface.” In order to avoid this ambiguity
in the definition of the bending rigidity renormalization, we
concentrate purely on the spontaneous curvature and the
surface tension, taking the bending rigidity as an empirical
parameter. A similar indeterminacy has been noted also in
the context of membrane electrostatics [29], where the results
on the bending rigidity renormalization depend on the details
of the deformation process. We derive the first two terms of
the curvature expansions of both the vdW interactions on the
level of the macroscopic Lifshitz theory and the electrostatic
interactions on the level of the Deby-Hückel theory. As will
become obvious, both of them can be derived in an explicit
analytic form suitable for relevant numerical computations.

B. Curvature expansion of the vdW-Lifshitz interaction

The Lifshitz theory of vdW interactions connects the
dielectric response function at imaginary frequencies, ε(iζ ),
defined via the imaginary part of the dielectric response
function ε′′(ω), as [41]

ε(iζ ) = 1 + 2

π

∫ ∞

0

ωε′′(ω)

ω2 + ζ 2
dω, (4)

with the interaction free energy between the materials
described by this dielectric response [8]. The connection
is via the fluctuation-dissipation theorem and the Lifshitz
theory actually evaluates the free energy contribution of all
the electromagnetic-field fluctuations. We consider the vdW
interactions across a curved parallel single-layer system that
will mimick a thin spherical curved molecular sheet. In the
derivation of the curvature expansion we modify the original
methods of Weiss, Parsegian, and Witte [32,35] based on the
Lifshitz theory.

The vdW free energy of this system depends on the
dielectric mismatch 	(iζ ) at the inner and outer boundaries
of the thin spherical sheet of inner radius R and thickness
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w � R, i.e.,

	32(iζ ) = ε3(iζ ) − ε2(iζ )

ε3(iζ ) + ε2(iζ )
,

(5)

	21(iζ ) = ε2(iζ ) − ε1(iζ )

ε2(iζ ) + ε1(iζ )
.

Here, by assumption, the dielectric response of the shell is
that of the capsid proteins, ε2(iζ ) = εp(iζ ), and ε3(iζ ) =
ε1(iζ ) = εw(iζ ) is the dielectric response of the aqueous
solvent. Dielectric response functions at imaginary frequencies
εk(iζ ) are obtained from a Kramers-Kronig transform of the
imaginary part of the dielectric function in a standard way [8],
once one either chooses a model for the frequency response
or measures it directly for a particular material. While the
frequency response of capsid proteins is presently not (yet)
available, it exists for many other materials [12]. It is obvious
that for any value of the argument as well as any model one
should have −1 < 	ij (iζ ) < 1.

In the Lifshitz theory of vdW interactions the free energy for
a single-spherical-parallel-layer system can be calculated in a
closed form as a sum over the log of the secular determinant,
D(ω,k; g), whose zeros on the real-frequency ω axis yield the
wave vector k–dependent frequencies of the eigenmodes of
Maxwell’s equation in the chosen interaction geometry as a
function of the parameters describing that geometry g [8]. The

vdW-interaction free energy can then be derived in the general
form

GvdW ≡
∞∑

N=0

′ ∑
k

log (D(iζN ,k; g)), (6)

where the sums are over the geometry-dependent set of
wave vectors k and over the thermal Matsubara frequencies
ζN = 2πNkBT/�, where N is an integer, and kBT and �

are the thermal energy and Planck’s constant, respectively.
The N = 0 term is counted with a weight of 1/2, indicated
by the prime on the sum. The Matsubara sum, embodying
the finite-temperature effects, is trivial and can be done
numerically for a chosen model of the frequency dependence
of the dielectric response function.

For a single-sphericalparallel-layer system, of thickness w

and inner shell radius R, this general formula is reduced to
[32,35]

GvdW(R,w,	32,	21) =
∞∑

N=0

′
GN (R,w,	32(iζN ),	21(iζN )),

(7)

where we have defined the single Matsubara frequency free
energy function

GN (R,w,	32(iζ ),	21(iζ )) = kBT

∞∑

=0

(2
 + 1) ln

[
1 + 4
(
 + 1)	32	21

(
1 + w

R

)−(2
+1)

(2
 + 1 + 	32)(2
 + 1 + 	21)

]
=

∞∑

=0

G(
)(R,w; N ), (8)

which can be obtained from the solutions of the Maxwell equations in the spherical shell geometry [32,35]. The only remaining
“wave vector” in the sum, Eq. (6), is then the degree 
 of the spherical harmonic function.

Since what we want is an expansion in curvature up to the second order, Eq. (1), we only consider terms in the above free
energy up to that order. In what follows we analyze the R and w dependence of GN (R,w,	32(iζ ),	21(iζ )) by modifying the
previous method [35]. Using the Euler-Maclaurin summation formula, we transform Eq. (9) into

∞∑

=0

G(
)(R,w; N ) =
∫ ∞

0
d
G(
)(R,w; N ) − 1

12
G′(0)(R,w; N ) + . . . , (9)

where the other terms either are 0 or do not contribute to the order R−2. We next introduce the variable l = xR/w and keep terms
to the second order, i.e., to (w/R)2, as assumed in our curvature expansion, Eq. (1). This yields the expansion for the surface free
energy density

1

4πR2
GvdW(R,w,	32,	21) = kBT

∞∑
N=0

′
[
F0(	∗,	; w) + 1

R
F1(	∗,	; w) + 1

R2
(F2(	∗,	) + F̃2(	∗,	; w))

]
, (10)

with the definitions

F0(	∗,	; w) = 1

2πw2

∫ ∞

0
dxx ln(1 + 	∗e−2x) = − 1

8πw2
Li3(	∗), (11)

F1(	∗,	; w) = = 1

4πw

[ ∫ ∞

0
dx ln(1 + 	∗e−2x) +

∫ ∞

0
dx

	∗e−2x

1 + 	∗e−2x
(x2 − x − 	)

]
= 1

4πw
f̃1(	∗,	), (12)

F2(	∗,	) = 1

24π

∫ ∞

0
dx

	∗e−2x

(1 + 	∗e−2x)2
((6x3 − 20x2 + 6x(3 − 	) − 6(1 − 	)) − 	∗e−2x(8x2 − 12x + 6))

− 	∗

12π (1 + 	 + 	∗)
(13)
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and

F̃2(	∗,	; w) = − 1

48π

∫ ∞

0

dx

x

	∗e−2x

(1 + 	∗e−2x)2
(6(1 + 	∗ − 	

2
) + 	∗e−2x(6 + 6	∗ − 3	

2
))

� 	∗(6(1 + 	∗ − 	
2
) + 	∗(6 + 6	∗ − 3	

2
))

48π (1 + 	∗)2
log

w

a
, (14)

where

	 = 	32 + 	21 = 	wp + 	pw,
(15)

	∗ = 	32 	21 = 	wp 	pw.

This is now the final expression for the vdW free energy
expansion in terms of the inverse radius. All the integrals in
the above expression can in fact be calculated explicitly and
analytically via the Lerch function (see the Appendix). The
implied Matsubara summation can, finally, be taken for any
concrete model of the dielectric response. The lowest order
term, containing the integral of F0(	∗,	; w), is identical to
the vdW free energy of interaction between semi-infinite media
1 and 3 across the plane-parallel slab of medium 2, scaling as
the inverse second power of the thickness of the slab, w [8].

The logarithmic divergence of F̃2(	∗,	; w) is consistent
with the previous results on the renormalization of the bending
rigidity to the lowest order in the dielectric mismatch [33],
while formula (14) presents the full Lifshitz result to all
orders in the dielectric mismatch. Of the three terms in
Eq. (10), we concentrate only on the first two. The first
pertains to the renormalization of the surface free energy
where its bare value, stemming from short-range interactions
between the capsid proteins, is unknown, while the third term,
describing the bending rigidity renormalization, allows for
an ambiguity because—depending on the definition of the
“neutral surface”—it contains an undefined constant. We thus
take the full, renormalized value of the bending rigidity as an
empirical constant.

C. Curvature expansion of the electrostatic interaction

The PB theory of electrostatic interactions sets the frame-
work for calculation of the curvature expansion of the elec-
trostatic part of the free energy [7]. In the model considered,
based on the rigid nature of the proteinaceous virus shell, we
assume a fixed surface charge density at the inner and at the
outer boundary of the shell, which can, nevertheless, differ
[2]. We also assume a different static dielectric permittivity
for the shell than for the bathing aqueous solution in which the
shell is immersed, following closely the approach in Ref. [42].
Again, we delimit ourselves to the surface tension and the
spontaneous curvature term, for the same reasons as already
invoked in the context of the vdW interaction.

The inner radius of a charged shell is again taken as R,
with surface charge density σ1, and the outer radius as R + w,
with surface charge density σ2. Both can be extracted from a
detailed statistical analysis of the VIPERdb for different virus
families [43]. The majority of analyzed viruses tend to have a
slightly negative σ2. The charge on the inner shell is, however,
less universal and most of the analyzed viruses have either a
negative or a positive σ1. This conclusion has to be amended

if one adds disordered N-tails of the proteins on the inner
surface that shift the inner shell charge to more positive values
(for details see Ref. [43]), strongly influencing also the stable
length of the encapsidated genome [44].

We are seeking again an expansion of the free energy up
to the second order in terms of the inverse powers of the
inner radius of curvature R, again assuming that w � R. The
static dielectric constant of water is εw, and those of the of
the capsid protein εp < εw are taken as εp = 5 and εw = 80.
Additionally, we denote μ = εp/εw < 1.

In what follows we delimit ourselves exclusively to the
linearized PB (Debye-Hückel; DH) theory within its range of
validity [7]. The electrostatic part of the free energy is then
given as a functional of the mean-field electrostatic potential,
ϕ(r), in the form

Gel = 1

2
εwε0

∫
(V )

((∇ϕ(r))2 + κ2ϕ(r)2)d3r

= εwε0

∮
(S=∂V )

ϕ(rS)(n · ∇ϕ(rS))d2rS. (16)

κ is the inverse Debye screening length set by the ionic strength
of the monovalent salt of concentration c0 in the regions r < R

and r > R + w, i.e., κ2 = 2βe2c0/(ε0εw), and is the same
inside and outside the shell, whereas within the shell κ ≡ 0.
For a spherical shell of thickness w and inner radius R, the
mean-field electrostatic potential by assumption depends only
on the radial coordinate, ϕ(r) = ϕ(r), and satisfies either the
DH equation or the Laplace equation,

∇2ϕ(r) = κ2ϕ(r) or ∇2ϕ(r) = 0 for R � r � R + w.

(17)

These two equations have to be solved with appropriate
boundary conditions, i.e., εwε0∂rϕ (r = R) has a jump equal
to σ1, and εwε0∂rϕ (r = R + w) a jump equal to σ2. The
overall form of the mean-field electrostatic potential on r is
very similar to the one displayed in Fig. 5 of Ref. [42].

While one could formally extend the PB theory to multi-
valent salts [29], the results could not be properly validated at
the mean-field level [17] and led to additional considerations
that are not addressed here [31]. Furthermore, we work
exclusively in the grand canonical ensemble, where the
screening parameters of the electrolyte are set by the bulk
reservoir, a straightforward consequence of the fact that the
viral capsids are usually completely permeable to salt, as
opposed to lipid vesicles, where the number of salt ions in
the interior can be constrained [29].

Within the limit of the DH theory for spherically symmetric
shells, the electrostatic free energy, Eq. (16), for a charged shell
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of thickness w, as defined above, can be rewritten as [27]

Gel = εwε0

∮
(S=∂V )

ϕ(rS)(n · ∇ϕ(rS))d2rS

= 1

2
4πR2 σ1 ϕ(R) + 1

2
4π (R + w)2 σ2 ϕ(R + w), (18)

where the mean-field electrostatic potential can be obtained
from the solutions of the DH equation outside the proteina-
ceous layer and from the Laplace equation inside, Eq. (17),
since the proteinaceous shell itself is impenetrable to ions,
with the boundary conditions specified above. The general
solution of this problem can be obtained analytically but we
will only use the expansion in terms of R to the second order.

The final form of the free energy, Eq. (18), for this particular
geometry can then be derived as

Gel = 2πR2

κε0εw

(
σ1

M

L
+ σ2

N

L

)
, (19)

where the general forms of M , N , and L are derived in
Ref. [42] and are related to the electrostatic potential at the
two boundaries.

To second order in 1/ρ = 1/(κR) we can simplify the
general expressions for the electrostatic potential and, after
some algebra, obtain the following form of the three terms in
the inverse curvature expansion:

L = (2μ + (κw)) ×
(

1 + (κw)

ρ
+ (κw)2

ρ2

[
((κw) + 1)(μ − 1)

(κw)(2μ + (κw))

])
, (20)

M = (μ(σ1 + σ2) + (κw)σ1) + (κw)

ρ
(((κw) + 1)σ1 + 2μσ2) + (κw)2

ρ2
μσ2, (21)

and

N = (μ(σ1 + σ2) + (κw)σ2) + (κw)

ρ
(2μσ1 + (4μ + 3(κw) − 1)σ2) + (κw)2

ρ2
(μσ1 + 3(2μ + (κw) − 1)σ2). (22)

In fact the only place where the curvature expansion needs to be taken into account is in the last expression, N , everything else
being exact. This allows us to derive the final expression for the curvature expansion of the electrostatic part of the surface free
energy density as

1

4πR2
Gel(σ1,σ2,κ,w) = 1

2κε0εw

(
f0(σ1,σ2,κ,w) + f1(σ1,σ2,κ,w)

κR
+ f2(σ1,σ2,κ,w)

(κR)2

)
, (23)

where we have introduced the shorthand

f0(σ1,σ2,κ,w) = μ(σ1 + σ2)2 + (κw)
(
σ 2

1 + σ 2
2

)
2μ + (κw)

, (24)

f1(σ1,σ2,κ,w) = (κw)

(
(3μ + 2(κw) − 1)σ 2

2 + 2μσ1σ2 − (μ − 1)σ 2
1

2μ + (κw)

)
, (25)

and

f2(σ1,σ2,κ,w) = κw

(2μ + (κw))2

(
(μ − 1)[(κw)(μ − 1) − μ]σ 2

1 − 2μ((κw) + 1)(μ − 1)σ1σ2

+ [(κw)3 + (κw)2(4μ − 1) + (κw)(5μ2 − 4μ + 1) − μ(μ − 1)]σ 2
2

)
. (26)

In general, the above free energy density is not symmetric at
the two surface charge densities, which were assumed to be
constant during the deformation. As already stated this seems a
reasonable assumption in the context of the rigid proteinaceous
shells but cannot be invoked in the context of symmetric lipid
vesicles [29]. In the latter case the lipid membrane is, to a good
approximation, impermeable to water as well as to hydrated
ions and thus represents an impermeable barrier that decouples
the two compartments, a situation very much opposite to the
case of a porous proteinaceous capsid.

In the limit of vanishing thickness w → 0 we
then obtain straightforwardly limw→0 Gel(σ1,σ2,κ,w) =
π (σ1 + σ2)2R2/κεwε0, which is the correct expression for a
single shell of radius R and surface charge σ0 = σ1 + σ2. This

corresponds to the dielectrically transparent case of Duplantier
[28], considered before. Perhaps more interesting is the fact
that the higher order terms are asymmetric in terms of σ1 and
σ2. Our analysis takes fully into account the coupling between
the inner and the outer layer of the proteinaceous shell and we
made no approximation to decouple the two [45].

D. Combining the electrostatic and vdW interactions

We can now write the curvature expansion for the total
free energy. Adding Eq. (10) and Eq. (23) will give us the
terms in the free energy expansion: R0, R−1, and R−2. This
total surface free energy density then leads to the following
interaction renormalization of the surface tension, spontaneous
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radius of curvature, and mesoscopic bending rigidity:

σ −→ σ0 + Kc

R2
0

+ kBT

∞∑
N=0

′
F0(	∗,	; w) + 1

2κε0εw

f0(σ1,σ2,κ,w), (27)

1

R0
−→ 1

R0
+ 1

2Kc

(
kBT

∞∑
N=0

′
F1(	∗,	; w) + 1

2κ2ε0εw

f1(σ1,σ2,κ,w)

)
, (28)

Kc −→ Kc + 1

2Kc

(
kBT

∞∑
N=0

′
F2(	∗,	; w) + 1

2κ3ε0εw

f2(σ1,σ2,κ,w)

)
. (29)

Though we wrote down the full result for the surface energy,
spontaneous curvature, and bending rigidity renormalization,
we specifically investigate only the contribution of vdW and
electrostatic interactions to the surface tension and sponta-
neous curvature of the spheroidal shell [Eq. (28)], treating
the bending rigidity as a phenomenological parameter derived
from experiment. As already stated, the exact form of the
interaction renormalized bending rigidity depends crucially
on the assumed position of the neutral surface, depending on
the nature of the model one assumes for the shell. To avoid
this ambiguity, we consider the value of the bending rigidity
an input phenomenological parameter.

III. NUMERICAL RESULTS

The spontaneous curvature interaction renormalization
depends on several parameters and we investigate specifically
the dependence on the capsid charge σ1 and the charge
asymmetry r = σ1/σ2 between the inner and the outer surface,
the thickness w, the ionic strength of the bathing solution,
and the dielectric response of all the media involved. The
latter in fact represents the biggest challenge, as the dielectric
response of capsid proteins in the optical and UV regime of
frequencies, which contributes most to vdW interactions, is
simply not known because of the unavailable details of the
electronic structure of large capsid proteins (W.-Y. Ching,
personal communication; and Ref. [46]).

The variation of the charge ratio r can be seen as a proxy
for the pH dependence of both surface charge densities in
a more complete theory of virus shell electrostatics, which
would consistently include also charge regulation of the capsid
proteins [19,47,48]. Charge regulation refers to the details
of the protonation-deprotonation equilibria at the dissociable
sites of the capsid proteins amino acids as formalized in the
seminal work of Ninham and Parsegian [49] and formulated
within the PB theory of electrostatic interactions [7]. In this
theory the charges are not assumed to be fixed, but to respond
to pH and salt concentration changes.

While some partial dielectric data for bovine serum albumin
do exist and were used by Roth et al. [50] to calculate the
Hamaker coefficient of protein-protein vdW interactions, no
full spectral data for capsid proteins are available [12]. We
thus approximate the frequency-dependent dielectric response
of capsid proteins, εp(iζ ), by that of hydrocarbons with four
ultraviolet relaxation frequencies (for details see Ref. [8]).
Without detailed capsid protein spectral data this is the best
thing we can do. For numerical computations we then use
the standard forms for the frequency-dependent dielectric
response of water, εw(iζ ), described with one microwave
relaxation frequency, five infrared relaxation frequencies, and
six ultraviolet relaxation frequencies [51].

The additive renormalization of the surface tension and
spontaneous curvature can then be cast in the form

σ −→ σ0 + Kc

R2
0

+ kBT

2πw2

(
H + 1

(κ
B)

(
w


GC

)2
[ εp

εw
(r + 1)2 + (κw)(r2 + 1)

2 εp

εw
+ (κw)

])
, (30)

1

R0
−→ 1

R0
+ (kBT /Kc)

8πw

(
H′ + 2

(κ
B)

(
w


GC

)2
[(

3 εp

εw
+ 2(κw) − 1

) + 2 εp

εw
r − ( εp

εw
− 1

)
r2

2 εp

εw
+ (κw)

])
. (31)

Above we have introduced the Gouy-Chapman length pertaining to the outer surface charge density σ2 as 
GC = 1/(2π
B (σ2/e0))
and the Bjerrum length 
B = e2

0/(4πεε0kBT ), with r = σ1/σ2. Numerically the Bjerrum length in water equals 0.74 nm. The
above form of the additive renormalization of the spontaneous curvature has a minimal value at rmin = εp/(εp − εw), whereas the
renormalized surface tension is monotonic in r . These are the final expressions for the surface tension and spontaneous curvature
renormalization.

Two “Hamaker coefficients” pertaining to the zeroth- and first-order curvature expansion, H and H′, are obtained by assuming
a symmetric configuration, where water is on both sides of the proteinaceous shell, i.e.,

H =
∞∑

N=0

′ ∫ ∞

0
dxx ln(1 − 	wp(iζN )2e−2x) = −1

4

∞∑
N=0

′
Li3(−	wp(iζN )2), (32)

H′ =
∞∑

N=0

′
f̃1(	wp(iζN )	pw(iζN ),	wp(iζN ) + 	pw(iζN ))

=
∞∑

N=0

′
[ ∫ ∞

0
dx ln(1 − 	wp(iζN )2e−2x) −

∫ ∞

0
dx

	wp(iζN )2e−2x

1 − 	wp(iζN )2e−2x
(x2 − x)

]
. (33)
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FIG. 1. Dependence of the dimensional scaling functions σ̃ , Eq. (34), the surface charge ratio, r = σ1/σ2, and different values of the inverse
screening length, κ . The renormalized surface tension is always positive and tends to 0 for large screening but shows nonmonotonic dependence
on the charge asymmetry ratio.

With the standard water dielectric spectra [51] and hydro-
carbon spectra [8] taking the place of the unknown protein
dielectric spectra, this yields H � −0.177 and H′ � −0.386,
where the Matsubara summation included the first 500
terms.

Empty viral capsids tend to have at least a slightly negative
outer shell [43]. There is more diversity concerning the charge
on the inner shell, which can be negatively or positively
charged. The inclusion of disordered N-tails of the capsid
proteins in the charge statistics noticeably shifts the inner shell
charge towards more positive values. This is especially relevant
in the case of ssRNA viruses, where the disordered N-tails
contribute significantly to the strongly positively charged
interior, and where the charge is correlated with the genome
length due to the nonspecific electrostatic interactions acting
as an assembly mechanism [44,53,54].

In addition, models of multishell capsids in the presence
of N-tails have highlighted the importance of charged tails
in determining the capsid size, which can, in multishell con-
formations, differ from the capsid’s preferred (spontaneous)
radius of curvature, due to the interplay of eletrostatic repulsion
between the tails and attraction between the tails and the outer
surface of the neighboring shell [55]. While we simply assign
the contribution of the N-tails to the inner surface charge
density σ2 in order to keep our model consistent, we thus
consider the possibility that σ2 has either negative or positive
sign, the latter stemming from the contribution of the positively
charged tails to the inner charge.

The inner and outer surface charge density of the virus
capsids is in general quite high compared with those of other
charged biomolecules, being in the range [−0.4,0.4] e0/nm2.
Invoking the previously obtained average capsid radii this
implies net charge values in the range ∼4500e0 [52]. The
exact values of the surface charge density depend on the charge
model, i.e., single- vs double-shell models, and on the presence
of the charged N-tails as discussed above (for details see
Ref. [43]). We thus introduce the charge asymmetry parameter

as the ratio of inner and outer surface charges, r = σ1/σ2, and,
in the following, consider the range r ∈ [−1,1].

According to the above statistics of virus charges the
Gouy-Chapman length corresponding to 0.4 e0/nm2 is 
GC =
0.54 nm, while the outer-inner charge ratio spans −1 < r < 1.
For more than 75% of viruses analyzed in Ref. [43], the
thickness is confined to a narrow range, w � 1.5–4.5 nm, with
w � 3 nm a good estimate of the average. The monovalent
salt concentration can be taken in the typical range 0.001–1
M, which amounts to Debye lengths of 10.75–0.34 nm.

In order to understand the consequences of spontaneous
curvature renormalization we rewrite Eqs. (30) and (31) in a
form that contains only the interaction renormalized part

σ = kBT

w2
σ̃ with

σ̃ = F0((κ
B),(w/
GC),κw,r)

2π (κ
B)(κ
GC)2
, (34)

1

R0
= (kBT /Kc)

w

1

R̃0
with

1

R̃0
= F1((κ
B),(w/
GC),κw,r)

8π (κ
B)(κ
GC)2
, (35)

where σ̃ and R̃0 are now dimensionless contributions to
the surface tension and spontaneous curvature due to DLVO
interactions. The surface tension and spontaneous curvature
obviously have the scale of kBT /w2 and (kBT /Kc)/w,
respectively. For the former it amounts to a fraction of
the surface tension of water (∼0.5–4 pN/nm), and for the
latter it is within the range of the capsid radii (10–100
nm), obtained from the estimated values of the capsid
elasticity [52]. F0,1((κ
B),(w/
GC),κw,r) are complicated
dimensionless scaling functions. Alternatively, they can be
written in the form F0,1((κ
B)(κ
GC)2,κw,r). The salient
features of dimensionless contributions to the surface tension
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FIG. 2. Dependence of the dimensional scaling function, 1/R̃0, Eq. (35), on the surface charge ratio, r = σ1/σ2, and different values of the
inverse screening length, κ . The renormalized curvature is in general a nonmonotonic function of r and κ and can be of either sign, depending
on the charge asymmetry parameter and the amount of screening in the system.

and spontaneous curvature are presented in Fig. 1 and
Fig. 2.

Figure 1 shows that the DLVO interaction renormalized
surface tension tends, in a monotonic way, to the bare value
as the screening length is decreased, i.e., salt is added to the
system, and is always positive, irrespective of the detailed
values of the interaction parameters. The dependence on the
charge ratio is more complicated and in general leads to non-
monotonic behavior. The charge asymmetry thus engenders
a minimum in the interaction renormalized surface tension,
whose depth depends on the amount of screening present in the
system.

Figure 2 shows analogous dependencies for the DLVO
interaction renormalized curvature, but in this neither of
the dependencies is monotonic. While the dependence on
the charge asymmetry again shows a pronounced minimum
at rmin = εp/(εp − εw), whose depth depends on the salt
screening, the dependence on the inverse Debye length can be
either monotonic, when r ∼ ±1, or nonmonotonic, when it is
close to rmin. Furthermore, depending on the charge asymmetry
parameter, the interaction renormalized spontaneous curvature
can be either positive or negative. In the above numerical
analysis we have not considered explicitly the variation of
the dielectric spectrum of the capsid proteins, as very little is
presently known of its details.

IV. CONCLUSION

Motivated by recent experiments revealing that electrostatic
interactions can be of paramount importance for the morphol-
ogy of capsid-like aggregates and can fundamentally change
the phase diagram of, e.g., the CCMV capsid protein, where,
besides regions of single-wall and multiwall capsids, tubes
and free protein regions can be observed as a function of the
electrolyte solution parameters [3], we derived an interaction
renormalization of the elastic properties of a proteinaceous
shell of the virus capsid type. The interaction potentials taken

into account are of the DLVO type and, by assumption,
composed of the vdW and electrostatic part. The first one
considered at the level of the Lifshitz theory, and the second
one at the level of the linearized PB theory. This formulation
of the problem then hinges only on mesoscale parameters
characterizing the shell, such as the dielectric function of the
capsid proteins, magnitude of the dielectric discontinuity at
the capsid-aqueous solvent boundary, capsid thickness, Debye
screening length, and inner and the outer surface charge
densities. Just as in the case of the DLVO theory of the stability
of colloids, microscopic details are not necessary to calculate
the effect of the solution parameters on the magnitude of the
spontaneous curvature.

The approach advocated here, avoiding all the microscopic
details of the capsid shell composition, such as the internal
structure of its proteins, possible nonisotropic dielectric
response, and detailed distribution of charged sites, obviously
bypasses more detailed microscopic calculations, starting
from the interaction free energy between capsomeres and
its dependence on their mutual orientation, which could
eventually be translated into the spontaneous curvature of
the shell. Just as more microscopic approaches to the colloid
stability problem illuminate the mesoscale parameters used in
the macroscopic DLVO approach, they could also fill in the
details of our macroscopic description of proteinaceous shells
and our theory could, in principle, be refined, but with much
effort and with the introduction of new, completely unknown
and unquantified properties, like the anisotropic dielectric
function of the proteinaceous shell, the inclusion of detailed
charge dissociation equilibria for all the (de)protonated amino
acids [19], or even the explicit introduction of the non-DLVO
interactions such as hydration and hydrophobic interactions
[9]. We are convinced at this point that such a generalization,
even if possible, would not clarify the problem but make it
completely untransparent and unquantifiable. The thickness
of the proteinaceous shell, confined to the narrow range
of �1.5–4.5 nm [43] and comparable to the thickness of
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the lipid bilayers, does make our approach susceptible to
criticism regarding the limitations of the continuum approach.
While this criticism could be relevant, one should not gloss
over different types of drawbacks of at-first-glance “exact”
results, which could be provided by more detailed molecular
simulations, based, however, on molecular potentials, which,
as a rule, compare poorly with the measured interaction poten-
tials between (bio)macromolecules. Before model molecular
potentials reach maturity, interim continuum results, which can
be expected to be qualitatively relevant, if not quantitatively
predictive, are the best we can do.

While the calculation of the surface tension and spon-
taneous curvature renormalization by the long-range DLVO
potentials at the mesoscale level leaves no ambiguities in
the results, the calculation of the renormalized bending
rigidity is more sensitive to the detailed assumptions regarding
the neutral surface with respect to which one renormalizes
the long-range interaction part of the free energy. This is why
we took the bending rigidity as a phenomenological parameter
determined by the experiment.
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APPENDIX

We define the Lerch transcendental function in the standard
form as

�(z,s,ν) =
∞∑

n=0

zn

(ν + n)s
. (A1)

Obviously the polylog function can be expressed as Lis(z) =
z�(z,s,1), and the more familiar Riemann zeta function
then follows as ζ (s) = Lis(1) = �(1,s,1). The analytical
continuation of the Lerch function is particularly appropriate
for evaluation of the integrals that figure in the vdW part of
the spheroidal shell free energy expansion.

In fact the exact expressions that we use in the section on
the vdW free energy curvature expansion are of the form∫ ∞

0
dxx log (1 + 	∗e−2x) = −1

4
Li3(	∗) (A2)

as well as∫ ∞

0

dxxν−1e−2x

1 + 	∗e−2x
= 1

2ν
�(ν)�(−	∗,ν,1) (A3)

and ∫ ∞

0

dxxν−1e−4x

(1 + 	∗e−2x)2

= 1

2ν
�(ν)[�(−	∗,ν − 1,2) − �(−	∗,ν,2)]. (A4)

We use the Lerch transcendental function to obtain values of all
the integrals in the curvature expansion of the vdW interaction
energy.
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