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Based on the stochastic dynamics of interacting agents which reproduce, mutate, and die, the tangled nature
model (TNM) describes key emergent features of biological and cultural ecosystems’ evolution. While trait
inheritance is not included in many applications, i.e., the interactions of an agent and those of its mutated
offspring are taken to be uncorrelated, in the family of TNMs introduced in this work correlations of varying
strength are parametrized by a positive integer K . We first show that the interactions generated by our rule are
nearly independent of K . Consequently, the structural and dynamical effects of trait inheritance can be studied
independently of effects related to the form of the interactions. We then show that changing K strengthens the
core structure of the ecology, leads to population abundance distributions better approximated by log-normal
probability densities, and increases the probability that a species extant at time tw also survives at t > tw .
Finally, survival probabilities of species are shown to decay as powers of the ratio t/tw , a so-called pure aging
behavior usually seen in glassy systems of physical origin. We find a quantitative dynamical effect of trait
inheritance, namely, that increasing the value of K numerically decreases the decay exponent of the species
survival probability.
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I. INTRODUCTION

Models of biological [1] and social [2] evolution often
involve networks of interacting agents whose dynamics is
interpreted in biological or cultural terms [3–5]. Among these,
the tangled nature model (TNM) is a relatively recent [6,7]
but already well-studied [3,8–15] agent based stochastic de-
scription of evolutionary dynamics which features punctuated
equilibria [16], a key dynamical property of, among others,
macroevolutionary systems. The latter go through a series
of macroscopically different metastable states, with rapid
and dramatic changes, here called quakes, leading from one
state to the next. Numerical investigations of the TNM show
other observed properties of ecosystems, such as the “area
law” [11], and indicate that the model is also applicable
to human cultural and industrial ecosystems [14,15]. As a
simple stochastic model the TNM cannot precisely predict the
development of an ecosystem from a given initial condition.
It can, however, predict its emergent properties in a variety
of different situations and it therefore clearly deserves further
development and analysis.

Interestingly, depending on one’s choice of how interactions
are generated, the TNM can either quickly reach a stationary
state characterized, e.g., by the power spectrum of population
or diversity fluctuations [3,12] or it can enter an aging
regime [8,13,17] similar to that of glassy systems [18].
Specifically [13], a distribution of interactions with finite
support leads to stationary behavior, while aging ensues if ever
larger positive interactions become accessible on ever longer
time scales. This is the case presently considered, as seen in
Refs. [8,9,13,17], where the dynamics is driven by a series
of nonequilibrium events, our quakes, through a sequence
of macroscopically different metastable states, often called
quasievolutionary stable states (QESSs).

The set of interactions linking a TNM individual to others
is key to its reproductive success and arguably constitutes
its most important property. Yet, in many studies, e.g.,

Refs. [8,13,17], the interactions of an individual and those of
its mutated offspring are unrelated, a rather unrealistic feature
corresponding to a point mutation turning a giraffe into an
elephant. To address this issue, Sevim and Rikvold [10] start
out with an interaction matrix consisting of Gaussian deviates
with variance identical to the uniform distribution previously
used [3] by one of these authors. The matrix is then averaged
locally over neighborhoods in genome space to produce the
desired correlations. These authors find a stationary fluctuation
dynamics, resembling that of a model with uncorrelated inter-
actions. We note that their approach requires the storage and
manipulation of huge sparse matrices. Laird and Jensen [19]
introduce correlated interactions by representing individuals
as 16-dimensional vectors in phenotype space. Each element
is an integer in the set {0,1, . . . ,99 999} and contributes
additively to the interaction of two species. This leads to a
Gaussian interaction distribution where a change of a single
element has a minor effect on the total, as desired. The
Gaussian distribution of interactions used in both descriptions
quickly makes the appearance of “destabilizers” [13], e.g.,
mutants receiving very strong positive interactions from extant
species, extremely rare, whereby the ecology evolves at a pace
considerably slower than in Refs. [8,13,17]. Choosing one
type of interaction distribution over another has structural and
dynamical effects which seem to have been overshadowed by
issues of numerical convenience and, consequently, have not
received sufficient attention in the literature.

Below, we introduce and analyze a one-parameter family
of TNMs where an increasing degree of correlation between
the interactions of an agent and those of its mutated offspring
is obtained by increasing the value of a positive integer param-
eter, K , where K = 1 corresponds the model version without
trait inheritance used in Refs. [8,9,13,17]. The interactions
between individuals of different species arise as products of
two Gaussian variables of zero average. For K = 1 these are
independent and the probability density function (PDF) of the
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interactions is a modified Bessel function of zero order. For
K > 1, the two Gaussian variables’ independence is no longer
mathematically guaranteed. Nevertheless, the interactions
generated by our rule turn out to be largely insensitive to
the value of K , and the dynamical effects of trait inheritance
can therefore be investigated independently of any effects
imputable to a change of the interaction distribution itself.

The rest of the paper is organized as follows: after
summarizing the background and notation, we first explain
how the interactions are generated and estimate, for different
values of K , their distribution and the correlation between
the interactions of an agent and those of its mutants. We
then describe how trait inheritance affects the dynamics,
first qualitatively at the level of the emergent core species
structure [13] and then, more quantitatively, in terms of the
species abundance distribution and the time decay of a cohort
of species picked at different stages of the system evolution.

II. BACKGROUND AND NOTATION

TNM agents are binary strings which can be interpreted
either as genomes or as cultural features [14,15], i.e., blueprints
or strategies for action. Reproduction is asexual and error
prone, and its rate depends on the “tangle” of interactions
connecting the agents, with positive, or mutualistic, interac-
tions leading to a higher reproduction rate. Removals happen
at a constant rate and independently of the interactions. Since
extant agents draw resources from a shared and finite pool,
they all have an indirect, global, and negative effect on each
other’s reproductive success. For sufficiently large values of
the coupling probability θ , and irrespective of the degree of
correlation, a typical TNM ecology comprises a single group
of interacting species.

As described in Ref. [13], the TNM ecology can be
subdivided into a small group of populous core species and
a majority of intermittently populated cloud species. The
core is an ordered structure, since core species are inevitably
linked by mutualistic interactions dynamically selected from a
symmetric distribution. The network structure spontaneously
emerges in a process driven by an overall increase of
configurational entropy [13], showing that entropy and order
generation are not necessarily antithetic, as often surmised. In
the TNM the two grow simultaneously in different parts of the
system: core species carry the order and cloud species carry
the entropy. We finally note that the mutualistic interactions
between TNM core species do not have a direct interpretation
in terms of trophic chains.

For completeness, we now briefly summarize the notation
used, e.g., in Refs. [8,13,17]. A species is a group of agents
with identical genomes, and agent a is queried with probability
equal to the relative size of its species. When queried, the agent
reproduces with probability

poff(a) = 1

1 + e−Ha
,

(1)

where Ha = C

N (t)

(∑
i

JaiNi

)
− μNi.

In the rightmost expression, from left to right, C is a
scaling constant, the coupling Jai represents the influence of

agent i on agent a, Ni is the current population of species
i, and μ is a constant expressing the carrying capacity
of the environment. Note that Jai �= Jia and that Jii = 0;
i.e., self-interactions are excluded. Each bit (gene) in the
genome of a newly created offspring differs from the parental
gene with a constant probability pmut. A last parameter, θ ,
determines the probability that two species are connected by
nonzero interactions. Time t is measured in generations, whose
length or duration equals the number N (t)/pkill of Monte
Carlo queries needed on average to remove all individuals
present at time t when pkill is the removal probability. The
number of Monte Carlo queries within a generation is thus
calculated iteratively based on the population of the previous
generation.

The parameters used in this work are θ = 0.25, μ = 0.05,
C = 50, pmut = 0.01, and pkill = 0.25. Initially, the ecology
consists of a single species of 500 identical individuals. The
above initial condition is standard in the literature and has
little bearing on the observed statistical properties on longer
time scales. Invariably, the population of a single—and thus
noninteracting—species quickly reaches the level dictated by
balancing its death and reproduction rates and the evolution of
the ecosystem first starts once mutations have created a group
of interacting species. In our case, the system is given a couple
of generations to find a metastable configuration before data
collection begins.

The basic procedure to generate the interactions between
species x and y from their corresponding binary genomes
of length L, G(x) and G(y), relies on both their binary
representation and their equivalent integer representation.
Right below and until further notice, the name of a species,
e.g., x, and that of its genome, i.e., G(x), are for convenience
identified in the notation.

Two random arrays of length 2L, A and B, are initially
constructed and never changed during a simulation. A contains
independent standard Gaussian deviates of zero average, and
B contains independent binary variables which equal zero with
probability 1 − θ and one with probability θ . The logical
exclusive or, z = XOR(x,y) is a binary string of length L

calculated by performing a bitwise XOR operation on the binary
representation of x and y. The three strings x, y, and z are
finally read as integer indices to the arrays A and B. With an
eye to the next section, where the notation is slightly more
involved, we denote the xth element of the array A by A(x)
instead of the more usual Ax .

The procedure to generate Jxy is now as follows:
(1) Calculate z = XOR(x,y).
(2) If (B(z) = 0 or x = y), set Jxy = 0. If not,
(3) (a) Read out the three Gaussian deviates: z1 = A(x),

z2 = A(y), and z3 = A(z).
(b) Set Jxy = z1z3 and Jyx = z2z3.

Note that nonzero interactions are asymmetrical, while
zero interactions are symmetrical. Importantly, all interactions
are known in potentia before the dynamics starts and never
need to be stored in their totality. Computationally this is
advantageous, since only the interactions between extant
species are needed for updating the dynamical state of the
system. These interactions remain at all times a tiny fraction
of the existing 22L possibilities but move around and acquire
more positive values [9,13,17] as the ecology evolves.
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When using the above scheme, changing a single bit in the
genome of an individual leads to a completely different set of
interactions with other individuals and to the mentioned lack
of trait inheritance. In the next section we illustrate how the
scheme can be improved to allow a mutant to inherit some traits
of its parent without destroying its computational convenience.

III. TRAIT INHERITANCE AND CORRELATED
INTERACTIONS

In order to introduce trait inheritance, a gene of length L

is first subdivided into K � L contiguous parts of integer size
L/K , each part indexed by an integer s, 1 � s � K . Second,
we return to our full notation and let Gs(x,0) denote the
binary string whose sth part is identical to the corresponding
part of G(x), and whose other bits are zero. To calculate
the interactions between x and y we repeat the procedure
described in the previous section, except that we now read
out 3K standard Gaussian deviates, z1,s = A(Gs(x,0)), z2,s =
A(Gs(y,0)), and z3,s = A(Gs(z,0)), and define

Jxy = z1z2, Jyx = z1z3,
(2)

where zl = 1√
K

K∑
s=1

zl,s , 1 � l � 3.

We note that all three zl’s are standard Gaussian deviates of
zero average and that changing one bit in, say, gene x only
affects one of the K contributions to z1. This produces the
desired correlations between the interactions of similar genes.
We did not implement an analogous procedure to correlate
whether an agent and its one-point mutant have similar sets
of zero interactions. Finally, since each part of the genome
corresponds to 2L/K integers, only K2L/K elements of the
array A are utilized out of the 2L available. For K near L this
introduces undesired statistical correlations between the zl,s

values generated by the algorithm.
The statistical properties of the coupling distribution are

summarized in Fig. 1, which displays an estimate of the PDF of
the interaction strengths generated by the rule just described for
L = 20 and for two values of K: K = 1, corresponding to the
uncorrelated model (solid line) and K = 5. For each K value,
our estimate of the interaction strength PDF was obtained by
generating 1 × 104 arrays A and B. For each of these couples
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FIG. 1. The PDF of the interaction strengths for two different val-
ues of K . The theoretical PDF of the product of two standard Gaussian
deviates with zero mean is also plotted but is indistinguishable from
the K = 1 curve at the resolution level of the plot.
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FIG. 2. The normalized correlation function for species pair
interactions is plotted on a logarithmic scale as a function of the
number m of point mutations which one of the two species undergoes.

of arrays, 1 × 104 pairs of species were generated as random
binary strings of length L. The interactions between each pair
were then calculated as explained above. The statistics is thus
obtained from 2 × 108 nonzero interactions between random
species. Hence it does not include any dynamical selection
effects. The theoretical PDF of the product of two standard
Gaussian deviates with zero average is also plotted. It does,
however, overlap completely with our empirical K = 1 curve
and cannot be distinguished from it at the resolution level of
the plot.

As anticipated, the three PDFs have very similar shapes.
The PDF for K = 5 has a slight positive bias, at very high
values of its argument. This is an effect caused, as mentioned,
by only using K2L/K elements of the normally distributed
array A: the probability of picking two random numbers
with the same sign increases, and when these are multiplied
together, the result is always positive.

To describe how the interactions between two agents a and
b change as b undergoes mutations, we first pick 1 × 104 pairs
a,b of species and let Jab(m), m = 0,1,2 . . ., be the interaction
between a and an m times mutated b. We then define the
correlation function C(m) = 〈Jab(0)Jab(m)〉{a,b}, where the
brackets indicate an average over the different a’s and, for each

a, over the (L
m) possible ways to introduce m point mutations in

b. For K = 1 the correlation function normalized to C(0) = 1
is by construction a Kronecker delta, i.e., C(m) = δm0. In
Fig. 2 similarly normalized correlation functions are plotted
on a logarithmic scale as functions of m for several K values
above 1. The functions are seen to decay with m in a nearly
exponential fashion and the decay rate is seen to decrease with
increasing values of K .

In conclusion, our algorithm ensures that a mutant inherits
the interactions of its parent. The typical amount of change
induced by a mutation decreases with increasing K .

IV. DYNAMICAL EFFECTS

Earlier studies [10,19] suggest that correlated interactions
do not qualitatively change the dynamical behavior of the
TNM. In this section we reexamine the question for the model
versions considered, focusing on structural features and aging
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dynamics. Our first analysis concerns the structure of the
core species [13] and the log-normal distribution of species
abundance. We then proceed to analyze, for different values of
K , the time dependence of the survival probability of species
which are extant at different ages.

A. Core structure

Core species make up the bulk of the population since the
mutualistic interactions which link them together endow them
with high reproduction rates. Most species belong, however,
to the cloud and are intermittently populated, mainly through
an influx of mutants from nearby core species. Altogether,
cloud species only comprise a minor fraction of the population.
Following Ref. [13], a practical criterion which can be used
to distinguish cloud from core species on the fly is that a core
species is larger than 5% of the most populous species.

Figure 3 shows a three-dimensional rendering of a single
TNM ecology evolved for 1 × 104 generations starting from a
single species with 500 individuals. The mapping is obtained
using principal component analysis (see, e.g., Ref. [14]
for further details) and represents species by spheres of
volume proportional to their population. Distances reflect the
Hamming distances between the corresponding species of the
ecology. For K = 5 the ecology appears more diverse than
in the K = 1 case where interactions are uncorrelated. This
seems a natural consequence of the fact that, in the former case,
a mutant species inherits to some degree the good connections
of its parent core species and can more easily establish itself as
a new core species. This seems to be the case for the two nearby
core species drawn near the lower edge of the right-hand
panel. Besides one extra core species, the K = 5 version
features many more cloud species and a larger total population.
To show in more detail the differences in population and
diversity induced by changing K , simulations were continued
for a few generations after forcing the ecology to “freeze” at
t = 1 × 104, by instantaneously setting the mutation rate μmut

to zero. The immediate effect of removing mutations, seen in
both panels of Fig. 4, is that core species grow in size due to the
fact that all cloud species, no longer replenished by mutants,
die out. The long term effect is to force the dynamics into a
stationary state by preventing the generation of destabilizing
mutants. Figure 4 depicts core species populations in such a

FIG. 3. A three-dimensional rendering of a single ecology after
10 000 generations. Left, K = 1; right, K = 5. Species are repre-
sented by spheres of volume proportional to their population. The
mutualistic interactions connecting core species are represented by
lines with the same color as the species they affect and with a thickness
proportional to their strength. Interactions linking cloud species are
omitted for clarity.
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FIG. 4. Each line represents the population of a different species
in the frozen ecology obtained by instantaneously setting the mutation
rate to zero after 1 × 104 generations. The left and right panels show
uncorrelated and correlated interactions, respectively.

state for K = 1 and K = 5 as a function of time and shows
that turning on the correlations increases both the diversity and
the total population of the ecology.

B. Population abundance distribution

Figure 5 illustrates how the population is distributed across
different species. The abscissa is the logarithm of the species
population size, and the ordinate is our estimate of the
corresponding probability distribution function, obtained as
the frequency with which a species of given size appears in
the population. The data were obtained from an ensemble of
100 independent runs each lasting for 1 × 104 generations.
Comparing the left- and right-hand panels, we note that,
irrespective of K , the abundance distribution is bimodal, with
two widely separated maxima corresponding to values of the
abscissa near 2 and 7. The separation supports the distinction
between cloud and core species. The insets show that, for
K = 5, core species are distributed in a nearly log-normal
fashion while, for K = 1, a log-normal distribution still
provides a reasonable, but far less accurate, description. We
also see that the distribution of the most populous half of the
cloud species is also approximately log-normal, while very
sparsely populated species fall outside the description. The
nearly log-normal distribution of cloud species is expected,
as these species are populated by an influx of mutants from
“parent” core species with the size of the influx mirroring the
size of the parent species.
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FIG. 5. The population abundance distributions vs the logarithm
of the species population for K = 1 (left) and K = 5 (right),
respectively. Lines are Gaussian fits. Notice the clear separation on
the horizontal scale of the two maxima of the distribution. Insets
zoom in on core species data at large populations.

052410-4



TANGLED NATURE MODEL OF EVOLUTIONARY DYNAMICS . . . PHYSICAL REVIEW E 93, 052410 (2016)

Anderson and Jensen [9] already pointed out the relevance
for the TNM of log-normal distributions, which are known to
describe many natural systems, including abundance distribu-
tions in several real ecologies [20]. Our results concur with
theirs and furthermore show (i) that the distinction between
core and cloud species emerges naturally from a statistical
analysis and (ii) that introducing correlations improves the
quality of the log-normal description of the species abundance
distribution.

V. SPECIES PERSISTENCE CURVES

Since, by definition, TNM agents die at a constant rate,
they have a finite expected lifetime. In contrast, and reflecting
the complexity of the dynamics, species die at a slow and
decelerating rate, and their lifetimes do not possess finite
averages. Studying species persistence curves throws light on
important aspect of the TNM dynamics: first, these curves
concisely describe the aging dynamics of the model, and
second, they change in a measurable and systematic way when
inherited traits are introduced.

To explore these issues we define a cohort as the set of
species extant at time tw. We then measure the persistence
P (tw,t) as the fraction of the cohort which is still extant at time
t > tw. The persistence provides an estimate of the probability
that a species extant at time tw still is extant at later times and
the distinction between the two quantities is glossed over in
the following. The lifetime probability density function of a
species extant at tw is then

S(tw,τ ) = − d

dτ
P (tw,tw + τ ), 0 � τ < ∞. (3)

To measure persistence of species we ran 51 independent
simulations in the K = 1 case and 68 in the K = 5 case, all
lasting 224 > 107 generations, which is a very long time by
most criteria. Extant species are registered at each t = 2k ,
k = 4,5, . . . ,24, with the delay on the first cohort introduced
to ensure that the ecology has properly stabilized. We thus
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FIG. 6. Species persistence vs time. A new cohort of extant
species is registered for each t = 2k , k = 1,2,3, . . . , and the corre-
sponding fraction surviving at later times is plotted on a logarithmic
scale. Not all cohorts are shown for graphical reasons. K = 1 data are
shown by squares, and K = 5 data by circles. Lines are only guides
to the eye.
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FIG. 7. The same data as in Fig. 6, now plotted as a function of
t/tw . K = 1 data are shown by squares, and K = 5 data by circles.
The lines are least squares fits to power laws y = a(t/tw)b, where b =
−0.283(14) and b = −0.117(6) for K = 1 and K = 5, respectively.
All available cohorts have been used in the fits.

end up with 21 cohorts, one for each k, of which the last
one is discarded as it only has one data point. Each data set
in Fig. 6 shows for t > tw the persistence of the cohort of
species extant at time tw. The dip for t ≈ tw stems from the
fast disappearance of cloud species. At later times the curves
all tend to approach straight lines on our log-log plot, which
is indicative of a power-law dependence. Since pure or t/tw
scaling is known to hold approximately in many aging systems
of a physical nature, see Ref. [21] and references therein,
it is interesting to investigate its applicability to a model of
biological evolution such as the TNM. Figure 7 shows that
plotting our persistence data as a function of t/tw produces a
good data collapse. The lines are fits to a power law y(t/tw) =
a(t/tw)b. For K = 1 the exponent is b = −0.283(14) and for
K = 5 it is b = −0.117(6). Three comments are in order.
First, independently of the degree of inheritance, Eq. (3) shows
that the lifetime distribution lacks a finite average. Second,
we see that species created at a late stage of the evolution
process (large tw) are more resilient than those created early
on, implying that the rate of quakes decreases in time. Third,
the exponent of the persistence decay is more than halved when
K goes from 1 to 5, clearly showing that inheritance produces
a more robust ecology where species live longer.

VI. CONCLUSION AND OUTLOOK

In the TNM version introduced in this work, a mutant
inherits part of the interactions of its parent, with the amount of
modification controlled by an integer parameter K . Indepen-
dently of K , the genome remains a point in an L-dimensional
hypercube, and the value of K has only insignificant effects
of the distribution of the nonzero couplings linking different
species. Finally, our approach does not require the storage
and manipulation of huge sparse matrices. We concur with
Refs. [10,19] that trait inheritance does not radically change
the basic properties of the TNM: irrespective of the value of K ,
we see a decelerating aging dynamics where sudden quakes
lead to considerable rearrangements of the network structure
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of the TNM ecology. More specifically, independently of
K the aging dynamics of the TNM is characterized by
persistence curves which decay as powers of the ratio t/tw,
a scaling form known as pure aging in complex systems of
physical origin [18]. Increasing the degree of inheritance has
nevertheless both structural and dynamical effects: the subnet
of core species becomes larger and more highly populated,
the species abundance distribution is better approximated by
the log-normal distribution found in many experimental data,
and the decay of the species survival probability becomes
noticeably slower.

Trait inheritance generates TNM core species which are
related to each other. In real ecologies, be they of biological

or socioeconomic nature, families of related extant species are
the norm rather than the exception, and the selective pressure
generated by a varying external parameter is more likely to
change the relative population of these related species than to
destroy the ecosystem itself. We expect the added flexibility
to external variations to be a property of the TNM with trait
inheritance which is worthy of further investigations.
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