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Elasticity of a semiflexible filament with a discontinuous tension due to a cross-link
or a molecular motor
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We analyze the stretching elasticity of a wormlike chain with a tension discontinuity resulting from a Hookean
spring connecting its backbone to a fixed point. The elasticity of isolated semiflexible filaments has been the
subject in a significant body of literature, primarily because of its relevance to the mechanics of biological matter.
In real systems, however, these filaments are usually part of supramolecular structures involving cross-linkers or
molecular motors, which cause tension discontinuities. Our model is intended as a minimal structural element
incorporating such a discontinuity. We obtain analytical results in the weakly bending limit of the filament,
concerning its force-extension relation and the response of the two parts in which the filament is divided by
the spring. For a small tension discontinuity, the linear response of the filament extension to this discontinuity
strongly depends on the external tension. For large external tension f , the spring force contributes a subdominant
correction ∼ 1/f 3/2 to the well-known ∼ 1/

√
f -dependence of the end-to-end extension.

DOI: 10.1103/PhysRevE.93.052408

I. INTRODUCTION

Over the past couple of decades, it has become clear
that mechanics plays a very important role in the biological
function of the cell, on a par with biochemistry [1–3]. In
order to unravel the physical basis of the complex mechanical
behavior of biological matter, a bottom-up strategy has proven
very fruitful [4]. In this approach, the basic functional modules
of the cytoskeleton are reconstituted in vitro and analyzed
experimentally in tandem with theoretical modeling.

The basic structural elements of the cytoskeleton (micro-
tubules, intermediate filaments, F-actin) are all semiflexible
polymers with a behavior intermediate between that of a
random coil and a rigid rod [5,6]. They form supramolecular
assemblies (e.g., networks, bundles) through cross-linking [7].
Cross-linking involves a host of different filament-binding
proteins [8,9]. Active processes in the cell, such as the delivery
of cargos, transport of organelles, mitotic dynamics, as well
as muscle contraction are carried out by molecular motors
using actin filaments or microtubules as tracks. The bottom-up
approach to the study of molecular motors aims at analyzing
the transduction of metabolic energy into mechanical force
and motion at the microscopic level using in vitro assays [10].
The advances in single-molecule manipulation are harnessed
to study the simplest motor-filament complexes. In gliding
assays, the motor (myosin, kinesin, or dynein) is attached to a
glass surface and the translocation of the filament (F-actin or
microtubule) is observed. In single motor assays, the filament is
attached to the glass surface and the movement of the motor is
monitored. In motor assays with beads, the motor is attached to
a micron-sized refractile bead whose position is measured [11].

In this paper, we investigate analytically the mechanical
response of a semiflexible filament with a tension discon-
tinuity. Our model system can be viewed as one of the
simplest structural elements of the cytoskeleton beyond the
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isolated single-molecule level. We consider a semiflexible
polymer, modeled as a wormlike chain, in the weakly bending
approximation. The latter can be satisfied either by applying a
strong tensile force, which irons out large thermal undulations,
or by having a filament with large persistence length compared
to its contour length. A longitudinal Hookean spring whose
one end is attached to a fixed substrate, has its other end
on the filament thus exerting a force that causes the tension
discontinuity. The position of one end of the filament is
held fixed, whereas that of the other end fluctuates. Its
average position yields the force-extension relations, which
are the main subject of our analysis. The spring may be
viewed as representing a motor, according to the myosin
cross-bridge model first introduced by Huxley in 1957 [12]
and still in use [13]. Our results apply to passive motors or
to very slowly stepping motors, slower than the relaxation
time of the filament. The timescale can be tuned by adjusting
the concentration of ATP molecules. We should point out,
however, that our study of semiflexible filaments with tension
discontinuity is also relevant to passive cross-linkers of large
size or compliance. Many of the actin binding proteins fall in
this category as they can have large spacer domains [7]

Our paper is organized as follows. In Sec. II we introduce
the model and show how the discontinuity along the filament
contour arises. In Sec. III we discuss the method of Green func-
tions, which allows us to calculate correlation functions of the
filament tangent vector and therefore the force-extension rela-
tion for different boundary conditions. Explicit results for the
case of small spring force, large spring force, and large spring
and external forces with a small difference between them are
given in Sec. IV. In Sec. V we discuss the relation of our
analysis to single-motor experiments. We conclude in Sec. VI,
and details of our calculations are given in the Appendices.

II. MODEL DESCRIPTION

Our starting point is the wormlike chain model for a
semiflexible filament of contour length L, which is attached to
a point or wall on one side and pulled by a constant force, fext,
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on the other side. Its Hamiltonian is given by

HWLC = κ

2

∫ L

0

(
dt
ds

)2

− fext

∫ L

0

dt
ds

. (1)

Here t(s) is the tangent vector at arclength s, 0 � s � L, and
κ denotes the bending stiffness. We will treat the above model
in the weakly bending approximation [14], assuming that the
persistence length lp = κ/(kBT ) is much larger than the length
L of the filament.

In the Monge parametrization [15], the tangent
of a semiflexible filament is given by t(s) =

1√
1+a2

1 (s)+a2
2 (s)

(1,a1(s),a2(s)). We assume that the filament

is oriented along the x direction, either due to the grafting
on the left side and/or the pulling force fext = fextex . In
the weakly bending limit the transverse components of
the tangent vector a1(s) and a2(s) are small. We therefore
approximate tx(s) = 1 − 1

2 [a2
1(s) + a2

2(s)] and ( dt(s)
ds

)2 =
ȧ2

1(s) + ȧ2
2(s), where the dot denotes the derivative with

respect to s. The Hamiltonian then reads

HWB =
2∑

i=1

{∫ L

0

[
κ

2
ȧ2

i (s) + fext

2
a2

i (s)

]
ds

}
. (2)

Here, we are interested in the effects of a motor whose one
end is grafted to a substrate while the other end is attached to
the filament at arclength Lm. In the simplest model, the motor
is just a spring of rest length L0 and spring constant km,

Hspring = km

2
(R1 − X0 − L0)2 (3)

(see Fig. 1). When the motor steps along the filament, its
effective spring is compressed or extended beyond the rest
length, resulting in a force, fm, on the filament. Since the
pulling force, fext, is fixed the presence of the motor will
result in a compression or extension of the filament. In this
paper, we compute the change in the force-extension relation
of the filament due to the attached motor.

FIG. 1. Schematic presentation of a filament attached to a spring
with clamped-free and hinged-hinged boundary conditions at the
ends. One end of the spring is fixed to the substrate. The spring
pulls one side of the filament and pushes the other side. Therefore,
the two sides of the filament are at different tension.

In the weakly bending approximation, we can represent the
total Hamiltonian H = HWB + Hspring in the form of a filament
with an arclength-dependent tension:

H =
2∑

i=1

{∫ L

0

[
κ

2
ȧ2

i (s) + f (s)

2
a2

i (s)

]
ds

}
, (4)

where f (s) is a piecewise constant function,

f (s) =
{
fext + fm 0 < s < Lm

fext Lm < s < L
, (5)

with fm = km(X0 − Lm + L0).
Actually, the assumption of a harmonic spring for the motor

is not needed as long as we use the weakly bending approxima-
tion. Consider a general interaction potential instead, V (R1).
In the weakly bending approximation, we take

R1 − Lm = −1

2

2∑
i=1

∫ Lm

o

a2
i (s)ds (6)

to be small, and expand V around R1 = Lm,

V (R1) = V (Lm) + ∂V

∂R1
(R1 − Lm)

= V (Lm) + fm

2

2∑
i=1

∫ Lm

0
a2

i (s)ds,

resulting in the same effective Hamiltonian [Eq. (4)], but now
for a general interaction potential.

We want to compute the end-to-end distance of the filament
〈R〉 = 〈x(L) − x(0)〉. To that end, we first calculate

〈R2〉 = (L − Lm) − 1

2

2∑
i=1

∫ L

Lm

〈a2
i (s)〉ds (7)

and similarly 〈R1〉, where the thermal average 〈...〉 is to be
taken with the Hamiltonian of Eq. (4).

III. SOLUTION USING GREEN FUNCTION

Using integration by parts for the first term in Eq. (4), we
find

HWB = 1

2

2∑
i=1

[∫ L

0
ai(s)O(s)ai(s)ds + Bi

]
, (8)

where Bi = κ
2 ai(s)ȧi(s) |L0 depends on the boundary con-

ditions and is a constant and O(s) = −κ d2

ds2 + f (s) is a
differential operator. The corresponding Green function obeys
the differential equation

β

[
− κ

d2

ds2
+ f (s)

]
G(s,s ′) = δ(s − s ′). (9)

For a piecewise constant force f (s) we can solve for the Green
function in the two regions with constant force and then match
the solutions at s = Lm (see the Appendix). For the explicit
calculation, we have to specify boundary conditions at both
ends of the filament. We consider two cases: the clamped-free
filament, shown in the upper part of Fig. 1, and the hinged-
hinged filament, shown in the lower part of Fig. 1.
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A. Clamped-free filament

We require ȧi(L) = 0 at the free end and ai(0) = 0 at the
clamped end. For the Green function this implies

Gcf(s,s
′) |s=0= 0

∂

∂s
Gcf(s,s

′) |s=L= 0. (10)

The correlation function of the transverse components of the
tangent vector can be obtained from the Green function as
follows [16,17]:

〈ai(s)ai(s
′)〉 = Gcf(s,s

′). (11)

If no motor is attached, the force-extension relation
reads [15]

〈R〉WLC = 〈R1 + R2〉 = L − L2

2lp

(
tanh(f̃ext)

f̃ext

)
. (12)

The characteristic energy scale of the WLC is given by κ/L.
Hence, we have rescaled the externally applied pulling force
with the bending force of the wormlike chain and introduced
f̃ext = fextL

2/κ . We get a linear relation for small forces,

fext = kcf
‖ (L)(Lr − 〈R〉), (13)

with rest length Lr = L − L2/2lp and stiffness kcf
‖ (L) = 6l2

p

βL4

[15].

B. Hinged-hinged filament

In this case we require ȧi(L) = 0 and ȧi(0) = 0 implying
for the Green function

∂

∂s
Ghh(s,s ′) |s=0= 0

∂

∂s
Ghh(s,s ′) |s=L= 0. (14)

For a compressive external force fext, the filament is free to
rotate at the grafted end. This can be prevented by requiring
that the pulling point has to have the same height as the
grafting point:

∫ L

0 ai(s) = 0. The correlation function of the
components of the tangent vector is then given by [16,17]

〈
ai(s)ai(s

′)
〉 = −

∫ L

o
Ghh(s,s1)ds1

∫ L

o
Ghh(s ′,s2)ds2∫ L

0

∫ L

0 Ghh(s1,s2)ds1ds2

+Ghh(s,s ′). (15)

If no motor is attached to the filament, the force-extension
is explicitly given by

〈R〉WLC = L − L2

2lp

(
coth(f̃ext)

f̃ext
− 1

f̃ 2
ext

)
. (16)

For small forces, the filament behaves like a spring,

fext = khh
‖ (L)(Lr − 〈R〉), (17)

with rest length Lr = L − L2/(6lp) and a length dependent

stiffness khh
‖ (L) = 90(lp)2

βL4 .

IV. RESULTS

The explicit analytic solution for the Green function is given
in the appendix. As a result, we obtain analytic, albeit lengthy
expressions for the force extension 〈R〉 = 〈R〉(fext). To better
understand these results, we plot the force-extension relations

FIG. 2. Extension of the filament, 〈R〉, as a function of the
external force fext, which can be compressive or extensile; full line, no
motor attached; dashed line, βLfm = +50; dotted line, βLfm = −50.
(Parameters: L = 1, lp = 10, L/Lm = 2; hinged-hinged filament.)

for hinged-hinged boundary conditions in Fig. 2. The effect
of the motor force is more pronounced in the compressional
regime, fext < 0, because the filament is softer in response to
compressions as compared to extensions, fext > 0. The motor
force can partially compensate the compression of the fiber by
the external force, if its sign is opposite, i.e., it is pulling on
the left part of the segment. Obviously, the left segment is then
extended as compared to the case without motor (see Fig. 3,
upper part), but also the right segment is extended (see Fig. 3,
lower part), even though the tension in the right part does not
depend on fm. The reason for this extension is the stronger
alignment of the left end of the right part of the filament by
the motor. The overall effect of a positive motor force is to
substantially stiffen the filament in the compressional regime.
The effects, of course, increase with increasing motor force. If
the motor force is compressional the extension of the filament
is correspondingly reduced as compared to the case without
motor force.

In Fig. 4, we show the dependence of the filaments
extension on the motor force, fm, for several values of
external pulling force, fext. If no external force is applied
〈R〉 = 〈R〉(fm) looks qualitatively similar to 〈R〉 = 〈R〉(fext).
The filament is most sensitive to the external pulling force in
the range where the motor tends to compress the filament.

The effects of the motor are seen best in the differential
tensile stiffness of the filament, which can be computed from
the force-extension relation according to

E−1 = ∂〈R〉
∂fext

. (18)

In Fig. 5 we show the relative change in the differential stiffness
of the filament caused by the spring. There is significant
enhancement in stiffness when the spring force is extensile
(dashed line), because the effective tension of the filament is
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FIG. 3. Extension of the two separate parts of the filament, 〈R1〉
and 〈R2〉, as a function of the external force, fext, for several values
of the motor force; red lines, clamped-free filament; blue lines,
hinged-hinged filament. (Full lines, no motor attached; dashed lines,
βLfm = +50; dotted lines, βLfm = −50; parameters as described in
the caption of Fig. 2.)

increased. The stiffness is weakened for a compressive motor
force (full lines). In both cases do we observe stronger effects in
the regime where the external force is compressive, implying
that a filament under compression is strongly sensitive to a
motor which is either pushing or pulling.

A. Limit of small motor force fm

It is instructive to consider the limit of small motor force
fm � min{fext,

κ
L2 }. For the clamped-free case, we find

〈R〉 − 〈R〉fm=0 = fm

k(fext)
. (19)

FIG. 4. Extension of the filament, 〈R〉, as a function of the motor
force fm for several values of the external force; red lines, clamped-
free filament; blue lines, hinged-hinged filament. (Full lines, no motor
attached; dashed lines, βLfext = +50; dotted lines, βLfext = −10;
parameters as described in the caption of Fig. 2.)

In this limit, the motor-filament system can be represented
as a linear elastic element with an effective force constant k

that depends on the external pulling force and the point of
attachment of the motor. The explicit expression for the force
constant is given in the Appendix, and a similar expression can
be calculated for the hinged-hinged case. In Fig. 6, we show
the force constant k of the motor as a function of the external

FIG. 5. Change in the differential stiffness relative to the case
without a spring as a function of the external force; red lines, clamped-
free filament; blue lines, hinged-hinged filamen. (Dashed lines,
βLfm = +50; dotted lines, βLfm = −50; parameters as described
in the caption of Fig. 2.)
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FIG. 6. Effective stiffness, k(fext), of the filament with respect
to the motor force as a function of external force fext. The range
of the external force is chosen in a way that the filament is well
approximated as weakly bending ( R

L
> 0.9); parameters as described

in the caption of Fig. 2.

force fext. The force constant decreases as we compress the
filament and it increases as we increase the stretching force.
This change of the motor force constant k is an essential feature
of the elasticity of the semiflexible filament which is missing
in studies using linear elasticity for the filament. In Fig. 7, we
compare the exact force-extension relation to the linearised
one. As can be seen in the figure, the linear approximation
works better for higher values of the external force fext.

FIG. 7. Comparison of the complete solution for the end-to-
end distance 〈R〉/L and the one linearized around fm = 0; full
lines, βLfext = 0; dashed lines, βLfext = 50; dashed-dotted lines,
βLfext = 100; dotted line, βLfext = −10; parameters as described in
the caption of Fig. 2.

In the limit of large external forces, fext 	 max{fm, κ

Lm
2 },

and large filament length, min{L,Lm} 	 fext/(kBT ), Eq. (19)
reduces to the following relation, irrespective of boundary
conditions:

〈R〉
L

= 1 − 1

2

kBT√
κfext

+ Lm

4L

kBTfm√
κfext

3
2

. (20)

Notice that this equation holds in the thermodynamic limit and
it is scale invariant: if we multiply all lengths (〈R〉, Lm, L) by
the same factor, it does not change. The effect of the motor
force is subdominant, as it scales with ∼ 1/f

3/2
ext compared

to ∼ 1/
√

fext for the Marko-Siggia case, but it is noteworthy
that it persists in the thermodynamic limit and is not just a
finite-size effect.

In the limit of small external forces, fext � κ/L2, we obtain
a linear response to both the motor and the external force,
which in the case of clamped-free boundary conditions reads

〈R〉cf

L
= 1 − L

2lp
+ 2L3

mL − L4
m

6L3lp
f̃m + L

6lp
f̃ext. (21)

B. Limit of large motor force fm

In the limit of large motor force, fm 	 max{fext,
κ

Lm
2 }, we

expect the left part of the filament to display the asymptotic
(Marko-Siggia) force extension for large fm and indeed it does:

〈R1〉cf = Lm − Lm

2lp

√
κ

fm

. (22)

However, the extension of the right part of the filament is not
just given by the expression for a wormlike chain under tension
fext but shows a correction of O( 1√

fm
):

〈R2〉cf = 〈R2〉WLC − α(fext)
√

κ

fm

. (23)

The strength of the effect depends on the external pulling force
(see Fig. 8) and is strongest for weak pulling force. Explicit
forms of 〈R2〉WLC and α(fext) are given in the Appendix.

In the limit of small external force, fext � κ/L2 � fm and
κ/L2

m � fm, we obtain a linear force-extension relation:

〈R〉cf

L
= 1 − L

2lp
+ Lm(6L − 3Lm)

6lpL
+ (L − Lm)4

6L3lp
f̃ext

− (6L − 3Lm)Lm

6lpL

1

f̃
1
2

m

. (24)

C. Limit of large force fext and fm = − fext + ε

Next, we consider the limit of a large external pulling force,
which is almost compensated by the motor in the left part of the
filament. In other words, we put fm = −fext + ε and consider
the case with fext 	 κ

Lm
2 and ε � κ

L2 . In this limit, the right
part of the filament is asymptotically extended,

〈R2〉cf = L − Lm −
(

L − Lm

2lp

)(
κ

fext

)1/2

. (25)

052408-5



RAZBIN, BENETATOS, AND ZIPPELIUS PHYSICAL REVIEW E 93, 052408 (2016)

FIG. 8. Coefficient of the asymptotic expansion, α(fext), as
function of external force fext; parameters as described in the caption
of Fig. 2.

The total extension in this limit is given by

〈R〉cf − L = L2
m

6lp
−

(
L

6lp

)
(3L − Lm)

f̃
1
2

ext

+
(

L4
m

90lpL2

)
εL2

κ
.

(26)
The first term accounts for the reduction in length due to
thermal fluctuations in the left part only and hence ∝ L2

m. The
tension in the left part is just ε � 1, which accounts for the
last term. However, the pulling force fext affects the orientation
of the tangent at Lm and hence also the extension of the left
part of the filament so the dominant term for strong pulling
force is not just determined by the right part of the filament.

V. RELATION TO SINGLE-MOTOR EXPERIMENTS

Our results can be tested experimentally using optical
tweezers. Beads attached to the two ends of the biomolecule,
which acts as track (e.g., F-actin), are trapped with optical
tweezers. The motor (e.g., myosin-V) is attached with one end
to a fixed bead and with the other end to the filament. Since the
two end beads are free to rotate, this arrangement corresponds
to the case of hinged-hinged boundary conditions. This exper-
imental setup has already been used in many single-molecule
mechanical transducers [10]. The “three-bead” technique was
pioneered by Finer et al. [18]. The main idea is to measure
the variance of the end-beads’ position, which is related to
the stiffness of the actomyosin cross-bridge complex within
linear elasticity [19,20]. Conformational changes in the motor
induce changes in the effective stiffness of the bridge, which
is measured experimentally. In our model, the conformational
change in myosin changes the motor force fm. This can be due
to a change in the position of attachment of the myosin head
on the actin filament, Lm, or a change in the effective spring
constant, km, or both.

Our results have been obtained in the fixed force ensemble,
where the tension on the filament is determined sharply and

this results in a fluctuating extension, whose average we have
calculated. The positions of the motor bead, which determines
X0 in our model, and of the left filament end are held fixed.
This can be done by using a very stiff optical trap. As shown
by Gerland et al. in Ref. [21], a polymer held between two
optical traps is represented by the mixed ensemble, where
both the tension and the extension fluctuate. This mixed
ensemble interpolates between the fixed extension ensemble
(corresponding to the limit of very stiff traps) and fixed force
ensemble (corresponding to the limit of very soft traps).
Therefore, our general results for hinged-hinged boundary
conditions can be tested with a setup involving a very soft
optical trap for the right end of the filament. We should point
out that the force-extension relation given by Eq. (20) holds in
the thermodynamic limit and as such is ensemble independent
(fixed force or fixed extension). In addition, the linear response
results are ensemble independent.

In real systems, the spring will act not only in the
longitudinal direction but also in the transverse direction.
The effect of a transverse spring of zero rest length in the
force-extension relation of a weakly bending wormlike chain
has been calculated in Ref. [22]. For a spring of finite rest
length, which is almost parallel to the longitudinal direction
of the filament, the transverse effect is of higher order and can
be neglected. For a spring of zero rest length but with fm �= 0,
we can simply add the following contribution to the right-hand
side of Eq. (20):

�〈R〉
L

= kmkBT

4f 2
ext

(
1 + kmL

2fext

)−1
, (27)

which holds in the strong stretching limit, f 	 κ/L2
m. For a

soft spring, kmL � fext, this contribution falls off as ∼ f −2
ext ,

which is subdominant to the longitudinal contribution, which
falls off as ∼ f

−3/2
ext .

VI. CONCLUSION AND OUTLOOK

We have analyzed the force-extension of a wormlike chain
whose one end is fixed, while the other end is pulled or pushed
by an external force. In addition, the filament is attached to a
spring, which may represent a cross-link or a motor arrested
at its stall force. Irrespective of boundary conditions, the
effects of the spring are stronger in the compressive regime as
compared to the stretching regime. Depending on the relative
sign of the pulling force and the spring force, the latter can
substantially stiffen or weaken the filament. When the motor
force is small, its effects can be represented by an effective
spring constant, which strongly depends on the prestress of
the fiber, i.e., the external force. When the motor force is
large, it gives rise to the same 1/

√
fext dependence, which is

well known from the work of Marko and Siggia [14].
The dependence of the force extension curve of the filament

on motor force allows us to deduce the latter from measure-
ments of the force-extension relation. In fact, the so-called
three-bead geometry has already been used to determine the
stiffness of the actomyosin cross-bridge [20].

An interesting direction for future work is the study of two
or more parallel-aligned filaments with nonlocal springlike
cross-linkers in the direction of alignment. The case of local
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cross-links has been investigated in Refs. [22–24]. A simplified
model of two filaments with a nonlocal spring has been studied
in Ref. [25].
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APPENDIX

1. Filament with hinged-hinged boundary conditions at the two tips

The force is a piecewise constant function with two pieces. As result of this fact, the Green function is a piecewise function
with six pieces:

G(s,s ′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

G−
1 (s,s ′) 0 < s < s ′ � Lm < L

G+
1 (s,s ′) 0 < s ′ < s � Lm < L

G−
2 (s,s ′) 0 < Lm � s < s ′ < L

G+
2 (s,s ′) 0 < Lm � s ′ < s < L

G−
3 (s,s ′) 0 < s < Lm < s ′ < L

G+
3 (s,s ′) 0 < s ′ < Lm < s < L

. (A1)

The assumption that the derivative of the tangent vector is zero at the end tips (hinged-hinged condition) leads to the vanishing
of the derivative of the Green function. Considering the boundary conditions, the solution for the aforementioned equation must
have the following form:

Ghh(s,s ′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

G−
1 (s,s ′) = N11(s ′) cosh(sσ1)

G+
1 (s,s ′) = N12(s ′)[cosh(sσ1) + A1 sinh(sσ1)]

G−
2 (s,s ′) = N21(s ′)[cosh(sσ2) + A2 sinh(sσ2)]

G+
2 (s,s ′) = N22(s ′) cosh ((L − s)σ2)

G−
3 (s,s ′) = N31(s ′) cosh(sσ1)

G+
3 (s,s ′) = N32(s ′) cosh[(L − s)σ2]

, (A2)

where σ (s) =
√

f (s)
κ

= {σ1 =
√

f1
κ

0 < s < Lm

σ2 =
√

f2
κ

Lm < s < L
and Lm is the position of molecular motor in terms of the contour length. Moreover,

constants appearing in Eq. (A2) are obtained from the following conditions:

∂G+
1 (s,s ′)
∂s

|s=s ′ −∂G−
1 (s,s ′)
∂s

|s=s ′ = − 1

βκ
(1)

G−
1 (s ′,s ′) = G+

1 (s ′,s ′) (2)

∂G+
2 (s,s ′)
∂s

|s=s ′ −∂G−
2 (s,s ′)
∂s

|s=s ′ = − 1

βκ
(3)

G−
2 (s ′,s ′) = G+

2 (s ′,s ′) (4)
(A3)

G−
3 (Lm,s ′) = G−

2 (Lm,s ′) (5)

G+
3 (Lm,s ′) = G+

1 (Lm,s ′) (6)

∂G−
3 (s,s ′)
∂s

|s=Lm
= ∂G−

2 (s,s ′)
∂s

|s=Lm
(7)

∂G+
3 (s,s ′)
∂s

|s=Lm
= ∂G+

1 (s,s ′)
∂s

|s=Lm
(8).
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These conditions coming in Eq. (A3), except numbers (7) and (8), give⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N11(s ′) = −cosh(σ1s
′) + A1 sinh(σ1s

′)
σ1lpA1

N12(s ′) = −cosh(σ1s
′)

σ1lpA1

N21(s ′) = cosh[σ2(L − s ′)]
σ2lp[sinh(σ2L) + A2 cosh(σ2L)]

N22(s ′) = cosh(σ2s
′) + A2 sinh(σ2s

′)
σ2lp[sinh(σ2L) + A2 cosh(σ2L)]

N31(s ′) = cosh{σ2(L − s ′)[cosh(σ2Lm) + A2 sinh(σ2Lm)]}
σ2lp cosh(σ1Lm)[sinh(σ2L) + A2 cosh(σ2L)]

N32(s ′) = −cosh(σ1s
′)[cosh(σ1Lm) + A1 sinh(σ1Lm)]

σ1lpA1 cosh[σ2(L − Lm)]

. (A4)

Condition numbers (7) and (8) of Eq. (A3) give⎧⎪⎪⎨
⎪⎪⎩

A1 = −σ2 sinh[σ2(L − Lm)] cosh(σ1Lm) + σ1 sinh(σ1Lm) cosh[σ2(L − Lm)]

σ2 sinh[σ2(L − Lm)] sinh(σ1Lm) + σ1 cosh(σ1Lm) cosh[σ2(L − Lm)]

A2 = −σ1 sinh(σ1Lm) cosh(σ2Lm) − σ2 sinh(σ2Lm) cosh(σ1Lm)

σ1 sinh(σ1Lm) sinh(σ2Lm) − σ2 cosh(σ2Lm) cosh(σ1Lm)

. (A5)

Concerning the boundary condition, the correlation function of the transverse components of tangent vector is written as
follows:

〈
ai(s)ai(s

′)
〉
hh = lim

Ji→0

δ2 ln [Z(Ji)]

δJi(s)δJi(s ′)
, (A6)

where Z(Ji) = ∫
D{ai(s)}δ(

∫ L

0 dsai(s)) exp(−βHWBA + ∫ L

0 dsJi(s)ai(s)) is the generating functional with source term Ji(s)
and β = 1

kBT
. The correlation function of the transverse components of the tangent vector is obtained by the following

expression [16,17]:

〈
ai(s)ai(s

′)
〉 = Ghh(s,s ′) −

∫ L

o
Ghh(s,s1)ds1

∫ L

o
Ghh(s ′,s2)ds2∫ L

0

∫ L

0 Ghh(s1,s2)ds1ds2

, (A7)

which implies

〈
ai

2(s)
〉 = Ghh(s,s) −

[∫ L

o
Ghh(s,s1)ds1

]2

∫ L

0

∫ L

0 Ghh(s1,s2)ds1ds2

. (A8)

2. Filament with clamped-free boundary conditions at the two end tips

In the clamped-free case, we enforce the transverse components of the tangent vector of the filament at s = 0 and their
derivative at s = L to be zero. Similar to Appendix A, we obtain the following expression for the Green function:

Gcf(s,s
′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G−
1 (s,s ′) ≡ sinh(σ1s)[B1 cosh(σ1s

′) + sinh(σ1s
′)]

lpσ1B1

G+
1 (s,s ′) ≡ [B1 cosh(σ1s) + sinh(σ1s)] sinh(σ1s

′)
lpσ1B1

G−
2 (s,s ′) ≡ cosh[σ2(L − s ′)][B2 cosh(σ2s) + sinh(σ2s)]

lpσ2B2 sinh(σ2L) + lpσ2 cosh(σ2L)

G+
2 (s,s ′) ≡ cosh(σ2s)[B2 cosh(σ2s

′) + sinh(σ2s
′)]

lpσ2B2 sinh(σ2L) + lpσ2 cosh(σ2L)

G−
3 (s,s ′) ≡ sinh(σ1s) cosh[σ2(L − s ′)][B2 cosh(σ2Lm) + sinh(σ2Lm)]

lpσ2 sinh(σ1Lm)(B2 sinh(σ2L) + cosh(σ2L))

G+
3 (s,s ′) ≡ cosh[σ2(L − s)] sinh(σ1s

′)[B1 cosh(σ1Lm) + sinh(σ1Lm)]

lpσ1B1 cosh[σ2(L − Lm)]

, (A9)
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where ⎧⎪⎪⎨
⎪⎪⎩

B1 = −σ2 sinh[σ2(L − Lm)] sinh(σ1Lm) + σ1 cosh[σ2(L − Lm)] cosh(σ1Lm)

σ2 sinh[σ2(L − Lm)] cosh(σ1Lm) + σ1 cosh[σ2(L − Lm)] sinh(σ1Lm)

B2 = σ1 cosh(σ1Lm) sinh(σ2Lm) − σ2 sinh(σ1Lm) cosh(σ2Lm)

σ2 sinh(σ1Lm) sinh(σ2Lm) − σ1 cosh(σ1Lm) cosh(σ2Lm)

. (A10)

The correlation function [16,17] is obtained as follows:

〈ai(s)ai(s
′)〉cf = Gcf(s,s

′), (A11)

which implies

〈a2
i (s)〉cf = Gcf(s,s). (A12)

3. Linear end-to-end distance in terms of fm

The end-to-end distance of the whole filament when it is in the clamped-free condition can be written as follows:

〈R〉cf = L − L2 tanh(f̃
1
2

ext)

2lpf̃ext
+

[
1

k(fext)

]
fm. (A13)

The effective linear motor force constant k is
1

k
= − 1

4

[
lpκ( fext

κ
)

5
2 (e4L

√
fext
κ + 2e

2L

√
fext
κ + 1)

]

×
[
Ae

4L

√
fext
κ + Be

2(2L−Lm)
√

fext
κ + Ce

2L

√
fext
κ + +De

2(L+Lm)
√

fext
κ + Ee

2(L−Lm)
√

fext
κ + Fe

2Lm

√
fext
κ + G

]
, (A14)

where A = − fextLm

κ
+

√
fext

κ
,B = −( fextLm

κ
+

√
fext

κ
),C = ( 4fextLLm

κ
+ 2)

√
fext

κ
,D = −(

√
fext

κ
− fextLm

κ
+ fextL

κ
),E = −

√
fext

κ
−

fextLm

κ
+ fextL

κ
,F = fextLm

κ
−

√
fext

κ
,G = fextLm

κ
+

√
fext

κ
.

4. Limit of large motor force fm

In the limit of large motor forces fm 	 Max{fext,
κ
L2 }, we have the following expression for the end-to-end distance of the

first piece of the filament,

〈R1〉cf = Lm − Lm

2lp

√
κ

fm

, (A15)

and the end-to-end distance of the second piece of the filament,

〈R2〉cf = (L − Lm) − (L − Lm)

2lp

tanh
(
(L − Lm)

√
fext

κ

)
√

fext

κ

− α(fext)
√

κ

fm

, (A16)

where

α(fext) = e
4L

√
fext
κ − e

4Lm

√
fext
κ

2lp

√
fext

κ

(
e

2L

√
fext
κ + e

2Lm

√
fext
κ

)2 + 2(L − Lm)e2(L+Lm)
√

fext
κ

lp

(
e

2L

√
fext
κ + e

2Lm

√
fext
κ

)2 . (A17)
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