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Phase-field model for collective cell migration
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We construct a phase-field model for collective cell migration based on a Ginzburg-Landau free-energy
formulation. We model adhesion, surface tension, repulsion, coattraction, and polarization, enabling us to follow
the cells” morphologies and the effect of their membranes fluctuations on collective motion. We were able to
measure the tissue surface tension as a function of the individual cell cortical tension and adhesion and identify

a density threshold for cell-sheet formation.
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I. INTRODUCTION

The evolution of physiological or pathological mechanisms
such as wound healing, immune response, embryogenesis, and
cancer metastasis is dependent on collective cell migration
[1-4]. In the presence of a chemical cue, a single cell
chemotaxes and its motion is biased by the extension of
the cell’s lamellipodia in the direction set by the signal [5].
However, when collective motion is involved, physical forces
at the mesoscopic level come to play and the migration is
no longer predominantly governed by chemical cues [6-10].
Additionally, in this case the contact with other neighboring
cells inhibits the protrusion in the direction of the contact,
known as contact inhibition of locomotion (CIL) [3,11]. As
well, the motion of the cells [12] is affected by adhesion
(mediated by adherens junction proteins [13,14]), the tension
of the cortex (a highly dynamic myosin structure essential
to surface tension and to shape control [15,16]), coattraction
(a mutual chemoattraction mechanism), and collective polar-
ization. Other cell-cell signaling might be triggered, such as
regulatory mechanisms by quorum sensing [17].

The interplay of these forces produces the tissue’s surface
tension. Two competing hypotheses explain this measured
effect: the differential adhesion hypothesis (DAH) and the
differential interfacial tension hypothesis (DITH) [15]. In
models of the DAH, cells are considered as point masses
and the tissue surface tension is assumed to be linearly
proportional to adhesion molecules’ expression levels. This
has been experimentally confirmed [18]. However, results from
experiments in atomic force microscopy show that the actin-
myosin activity affects the cell surface tension, which supports
the DITH and the importance of cell shape in determining
the tissue surface tension. A more recent experimental study
shows that the tissue surface tension is proportional to the
ratio of adhesion to cortical tension, where the first increases
the cell-cell contact size and the second counteracts it [15].

Density is a key parameter upon which these forces depend
and subsequently the tissue surface tension. In various systems,
density controls the transition from “order” to “disorder.” This
is seen in diverse systems ranging from bird flocks to fish
schools to colloids and rods [19]. Particularly in high cell
density regimes, the separation between cells drops, mutual
interaction becomes inevitable, and directional motion can
emerge even in the absence of external chemical cues. In this
limit only a fraction of “informed cells” is necessary to induce
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collective migration, and this fraction can be shown to decrease
with increasing population size in a wide variety of systems
[12,20]. For example, a group of promigratory cells could
act as a guide to other passive cells through adhesion, which
reinforces their action, CIL, and stress-strain realignment by
means of physical transfer of information. In addition to that,
coattraction, or self-secreted chemical attractant, enhances and
maintains the high cell density, acting as a positive feedback
on directional migration [21]. Moreover, as the density of the
cells increases, the collective migration is known to decelerate
at large time and length scales. This is reminiscent of the glass
transition in colloidal systems where caging, or the trapping by
neighbors, is a signature [22-24]. However, unlike colloidal
systems these forces govern the morphological fluctuations the
cell undergoes. Thus, understanding the deformability of the
cell’s membrane becomes essential to understand the transition
[25,26].

In simplified models, the motion of the cells is reduced
to kinematic systems of coupled differential equations where
cells are modeled as point masses and their morphological
fluctuations are neglected. Hence, essential aspects of the
migration are not recovered. For this purpose we use the
phase-field method, which has been used to model individual
cell morphology as well as that of a collection of cells
[27-30] and derive a system of partial differential equations
which follows the evolution of the fields ¢; that depict the
cells’ morphologies under the effect of chemical cues, local
repulsive forces, alignment, adhesion, coattraction, and surface
tension in a closed domain. In addition to that, we explore the
consequence of the change of the ratio of adhesive forces
to cortical tension on tissue surface tension. We compute
the mean-square displacement and show that it changes from
diffusive to subdiffusive as the density of the cells increases,
in addition to investigating the effect of the number of
promigratory cells on collective motion.

II. MODEL

The dissimilarities between the different phases of a
material can be encapsulated in an order parameter, which
either can be a conserved quantity, such as the density
difference that distinguishes between a material’s liquid and
gaseous phases, or can vary like the total magnetization that
sets apart the paramagnetic and the ferromagnetic phases. In
both cases, the order parameter is assigned a distinct value in
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FIG. 1. Fields ¢; and ¢; assigned to cells i and j, respectively,
together with their interaction ranges C; and C;.

each phase and is used to construct the free-energy functional
which describes the system’s equilibrium properties. The bulk
and interfacial energies are given by a power expansion of the
order parameter and its spatial derivatives, respectively, which
together describe the system’s free energy. The coefficients of
such expansion are governed by the system’s symmetry; for
example the coefficients of the odd powers of the derivatives
should vanish if the system is invariant under x — —x. The
type of the order parameter determines its driving conjugate
forces and thus defines the equation governing the dynamics.
These are given, respectively, by Model A and Model B for
a varying field and a conserved field [31]. These constitute
the Ginzburg-Landau theory which we use to define the order
parameter ¢; that takes the value 1 inside the ith cell and
0 outside it [31]. In addition, the field C; sets the range of
interaction between the ith cell and its neighbors; it is 1 inside
the area of interaction and O elsewhere. Figure 1 provides a
description of the fields.

The free-energy functional F which controls the dynamics
of ¢; and C; is obtained from the Taylor expansion in
powers of the fields and their derivatives, respecting the
symmetries of the system. In order to force coexistence
of the phases ¢; = 1 and ¢; = 0, the values that minimize

J

% = —FV2|:6V2¢, fo +wCi(2¢; —
—V - (Vig),
aC; 22 > O
el —I'V[eVCi — fe, 1 -V - (ViCy),
where ¢ is proportional to the surface tension, I'V?H; = —qb,ﬁ .
of f(¢;) and f(C;) with respect to ¢; and C;, respectively.
We define the velocity field to be
N
‘_}i - 5i,cc + Z 6j,ss + ﬁi
J#l

The first term includes the chemotactic effect v; .. = %c,
where c is a Gaussian centered at a fixed point in the domain.
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the bulk-free energy, we truncate the expansion in ¢; to
fourth order by defining the double-well energy of the bulk
f(¢) = ad)iz(l — ¢:)?, where a has units of energy per volume.
Analogously, we define f(C;) = aCl.z(l — C;)?. The presence
of the interface is guaranteed by including (V¢;)? and (VC;)?
in the expansion and dropping out odd powers of the derivatives
to preserve translational symmetry.

In a continuum mechanics formulation, the adhesion po-
tential given by W(x) = we~%®/% contributes — [, Wds to
the total energy functional, where § determines its interaction
range and d(x) measures the distance separating the cells’
interfaces. Equivalently, and analogous to the treatment in Ref.
[32], in a phase-field description, adhesion is incorporated by
adding the term — f Wi(x)Fi(¢;,V¢;)dV, where in our case
Wi = wCigi Y.1%,(1 — ¢;). This term will drive the ith cell
to fill the empty space, separating it from its neighboring cells
J» and effectively lead to cell aggregation. It is approximately
w when the cells are separated by empty space within the
interaction range C; and O otherwise. F; should be 0 away
from the diffuse interface of the ith cell and non-negative. We
conveniently choose it to be F; = ¢;(1 — ¢;). Additionally, to
impose the conservation of the cell volume and its interaction
range we add the terms H;¢; and H,;C;, where H; and H»;
act as external fields coupled to ¢; and C;, respectively. The
equation of the functional is then given by

F= /Z[“ 0 4 Fpn—wCidd1— 90 Y — ¢

J#

+Hi¢i +

VC;)?
€( . ) )

+ f(C)+ HZiCii|dV~

III. EQUATIONS

The equations for the evolution OE, ¢; and C; conserved

. . . dei __ 8¢/
[31]. Expl1c1tly, these are given by ' = +7v; - Vo =
PV2[32] and 50 = 50 + 3 - VG, = rvz[gf] where T is

the fields’ moblhty and \7, is the cell’s velocity. The governing
equations are therefore given by

Z(1—¢)}

JF#
2
—C,ﬁ . \7,-, and fy4, and fc, are the derivatives

Vi, IV2Hy =

3

N, N, .
Y —¢p—r) V¢,

JF# J#

(

Including the term Z?’;i(l — ¢;) in the definition of the
velocity forces the cells to move in empty space and to avoid
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FIG. 2. The scheme shows the repulsive forces exerted by the
cells’ membranes on each other.

overlap with others: it is O at the cells’ locations, which is
equivalent to the CIL effect. The second term, Ziv;, v 55> ZIVES
guiding by self-secreted chemical cues, which together with
the first define the polarization contribution. The third term
includes self-propulsion and alignment; it also differentiates
between leading and following cells. More precisely,

N Ne Civ;
i =1y (1-Cp+Ci(1— Hlﬁf.c«OZmN—c”’
J#i (+25%60)

“4)

where the term v; is the self-propulsive term, as in [30,33],
s < 1 is smoothing parameter, and H is the heaviside step
function. The distinction between leading and following cells,
or those which can detect an external chemical gradient and
those which cannot, respectively, is captured by multiplying
the alignment term by (1 — Hyg, ), which is 0 when the
cell is a leader; it moves unaffected by the motion of the
others. More precisely, the alignment term, the last ratio of
Eq. (4), realigns the velocity field of a follower cell located
within the interaction range of its neighbors C; to their
average velocity, while the first term in Eq. (4) keeps the
cell unaffected if it is outside all ranges Zj\;[ 1-Cj as
shown in Fig. 1. Additionally, to incorporate coattraction, we
define the velocity due to a self-secreted chemical cue to be
proportional to the gradient of a Gaussian G;, centered at the
ith cell’s position: v; ;; = V G,. Finally, the last term in Eq. (3)
guarantees repulsion between cells as they detect each other’s
membranes, as seen in Fig. 2.

IV. RESULTS

Equation (2) was solved using a finite element algorithm
and the conditions for numerical stability and critical cell size
were met [31,34], with periodic boundary conditions imposed
on the computational domain. First, we note that there are
two time scales in the dynamics: one for the cells to relax to
their equilibrium shapes and the other is related to translational
motion. The firstis 1 order of magnitude faster than the second
and thus our choice of parameters had to satisfy this condition
as well [30]. Also, the dynamics of G; were solved using a
fictitious time integration method, since we assume that self-
secreted chemical gradients’ dynamics are fast on the time
scale of any other mechanism. Figure 3 is a sample result.

We explored the effect of density on the net polarization
P given by Eq. (5), in the limit where v; .. = 0, such that is
no external chemical cue is present nor self-secreted chemical
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FIG. 3. The figure shows an aggregate of N. = 16 cells in yellow
for £ =0.5,b=0,r =30, = 1,a = 16, and cell radii R, = 4.
cues U; g5 = 0:

P = ! 5
- FC t’ ()

where X; is the position of the center of mass of the ith cell and
h, is the time step size of the simulation. P measures the
movement polarization. We varied the nondimensionalized
density and measured its effect on P as shown in Fig. 4.
The dependence is given by P o (n —ng)”, where y =
0.53 £0.05 and np = 0.16 £ 0.02, which is analogous to the
behavior at a mean-field second-order phase transition. For
each density, we varied the ratio of adhesive w to cortical

N

Z Xi(t + hy) — Xi(1)
1X;(t + h,) — Xi(1)]

i

—4 [ a_
forces o = 3 /(25)

These are represented by the lower and the upper limits of the
bars, respectively. It is worthwhile noting that the restriction
on the range of values w /o can take is imposed by the stability
of the algorithm. Subsequent to the increase in the ratio w to
o, the polarized movement increases, which is depicted by the

for values ranging between 0.1 and 0.5.

0.8 ]
0.6 / ]

o4 A |

0.2f / J

0 0.2 0.4 0.6 0.8 1
Normalized Density

FIG. 4. The figure shows the polarization as a function of density.
When w/o is increased, for each of the densities, the corresponding
P increases from the lower limit of the bar to its upper limit.
The curve is given by P = (n — ng)?, where y = 0.53 £ 0.05 and
ng =0.16 = 0.02.
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FIG. 5. The figure shows the polarization as a function the
fraction of chemotactic cells.

upper bound of the bars. When cell-cell adhesion is increased,
cells are more likely going to stick together and the alignment
term in our equation will contribute in an increase in the net
polarization. All this confirmed that a net polarization would
spontaneously occur in the absence of any external cue as a
result of the combined effects of alignment and adhesion [21].
Throughout we fixed the range or the radius of C; to 1.3 larger
than the size of the cell ¢;, below which no net polarization is
observed.

On the other hand, in low-density regimes and when
polarization could not result from the interplay of the above-
mentioned forces, external chemical cues are known to be
essential for collective migration to occur. However, only a
fraction of the population is needed to be promigratory to
induce polarization [21]. Hence, we assign nonzero v; .. for
a varying fraction of cells and measure the net polarization
in each case. We recover the results in [21] as shown
in Fig. 5.

Additionally, the effect of density change on the mean-
squared displacement (MSD) is measured. Cells exhibit rapid
diffusion for moderate densities ot; the mechanism slows
down dramatically as the density increases. In Fig. 6, we plot
our data of the MSD for increasing cell densities and follow
its change from linear to nonlinear. In addition, we follow
the intermediate structure factor which, for the high-density
regime, is characterized by the two relaxations times 8 and «.
The first time scale is fast and corresponds to diffusion in a
confined “cage,” analogous to the phenomenology associated
with a structural glass transition. The second slower scale is the
time necessary to diffuse out of the cage. This interpretation
explains the change in the mean-squared displacement and
suggests that the self-propelled cells undergo a dynamic
transition, analogous to a glass transition [35].

For high densities a cell sheet will form, which is char-
acterized by a tissue surface tension 7. In order to measure
its dependence on the ratio of adhesion to the individual cell
cortical tension, we solve Eq. (2) with fixed initial conditions
while varying the ratio, as shown in Fig. 7. The data are
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FIG. 6. The figure shows MSD as function of time for densities
n =0.16, n = 0.36, and n = 0.65, respectively, in red (top line),
blue (middle line), and black (bottom line) on a log - log scale. The
low-density results have asymptotic slopes consistent with diffusion.

compared to the line 7Ty /o = 2w /o, which is in accordance
with the computations reported in [15]. Analogous to fluids,
the tissue surface tension is Ty, which measures the response
of the tissue to variation in surface area, and is proportional
to the energy difference between the inner cells and those
at the surface T = (Wiurface cell — Whulk ce1)/L, where L is
the projected length of a single cell onto the surface of the
aggregate and the energy of the cell is given by W =
(o — %)Pc + o Pnc, where P, and Pyc are, respectively, the
contact perimeter of the cell with others and its noncontact
perimeter [26].
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FIG. 7. We vary the tissue surface tension for n = 0.65 with fixed
initial conditions. The figure shows the dependence of the tissue
surface tension on the ratio of adhesion to cortical tension. The red
line is Ty /o = 2w/o, which equivalent to the differential adhesion
hypothesis in two spatial dimensions.
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V. CONCLUSION

In this article, we have used the phase-field method to model
collective cell migration and presented a mechanistic approach
which included all the forces that are known to govern
cell-cell interaction as well as cell membrane morphology.
We measured the transition to order as a function of cell
density and recovered the leadership behavior of promigratory
cells. Incorporating these forces, we were able to model cell
morphologies and membrane fluctuations and consequently
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predict a dependence of tissue surface tension on adhesion
and cortical tension.
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