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Fluctuation scaling in the visual cortex at threshold
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Fluctuation scaling relates trial-to-trial variability to the average response by a power function in many
physical processes. Here we address whether fluctuation scaling holds in sensory psychophysics and its functional
role in visual processing. We report experimental evidence of fluctuation scaling in human color vision and
form perception at threshold. Subjects detected thresholds in a psychophysical masking experiment that is
considered a standard reference for studying suppression between neurons in the visual cortex. For all subjects,
the analysis of threshold variability that results from the masking task indicates that fluctuation scaling is a global
property that modulates detection thresholds with a scaling exponent that departs from 2, β = 2.48 ± 0.07.
We also examine a generalized version of fluctuation scaling between the sample kurtosis K and the sample
skewness S of threshold distributions. We find that K and S are related and follow a unique quadratic form
K = (1.19 ± 0.04)S2 + (2.68 ± 0.06) that departs from the expected 4/3 power function regime. A random
multiplicative process with weak additive noise is proposed based on a Langevin-type equation. The multiplicative
process provides a unifying description of fluctuation scaling and the quadratic S-K relation and is related to
on-off intermittency in sensory perception. Our findings provide an insight into how the human visual system
interacts with the external environment. The theoretical methods open perspectives for investigating fluctuation
scaling and intermittency effects in a wide variety of natural, economic, and cognitive phenomena.
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I. INTRODUCTION

One of the most fundamental aspects of human perception
and action is the existence of irregular trial-to-trial variability
under repeated tasks. The study of fluctuations in perception
has been traditionally oversimplified by assuming indepen-
dent measurements over time. However, a large body of
experimental data has pointed out that trial-to-trial variability
could reflect nontrivial correlations in both neural activity and
human behavior [1–6]. An important empirical relationship
concerns fluctuation scaling [7,8] (also known as “Taylor’s
law” in ecology) [7,9]. Fluctuation scaling states that the size
of fluctuations as measured by the sample variance (σ 2) and
the sample mean (μ) can be fitted approximately by a power
function with a scaling exponent β > 0:

σ 2 = αμβ, (1)

where α is a coefficient (α > 0) [7,9,10]. Fluctuation scaling is
a general tendency rather than a physical law [7]. Fluctuation
scaling is often considered an emergent collective property
and has been widely reported in complex dynamical systems
although departures from the power function have been also
reported in different fields [7]. Different models of fluctuation
scaling have been proposed in ecology, physics, biology, etc.
[7,9–17]. In particular, fluctuation scaling has an important
impact on human activity [7,12,18,19] and in the nervous
system at different levels of analysis; from variability of spike
trains at a microscopic level [20–25] to variability in human
psychophysics at a macroscopic level [26–30]. Nonetheless,
although psychophysical studies have confirmed an increasing
trend between σ 2 and µ, they were not oriented to obtain
a reliable estimation of the exponent β over at least two
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orders of magnitude [7,31,32] and, hence, they lack statistical
support [32].

In this paper we describe and show results of a simple
experiment that demonstrates fluctuation scaling in human
color vision at threshold. Here we examine the subject’s
response variability during a standard psychophysical task that
consists of detecting thresholds for spatial gratings presented
on a computer screen [33,34]. We have used a statistical
approach where trial-to-trial threshold variability is charac-
terized by the moments of the probability density function
(PDF). We have measured the mean µ and the variance σ 2

of threshold distributions over a broad range of experimental
conditions. Understanding the statistical properties of PDFs is
an important issue in visual neuroscience and psychophysics
because thresholds mediate visual perception and action in
everyday actions and for modeling PDFs. Together with the
mean µ and the variance σ 2, we further investigate the shape
of threshold distributions by examining higher-order statistics,
namely, the sample skewness (S) and the sample kurtosis
(K). The skewness S provides a measure of the asymmetry
of the PDF, whereas the kurtosis K provides a measure of
the peakedness of the PDF and heaviness of its tails [35].
S = 0 indicates a perfect symmetric Gaussian distribution
and deviations to the right and to left of the mean value are
represented by S > 0 and S < 0, respectively. The kurtosis of
a Gaussian distribution has a value of 3. A distribution with
K > 3 indicates a higher peak and heavy tails, otherwise for
K < 3 the distribution flattens. By representing K as a function
of S, i.e., the S-K plane, non-Gaussian processes often follow
a parabolic shape near the Gaussian point (S,K) = (0,3). This
parabolic relationship is not trivial and indicates a general
relation in the analysis of PDFs in a variety of fields such
as in plasma physics [36–43], weather and climate [38,44],
contaminant concentration fluctuations in the atmosphere
[45–49], laser chaotic dynamics [50], neural spike counts
[51], etc. Its origin has been investigated by using empirical
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models of PDFs [36,51–58], as well as physical models
[38,43,45,49,59–63]. However, there are also non-Gaussian
processes that exhibit a second regime in the S-K plane by
showing extreme events. These extreme events occupy the
tails of PDFs and often produce very large S and K values
that lie above the parabolic region. They are better described
by a power function with a scaling exponent γ near to 4/3
[56]. These processes are typically observed in earthquakes,
financial data, etc. [56].

We will demonstrate that fluctuation scaling is quite robust
and governs variability of threshold responses for a wide range
of experimental conditions in human color vision. Further-
more, we will show that K and S of threshold histograms
vary by following a U-shaped pattern. A unique quadratic
relationship is found in the same way as in many dynamical
processes suggesting perhaps a unifying description. The
results show how fluctuation scaling modulates the dynamical
behavior of visual signal detection under masking and are
important to better understand the macroscopic effects of brain
activity in sensory perception.

The paper is organized as follows. In Sec. II we explain
theoretically that the 4/3 regime in the S-K plane is a
generalized version of fluctuation scaling. Section III describes
the psychophysical methods and procedure employed. In
Sec. IV we report the experimental results and explain that
contrast detection thresholds in visual masking are the result of
intermittency of a special kind. We present a stochastic process
driven by multiplicative and weak additive noise based on a
Langevin-type model. The Langevin model provides a unified
description of the experimental data. We will explain why our
threshold data deviate from the 4/3 power function regime
and follow a characteristic quadratic relation in the S-K plane.
We also discuss the relevance of our findings in comparison
with previous physical models of the quadratic S-K relation.
Concluding remarks are summarized in Sec. V.

II. THEORETICAL BACKGROUND

Many theoretical models have explained fluctuation scaling
in a wide range of ecological, biological, and physical
phenomena, etc. [7,9–17], but the existence of a universal
mechanism remains elusive. Simulations based on a class
of multiplicative growth processes have concluded that a
finite number of observations can lead to fluctuation scaling.
Two different regimes have been identified in the temporal
evolution of the scaling exponent β in Eq. (1). In the former
regime, limited sampling over small time windows lead to
abrupt changes in β. These changes may differ from 2 and
are associated with transitions in the external environment.
In the second regime, limited sampling over very long time
windows lead to a scaling exponent β that moves close to 2
regardless of the nature of the underlying dynamical process.
In the same regime, a generalized version of fluctuation scaling
was derived based on the sample moments of PDFs [16].
The 4/3 power function in the S-K plane [56,58] is indeed
a true manifestation of a generalized version of fluctuation
scaling under the conditions stated in [16]. To explain this issue
theoretically, we will use the sample moments of a generic PDF
containing N data points. The first moment m1 is the sample
mean µ. The subsequent moments can be centered around

the mean value as follows [35]: mr = (1/N )
∑N

i=1 (xi − μ)r ,
where xi are the experimental data. In our case r runs up
to the fourth sample moment r = 2,3,4. The generalized
version of fluctuation scaling states that the third and fourth
moments should converge to a power function at very long
times with a scaling exponent equal to 4/3 [16], m4 = ϕm

4/3
3 ,

where ϕ is a coefficient. By definition, the skewness S and
the kurtosis K are the standardized third and fourth sample
moments, respectively [35], and consequently m3 = S0m

3/2
2

and m4 = K0m
2
2. S0 and K0 refer to the unbiased formulas [64].

By substituting m4 and m3 into the above generalized version
of fluctuation scaling it follows K0 = ϕS

4/3
0 . This approach

provides an alternative explanation to current theories of the
4/3 power function in the S-K plane [56,58] and is not
specific for K and S but general under the assumptions of the
theory stated in [16]. The generalized version of fluctuation
scaling for the j th and the ith sample moments (i < j ) can
be written as mj = ϕj,im

b
i asymptotically in time [16]. The

scaling exponent b = j/i recovers the conventional version
of fluctuation scaling with j = 2 and i = 1 [16]. Our main
purpose is to investigate whether temporal fluctuation scaling
(i.e., the statistical properties are calculated over time) [7]
holds in human color vision at threshold between σ 2 versus
µ, as well as between K versus S over a broad range of
experimental masking conditions.

III. EXPERIMENTAL METHODS

A. Visual task

Here we focus on a task particularly concerned with
orientation-tuned mechanisms. Orientation processing is a
fundamental feature of most cortical visual neurons [65].
Contrast detection thresholds were measured when using test
gratings overlaid by masking gratings of similar shape and
frequency but orthogonally oriented (i.e., “plaids”) [66,67].
This cross-orientation masking task is a canonical paradigm
that simulates pattern detection in complex visual scenes. In
cross-orientation masking, mask stimuli interfere with the test
stimulus and produce a threshold elevation of the test stimulus
at high mask levels [66–69]. Furthermore, cross-orientation
masking in humans has an analogy from the behavior of
cross-orientation suppression in cortical visual neurons. In
cross-orientation suppression, the response of a single neuron
that is tuned to a preferred oriented grating is reduced
by the superimposition of an orthogonally oriented grating
[70,71]. Cross-orientation suppression has become a reference
paradigm in visual neuroscience for understanding neural
computation in the visual cortex and involves subcortical and
cortical visual neurons [72,73].

B. Stimuli

We have reanalyzed data sets from two different psy-
chophysical studies that employed similar experimental de-
vices and protocols [67,69]. Preliminary results have been
reported elsewhere [74]. Stimuli were displayed on a cali-
brated computer-controlled cathode-ray tube monitor using a
specialized graphics card for stimulus generation. Experiments
were created by using the Psychophysics Toolbox [75,76].
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FIG. 1. (a) Example of a horizontally oriented achromatic test
Gabor patch, orthogonal mask, and both superimposed as a plaid at
high contrasts. In the example the spatial frequency is 0.375 cpd.
(b) Red-green stimuli at isoluminance. The luminance level remains
constant but producing a chromatic signal. The same spatial frequency
follows as in (a).

Test stimuli were horizontally oriented Gabor patches. Gabor
patches can be generated by the multiplication of a two-
dimensional spatial sine wave as the carrier and a Gaussian
profile as the envelope [77]. Test and mask Gabor patches were
coincident in spatial and temporal frequencies and phases,
where the mask stimuli is a vertical Gabor patch, in order to be
orthogonally oriented to the horizontal test Gabor patch. Plaids
were also contrast modulated by using a temporal sinusoidal
waveform in a temporal Gaussian envelope. A schematic
representation of a test and a mask Gabor patches and the
resulting plaid stimuli are shown in Figs. 1(a) and 1(b).

Both test and mask contrast values were scaled by using the
conventional Michelson contrast (Imax − Imin)/(Imax + Imin),
in which Imax and Imin indicate the maximum and minimum
luminance amplitude in the visual pattern, respectively. Stimuli
were achromatic (i.e., grayscale) [Fig. 1(a)] and red-green iso-
luminant, which eliminates any transient luminance changes
[Fig. 1(b)]. This affords us the possibility to examine whether
different visual mechanisms contribute to fluctuation scaling.
In current color vision models, M1 (long-), and M2 (middle-),
and M3 (short-) wavelength-sensitive photoreceptor signals are
reorganized into three separate post-receptoral mechanisms
or orthogonal cone axis: a luminance (M1 + M2) axis and a
red-green (M1 − M2) and a blue-yellow [M3 − (M1 + M2)]
cone opponent axis [67,78]. Cone opponency is a fundamental
characteristic of color coding in human vision. Here we
have used both achromatic and red-green stimuli. Achromatic
stimuli are mediated by the luminance system, whereas red-
green isoluminant stimuli isolate the activity in the red-green
color vision system [67,78,79]. For red-green isoluminant
stimuli, test and mask contrast values were initially represented
in the cone contrast space [79]. This is a three-dimensional
orthogonal space often used in color vision research by using
the cone excitation values. Cone excitation values of visual
stimuli are computed by using the quantal catch rates of
absorption for the M1, M2, and M3 signals, respectively. The
cone fundamentals of Smith and Pokorny were used [80]. The

FIG. 2. Typical examples of a 2AFC staircase procedure at
different stimulus configurations. Semilogarithmic plot (log10) of the
stimulus contrast threshold as a function of the trial number. The
vertical dashed lines indicate the first reversal point. Arrows indicate
subsequent reversal points.

coordinates in the cone contrast space are defined as the cone
excitation signal difference between the test and the reference
relative to the reference stimulus or the Weber fractions
[(�M1/M1),(�M2/M2),(�M3/M3)]. The vector length in
the cone contrast space defines the chromatic contrast of
stimuli [(�M1/M1)2 + (�M2/M2)2 + (�M3/M3)2]1/2. Then,
chromatic contrast values are transformed to the Michelson
contrast dividing by a scaling factor of

√
3 [67,79]. Stimuli

were observed in binocular or monocular vision in fovea and
by using natural pupils [67,69].

C. Procedure

A conventional temporal two-alternative forced-choice
(2AFC) staircase procedure provided an estimation of the
subject’s threshold response. 2AFC staircase methods are
standard in human psychophysics and have been used exten-
sively in a large number of experimental studies [33,34,81].
They minimize the influence of a subject’s response bias and
produce a high level of performance for threshold estimation
[33,34,81]. Two time intervals contain a vertically oriented
mask Gabor at a fixed contrast value or the mask contrast C.
In one of the two temporal intervals, a horizontally oriented
test Gabor with the same spatiotemporal configuration was
superimposed with a lower test contrast. The stimulus variable
is the contrast of the test Gabor or the test contrast and the
subject is forced to indicate which interval contained the test
Gabor. A classical two-down–one-up rule was implemented
over successive trials. If the subject responds correctly twice,
the test contrast level steps down by a fixed discrete value
�−, otherwise an incorrect response steps up the test contrast
level by a fixed discrete value �+ [67,69,81]. Examples of
up-down staircase sessions as a function of the trial number
are represented in Fig. 2 for different stimulus configurations.

The starting test contrast value was chosen above the
threshold level. In a 2AFC staircase procedure a response
reversal is a transition point of the subject’s response and
can be defined when the subject has responded incorrectly
after at least two consecutive correct responses [33,34,81].
Response reversals indicate the most favorable experimental
conditions to estimate the threshold and are the basis to
calculate the statistical properties of threshold distributions.
The first reversal was used to reach the threshold level and was
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always discarded from subsequent analyses (vertical dashed
lines in Fig. 2) [33,81]. Each experimental configuration
was established by selecting a specific spatial and temporal
frequency, viewing condition (binocular or monocular), and
type of stimuli (achromatic or red-green isoluminant). Cross-
orientation masking was examined over a wide range of
suprathreshold mask contrasts C from 0.1% to 30% [67,69].
For each stimulus condition, the number of total trials in
a 2AFC staircase session varied between 30 and 70 trials
[67,69,81]. The number of staircase sessions varied between
4 and 8 sessions [67,69,81].

D. Data analysis

The mean threshold µwas calculated by using the common
method of taking the sample arithmetic mean of the test stim-
ulus contrast over a number of reversals over time [33,34,81].
We used the last five reversal values of each staircase session
[67,69]. The percentage of correct performance of the visual
task was near 80% [33,34,81]. The threshold variability was
calculated as the displacement of the test contrast at the
reversal points xi with respect to their mean µ by using the
sample variance σ 2 = (1/N − 1)

∑N
i=1 (xi − μ)2, where N is

the total number of reversals in the time series. Both the sample
skewness S0 and kurtosis K0 were calculated at the reversals
as well and were corrected for bias [64]:

S1 = [N (N − 1)]1/2

N − 2
S0,

(2)
K1 = N − 1

(N − 2)(N − 3)
[(N + 1)K0 − 3(N − 1)] + 3.

We fitted σ 2 as a function of µ by using a power function. A
linear least-squares regression was performed in a log-log plot
[7,31] by minimizing the Chi-square value [82]. The goodness-
of-fit was evaluated by using the coefficient of regression R-
square or R2.

E. A power function model in the skewness-kurtosis plane

It is well known that the kurtosis K and the skewness S

are related and have a lower bound for any PDF with σ �=
0, K � S2 + 1 [52,53], and for the class of unimodal PDFs,
K � S2 + 189/125 [54]. For a large body of experimental data
from many different physical situations, the relation between
K and S is a well defined power function with an exponent of
2 [37–43,45–50]:

K = AS2 + B, (3)

where A and B are the amplitude and the offset, respectively
(A > 0,B > 0). Both A and B have different values in the
literature that depend on the context [37–43,45–50]. We have
compared the quadratic form in Eq. (3) against a simplified
version with one parameter (A = B), K = A(S2 + 1) [48].
This model is an extended version of the statistical limit
K = S2 + 1 [52,53]. We have also compared Eq. (3) against a
generic parabola with three parameters K = AS2 + DS + B,
where D is a new coefficient (D > 0) [43,44,55,63]. The
main difference between Eq. (3) and the parabola model is
that Eq. (3) implicitly assumes the existence of symmetry in
the human visual system. That is, K must be invariant with

respect to the sign inversion of S and consequently D = 0 in
Eq. (3) [43,55,56,62]. We further compared Eq. (3) against a
symmetric power function with the scaling exponent γ as a
free parameter K = A|S − SR|γ + B, where SR is the center.
The symmetric power function model has four parameters
and is a generalized version of the above symmetry which is
now located around the center SR . In all models, a nonlinear
least-squares regression was also performed between unbiased
K1 and S1 values by minimizing the Chi-square value. The
Chi-square value was normalized to the different degrees of
freedom χ̄2. The parameters values were obtained by using
the Levenberg-Marquardt algorithm [82].

F. Subjects

Data sets come from six healthy subjects (labeled as P1,
P2, P3, P4, P5, and P6). All the subjects had normal color
vision and visual acuity according to standard clinical tests. All
subjects were also experienced and familiar with visual tasks.
Subjects P1, P2, and P3 participated in a cross-orientation
masking experiment where the spatiotemporal configuration
of Gabor stimuli were selected at the spatial frequencies of
0.375, 0.75, and 1.5 cpd (cycles per degree) and at the temporal
frequencies of 2, 4, and 8 Hz [67]. Subjects P4, P5, and P6
participated in a cross-orientation masking experiment where
Gabor stimuli were configured at a different range: 0.5 cpd,
8 Hz and 8 cpd, 1 Hz at different adapting conditions [69].

IV. RESULTS AND DISCUSSION

A. Test threshold versus mask contrast

Figure 3 shows an example of the test threshold µ as
a function of the mask contrast C, i.e., the conventional
threshold vs contrast (TvC) curve in spatial vision [66–69,83].
Error bars indicate one standard deviation σ . This particular
example corresponds to the TvC function of one subject (P2)
in binocular vision and for achromatic Gabor stimuli at 0.375
cpd, 8 Hz sampled at ten different mask contrasts [67].

The shape of the TvC function is nonlinear and has been
confirmed extensively in many psychophysical experiments
[66–69,83]. At high mask contrast values the vertical mask
Gabor interferes with the horizontal test Gabor and a threshold
elevation is often produced (Fig. 3). The threshold elevation
depends on the spatial and temporal frequencies of achromatic
Gabor gratings and viewing conditions and is stronger when
using chromatic stimuli [67–69,83]. However, the mask
stimulus could enhance the test contrast detection threshold at
intermediate mask contrasts C. This facilitation effect is lower
than the test contrast detection threshold in the absence of mask
stimuli in some stimulus configurations (horizontal dashed
line in Fig. 3). This is often a small but ubiquitous effect that
has been reported elsewhere in sensory psychophysics (also
known as the dipper effect or negative masking) [66–69,84].
This issue will be discussed further below.

B. Fluctuation scaling in cross-orientation masking

Figure 4(a) presents the sample variance σ 2 as a function
of the sample mean value µ combined from all six subjects
together. Data points indicate 392 stimulus conditions that
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FIG. 3. Example of cross-orientation masking in human vision.
Double logarithmic plot (log10) of the test contrast detection threshold
versus mask contrast C for achromatic Gabor gratings at 0.375 cpd,
8 Hz. Solid circles indicate the mean threshold value in binocular
vision from one subject (P2). The solid square at the left and the
corresponding horizontal dashed line indicate the threshold level that
denotes no effect of the mask on the test Gabor grating. Points above
and below the dashed line indicate threshold elevation and facilitation,
respectively. Error bars are one standard deviation. The solid line
indicates the best fit to the equation y = (6 × 10−14/C4.9) + 0.12C0.5

(see Sec. IV D). Vertical arrows show a schematic representation of
the vertical mask Gabor at different mask contrasts C.

FIG. 4. (a) Double logarithmic plot (log10) of the sample variance
σ 2 as a function of the sample mean µ from all subjects together.
Solid line indicates a linear fit log10(σ 2) = log10(α) + βlog10(μ),
where α is a coefficient and β is the slope, β = 2.48 ± 0.07,
where the error is the standard error. (b) Linear plot of the kurtosis
K1 versus skewness S1 from all subjects together. The solid line
indicates the best fit to a power function with an exponent of 2,
K1 = (1.19 ± 0.04)S2

1 + (2.68 ± 0.06), where errors are standard
errors. The dashed line indicates the statistical limit K = S2 + 1
[52,53]. Vertical and horizontal dotted lines indicate S = 0 and
K = 3, respectively. The intersection of dotted lines corresponds
to the Gaussian point. In (a) and (b) data points represent a total
of 392 and 318 stimulus conditions, respectively, that result from
the combination of all spatial and temporal frequencies, mask
contrast values, viewing conditions (binocular and monocular), type
of stimuli (achromatic and red-green isoluminant), and masking
effects (threshold elevation and facilitation). Solid circles and squares
represent the values for red-green isoluminant and achromatic stimuli,
respectively.

result from the combination of different spatial and temporal
frequencies, viewing conditions (binocular and monocular),
and type of stimuli (achromatic and red-green isoluminant)
[67,69].

Data points roughly span two orders of magnitude. The
mean value µ ranges from 0.0025 to 0.11 and the variance σ 2

from 8 × 10−9 to 5 × 10−4. Fluctuation scaling in Eq. (1) is
revealed as a linear relationship with the scaling exponent
β = 2.48 and with 95% confidence intervals (2.33,2.62).
Remarkably, red-green isoluminant σ 2 values are clustered
at low µ values and extend the linear regime of fluctuation
scaling. This suggests a common mechanism that produces
long-term correlations averaged across subjects and regardless
of the type of stimuli (achromatic and red-green isoluminant)
and masking effect (threshold elevation and facilitation)
(Fig. 3). There is some broadening in the experimental data [7]
and the linear fit explains around 74.5% of total variability of
data points. Similar results are obtained when the trial number
orders the reversal points (Fig. 2) by using the mean square
successive difference [74,85].

C. The skewness-kurtosis plane

Figure 4(b) represents in a linear plot the unbiased sample
kurtosis K1 as a function of the unbiased sample skewness
S1 for 318 stimulus conditions. We found that some stimulus
configurations produce K and S values below the statistical
limit K = S2 + 1 [52,53]. This was due to short samples
where the number of reversal points was small in those
particular configurations. These data points were filtered out
in subsequent analysis. The results confirm the existence of
non-Gaussian statistics. Data points show higher and lower
K values than the Gaussian distribution (K = 3) and both
positive and negative S values as well. A U-shaped pattern
is clearly observed averaged across observers, viewing and
stimulus conditions, masking effects (threshold elevation and
facilitation), and type of stimuli (achromatic and red-green
isoluminant). Data points for red-green isoluminant stimuli
are clustered around the borders, whereas those for achromatic
stimuli cover the entire U-shaped pattern but they are mainly
clustered at the center near the Gaussian point. There are no
large deviations and K ranges from 1.07 to 8.43, whereas
S ranges from −1.95 to 1.97. The quadratic relation in
Eq. (3) has χ̄2 = 0.726 and provides a reasonable good fit
by explaining 69% of total variability (R2 = 0.69), K1 =
(1.19 ± 0.04)S2

1 + (2.68 ± 0.06). Errors are standard errors.
In comparison with other models, the one-parameter quadratic
polynomial [48] K1 = A(S2

1 + 1) does not improve the min-
imization of the χ̄2 and can be discarded. Both the parabola
K1 = AS2

1 + DS1 + B [43,44,55] and the symmetric power
function model K1 = A|S1 − SR|γ + B have similar values
and χ̄2 = 0.722 and χ̄2 = 0.724, respectively. However, in
both models the coefficients A and B were similar to those
values obtained in Eq. (3) and the new added parameters were
nearly zero, (D = 0.08 ± 0.05) and (SR = −0.03 ± 0.02).
Furthermore, the scaling exponent γ in the symmetric power
function model does not converge to 4/3 [16] and was very
near to 2 (γ = 1.95 ± 0.16). Therefore, the justification of the
parabola and the symmetric power function model with three
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and four parameters, respectively, is difficult to maintain and
both models can be discarded [43,55].

The A and B values of Eq. (3) in cross-orientation masking
are similar to other variables in climate, plasma physics, etc.
[36–39,41,42,44,46,47,49,50,61]. They are particularly close
to data from a grid-turbulence laboratory plume experiment
in atmospheric science [49]. We repeated the same analysis
by excluding those masking conditions that produce threshold
facilitation (Fig. 3). The coefficients A and B were similar and
do not change the conclusions. This indicates that threshold
facilitation in Fig. 3 is a tiny effect that does not produce very
large S and K values in the experimental conditions analyzed.
The masking effects that lead to threshold elevation largely
dominate the U-shaped pattern in Fig. 4(b).

D. A random multiplicative process with additive noise

The sample mean, variance, skewness, and kurtosis in
Fig. 4 were calculated by using the reversal points at local
minima as shown in Fig. 2 [33,34,81]. In general, the subject’s
responses in a temporal 2AFC procedure alternate between
two different phases. In Fig. 2, the first phase is a “laminar”
or periodic regime where the test contrast threshold follows
similar trajectories and increases or decreases as a function
of the trial number. The second phase is a “turbulent” regime
that corresponds to aperiodic transition points at local minima
and separates the two types of trajectories (Fig. 2). This can
lead to on-off intermittency [86–88] in the same way as
different experimental paradigms [89,90]. We propose that
on-off intermittency as measured by the reversal points plays
a key role in human psychophysics by shaping the moments of
threshold distributions. We investigate this issue by adapting a
model proposed by Nakao [91] to cross-orientation masking.
Here we focus on the reversal points at local minima. A similar
treatment can be performed on the transition points at local
maxima (Fig. 2). We propose that the reversals xi as a function
of the ith trial number (Fig. 2) are driven by multiplicative and
additive noise. We have employed a discrete-time Langevin
equation [91,92]:

xi+1 = λixi + ηi, (4)

where λi and ηi are stochastic variables that represent a mul-
tiplicative and an additive noise term, respectively. Those λi

values higher than unity (λi > 1) will amplify the magnitude of
reversals where those below unity (0 < λi � 1) will diminish
it. The additive noise term ηi is of special relevance because it
prevents that the reversals xi+1 collapse to zero when λi tends
to zero. The multiplicative and the additive noise are delta
correlated 〈λi,λj 〉 = Fλδi,j and 〈ηk,ηl〉 = Fηδk,l , respectively,
and both are on average 〈λi〉 ∝ Fλ and 〈ηi〉 ∝ Fη, respectively.
The bracket 〈· · · 〉 indicates the time average over the reversals.
Fλ and Fη are the diffusion coefficients of the multiplicative
and the additive noise, respectively, and indicate the average
strength of interactions [91,92]. We assume that both Fλ and Fη

are state dependent. Fλ promotes the reversals to a minimum
value and decreases as the mask contrast C increases [22,93],
Fλ = Jλ/C

ω, where Jλ and ω are a coefficient and the scaling
exponent, respectively. However, the additive noise strength
controls the masking effect and increases as the mask contrast
increases, Fη = JηC

ε, where Jη and ε are a coefficient and the

FIG. 5. (a) Semilogarithmic plot (log10) of the time average of the
multiplicative 〈λi〉 and the additive noise term 〈ηi〉 of the Langevin
model. The parameters are x0 = 0.1, ω = 1, ε = 2, Jλ = 0.02,
Jη = 0.18. (b) Double logarithmic plot (log10) of the TvC functions
for achromatic gratings for several values of the temporal and the
spatial frequency: x0 = 0.032, ω = 2, ε = 1, Jλ = 0.05, Jη = 0.053
(squares), Jη = 0.1 (circles), Jη = 0.55 (triangles). (c) TvC functions
for binocular and monocular vision: x0 = 0.032 (binocular), x0 = 0.1
(monocular), ω = 1, ε = 2, Jλ = 0.02, Jη = 0.19. (d) TvC functions
for achromatic and red-green isoluminant stimuli: x0 = 0.032, ω = 2,
ε = 2, Jλ = 0.07, Jη = 0.07(achromatic), Jη = 0.9(red-green).

corresponding scaling exponent, respectively. Taking the time
average over the reversals in Eq. (4), the physical mechanism
of the TvC functions is revealed. The mean test contrast
detection threshold 〈xi+1〉 as a function of the mask contrast
C is the result of the interplay between the multiplicative and
the additive noise terms:

〈xi+1〉 = Jλx0

Cω
+ JηC

ε. (5)

For increasing the mask contrast C, the multiplicative noise
strength drops to zero from a reference value x0, while the
additive noise strength increases and compensates the above
multiplicative effect. The scaling exponents ω and ε control
the multiplicative and the additive noise strength as a function
of the mask contrast, respectively. The dipper effect of the
TvC functions (Fig. 3) is the result of a balance when the
strength of both noise terms is weak and is equivalent to a
resonance-type effect [84]. In general, the dipper effect in
cross-orientation masking is less pronounced (Fig. 3), except
for achromatic stimuli at high spatial frequencies [66,68,69].
Figure 5(a) shows a numerical simulation of the time average
〈λi〉 = Fλ and 〈ηi〉 = Fη separately.

The shape of the TvC function can be modulated by
assuming that Jη depends on the spatiotemporal configuration
of Gabors and type of stimuli (achromatic and red-green
isoluminant) processed by the different parallel visual path-
ways [78,94]. The product Jλx0 also depends on the viewing
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conditions (binocular and monocular). Figures 5(b), 5(c), and
5(d) show three representative numerical examples by using
Eq. (5). Other examples follow in a similar way. In the first
example in Fig. 5(b), the TvC function for achromatic stimuli
has a spatiotemporal dependence, in which the threshold
elevation due to the mask contrast increases as the temporal
frequency increases and the spatial frequency decreases
[66–69]. The second example illustrates a binocular summa-
tion effect at low mask contrast values [69,83] [Fig. 5(c)]. The
contribution of the different retinocortical pathways [78,94] is
captured in the third example in Fig. 5(d). Threshold elevation
for red-green isoluminant stimuli is stronger at low spatial and
temporal frequencies [67].

E. The effect of weak additive noise

The Langevin model in Eqs. (4) and (5) is one of the basic
stochastic models that produce power laws at the right tail of
PDFs in different contexts such as in econophysics [95–97],
mental chronometry [98], etc. In Eq. (5) a weak additive noise
strength is important when the amplitude of reversals is not
very large (Fig. 2) and guarantee the existence of a stationary
PDF with power-law tails under boundary conditions [91].
Time series in 2AFC processes, as the examples shown in
Fig. 2, are bounded (0 < xi+1 < 1). There is a lower bound
and the reversals xi+1 are limited by the additive noise term
ηi . There is also an upper bound and xi+1 are limited by the
contrast modulation and the frame interleaving of the color
monitor [67]. The ratio ρ = (Fη/Fλ)1/2 defines the balance
between the multiplicative and the additive noise strength in
Eqs. (4) and (5) and for small additive noise (0 < ρ < 1) [91]
and consequently in color vision the additive term 〈ηi〉 is
near zero. To evaluate the ratio ρ, we have simplified the
situation and have assumed that ω + ε ∼= 2 and (Jη/Jλ) ∼=
1 + (TF /SF ), where TF and SF are the temporal and the
spatial frequency of achromatic stimuli [67–69] and for the
ratio ρ ∼= C(1 + TF /SF )1/2. For red-green isoluminant stimuli
the dependency on TF and SF is not considered [67] and the
ratio is just the mask contrast ρ = C.

It has been demonstrated that the moments mr of the
stationary PDF in the Langevin model will approach a power
function as a function of ρ in the limit ρ → 0, i.e., for vanishing
strength of the additive noise with respect to the multiplicative
noise term [91]:

〈mr〉 ∼= G0 + G1ρ
H (r), (6)

where G0 and G1 are constant values. The exponent
H (r) depends on the scaling exponent of the power
law of the PDF as well as the order of moments
r [91]. Taking the mean μ ≡ 〈m1〉 = G0 + G1ρ

H (1) and
the second-order moment centered around the mean
σ 2 ≡ 〈m2〉 = G0

′ + G1
′ρH (2), and assuming that G0 and

G0
′ are small values in m1 and m2, respectively, fluctuation

scaling in Eq. (1) is derived as follows:

σ 2 ∼= G1
′

G1
H (2)/H (1)

μH (2)/H (1). (7)

Therefore, the scaling exponent β in Eq. (1) and the expo-
nent H (r) in Eq. (6) are related, β = H (2)/H (1). Furthermore,
we consider the third- and fourth-order moments centered

around the mean by 〈m3〉 = G0
′′ + G1

′′ρH (3) and 〈m4〉 =
G0

′′′ + G1
′′′ρH (4), respectively, and assuming that G0

′′ ∼= 0
[91], the same reasoning in Eq. (7) holds for the S-K relation.
By using 〈m3〉 = S0m

3/2
2 and 〈m4〉 = K0m

2
2, it follows for the

S-K relation that

K0
∼= AS0

H (4)/H (3) + B,

A =
(

G1
′′′

G1
′′1/H (3)

)
m2

[3H (4)/2H (3)]−2, (8)

B =
(

G0
′′′

m2
2

)
.

We examine two special cases:
(i) If H (r) = r [91] and B ∼= 0, Eq. (8) will approach the

4/3 power function regime:

K0
∼= AS0

4/3,
(9)

A =
(

G1
′′′

G1
′′1/3

)
.

(ii) If H (4)/H (3) = 2 and B �= 0, Eq. (8) will recover the
quadratic relation in Eq. (3):

K0
∼= AS0

2 + B,

A = m2

(
G1

′′′

G1
′′1/H (3)

)
, (10)

B =
(

G0
′′′

m2
2

)
.

Figure 6 represents in a double logarithmic plot the mean
µ, the variance σ 2, the absolute value of third-order moment
|m3| = |S1σ

3|, and the fourth-order moment m4 = K1σ
4 as a

function of ρ ∼= C(1 + TF /SF )1/2.
Figure 6 demonstrates that all the moments increase as

ρ increases as expected from Eq. (6) in the limit of weak
additive noise although there is some broadening. We have
examined the exponents of Eqs. (7) and (8). A linear least-
squares regression was performed for each case in a log-log
plot (Fig. 6). The scaling exponent H (r) for µ, σ 2, |m3|,
and m4 was H (1) = 0.35, H (2) = 0.83, H (3) = 1.13, and
H (4) = 1.7, respectively, and the 95% confidence interval was
H (1) ∈ (0.32,0.38), H (2) ∈ (0.73,0.93), H (3) ∈ (0.97,1.30),
and H (4) ∈ (1.44,1.89), respectively. The goodness-of-fit
indicates that in all cases (0.41 < R2 < 0.63). However,
from Eq. (7) the ratio of the scaling exponents leads to
H (2)/H (1) = 2.32, which is a very good approximation to the
scaling exponent of fluctuation scaling in Eq. (1), β = 2.48
[Fig. 4(a)]. From Eq. (8), the ratio of the scaling exponents
leads to H (4)/H (3) = 1.5. This is a reasonable approximation
to the quadratic polynomial in Eq. (3) [Fig. 4(b)]. Taking
the ratio of the upper to the lower 95% confidence intervals,
H (4)/H (3) ∼= 1.89/0.97 = 1.94, which is very close to the
exponent of the quadratic relation in Eq. (3).

F. Discussion

Many studies in sensory psychophysics often assume that
trial-to-trial and day-to-day threshold variability is an unpre-
dictable residual fluctuation that does not exhibit correlation
across conditions. However, Fig. 4(a) clearly shows that
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FIG. 6. Double logarithmic plot (log10) of the first four moments
mr as a function of the strength of the additive noise ρ. (a) Mean
µ. (b) Variance σ 2. (c) Absolute value of the third moment m3.
(d) Fourth moment m4. In each panel the solid line corresponds to
a linear regression analysis. The corresponding slopes (± standard
error) for µ, σ 2, |m3|, and m4 are 0.35 ± 0.01, 0.83 ± 0.05, 1.13 ±
0.08, and 1.7 ± 0.1, respectively.

threshold variability is correlated over multiple trials for a
wide range of spatial and temporal frequencies, mask contrast
values, viewing conditions (binocular and monocular), type of
stimuli (achromatic and red-green isoluminant), and masking
effects (threshold elevation and facilitation). The sample
variance σ 2 scales with the sample mean µ and obeys a power
function averaged across subjects. A broadening is observed
in Figs. 4 and 6 as in many other studies of fluctuation
scaling [7,10,12,18,19,24,56]. Broadening effects in human
psychophysics are the result of many causes. They may include
different experimental factors that are difficult to control,
such as interindividual differences, fatigue, inattention, etc.
Although 2AFC staircase processes are standard and minimize
response bias, another possible cause of observed broadening
is that 2AFC staircases are contaminated by the effects of
interval and sample bias [34,81]. In general, broadening
produces poor fits [7] and corrections to fluctuations scaling
but a unified theoretical approach remains unresolved [7].
Nonetheless fluctuation scaling between σ 2 and µ in Fig. 4(a)
is not an artifact from the effects of bias but it truly represents
a coarsely grained effect that explains most of the total
percent of variability of data points (74.6%). Figure 4(a) also
demonstrates that threshold variability for both achromatic
and red-green isoluminant stimuli is modeled by the power
function in Eq. (1) with a scaling exponent different from
2 (β = 2.48 ± 0.07). This implies that fluctuation scaling is
supported by different post-receptoral parallel visual pathways
that process achromatic and red-green isoluminant stimuli
[78,94].

We also demonstrate that the skewness S and the kurtosis K

of thresholds are clustered in a U-shaped pattern. The quadratic
relationship in Eq. (3) fit the data remarkably well over a
wide range of masking conditions [Fig. 4(b)]. The quadratic
model is a robust result and indicates that the PDFs at all mask
conditions are related between them and can be described by
a few classes of non-Gaussian PDFs [36,38,42,51,55]. The
results in Fig. 4(b) indicate that the scaling exponent is 2 and
departs from the 4/3 power function regime [16], in the same
way as many complex systems [36–43,45–50].

Previous works have found that very large values in the
S-K plane are better described by the 4/3 power function
in the distribution of earthquakes, financial data, etc. [56,58].
These results were analyzed by dividing very large datasets
into subsamples of a certain fixed length. S and K values
were calculated for each subsample window [56,58]. Our
threshold data were not analyzed in the same way as in
[56,58]. Here the skewness S and the kurtosis K of threshold
distributions were calculated at the reversal points for each
stimulus condition separately and the number of staircase
sessions in each condition was not fixed but variable (see
Sec. III). A finite number of data points could be the reason that
the tails of threshold distributions can be sampled incompletely
[58] and thus, the absence of very large K and S values
outside from the parabolic region [56,58]. Finite-size effects
from limited sampling could have some influence in the
coefficients A and B of Eq. (3) and in the goodness-of-fit
by clustering data points slightly different in the S-K plane
[Fig. 4(b)]. However, in our psychophysical experiments very
large threshold variability as a function of the trial number
is not usually observed under well-controlled conditions in
the laboratory such as in 2AFC staircases. The amplitude of
the reversals is small and the reversals are always bounded
(0 < xi+1 < 1) (Fig. 2). Therefore, extreme deviations are not
expected from one experimental session to another, etc. That
is why very large K and S values derived from extreme events
are not observed in Fig. 4(b) and consequently, our threshold
data do not approximate to the 4/3 power function regime as
well.

The remarkable similarity of fluctuations in the S-K plane
between many different fields has led several authors to
conjecture that the universal character of Eq. (3) and the nature
of non-Gaussian PDFs could arise from common basic features
[55,60,62,63]. It is often assumed that K and S depend on a
few control parameters ζi [K(ζi),S(ζi)], and equivalently in
Eq. (3), K = A(ζi)S2 + B(ζi) [38,43,49,59,60,62]. In plasma
physics, fluctuations are mainly generated by the internal
dynamics although external driving, such as in magnetized
plasmas, also plays a functional role in plasma turbulence [43].
Different approaches have included intermittent dynamics,
blob structures, burstlike patterns, and coherent structures
and additive noise [43,55,60,62,63]. In climate variability,
fluctuations are mainly modulated by external sources which
act in a similar way as cross-orientation masking. A Langevin
equation with multiplicative and weak additive noise has
been presented to describe plasma turbulence [38,42,59]
and fluctuations in many variables in the ocean and in the
atmosphere [38]. This model also predicts the existence of
power laws in the right tails of PDFs [38]. Although this
Langevin approach is in agreement with the experimental
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values of the coefficient A, their approach is limited because it
is assumed that B is an empirical constant for any experiment
[38,42,59]. Furthermore, in certain situations, such as in
contaminant concentration fluctuations in the atmosphere, the
coefficients A and B do not have to be necessarily independent
[49]. In general, A and B values are in a range 1–7 for a wide
set of physical processes [36–50] including human color vision
[Fig. 4(b)].

In sensory psychophysics, we found that intermittency
is a fundamental feature of time series in 2AFC processes.
A stochastic process driven by both random multiplicative
and weak additive noise is proposed based on a similar
Lanvegin-type equation. In a previous study, the mechanisms
that lead to asymptotic power law of moments [Eq. (6)] and
power-law behavior of PDFs were clarified [91]. However,
the unification between fluctuation scaling in Eq. (1) and the
quadratic relation in Eq. (3) was not investigated. Here we have
adapted and extended the Langevin model proposed in [91] to
provide a unifying framework within the context of human
color vision. Our approach is different from the Langevin
model used in climate and plasma physics [38,42,59], in the
sense that the weak additive noise term has an unexpected
role in cross-orientation masking. The weak additive noise
is signal dependent and has a significant effect in the shape
of the TvC functions by promoting a threshold elevation at
high mask contrasts [Fig. 5]. The weak additive noise also
governs the moments of the PDF of thresholds (Fig. 6) [91].
Our Langevin approach unifies fluctuation scaling together
with the quadratic relation and the 4/3 power function in the
S-K plane. Our Langevin model also provides a meaning to
the empirical coefficients α and β and A and B in Eqs. (1)
and (3), respectively. It clarifies the main features of the
TvC functions and the dipper effect (Fig. 5), and predicts the
scaling exponents of fluctuation scaling and the S-K quadratic
relation in human color vision [see Eqs. (7)–(10) and Fig. 6].
Because the Langevin model developed in [91] is quite general
and does not depend on the details of boundary conditions
and the nature of the noise terms, the theoretical results in

Eqs. (7)–(10) may contribute to develop approaches that seek
to understand fluctuation scaling and on-off intermittency
under external stimulus driving in neurophysiology, econo-
physics, atmospheric and plasma turbulence, etc.

V. CONCLUDING REMARKS

We have investigated the non-Gaussian properties of
contrast detection threshold distributions for plaid patterns
or cross-orientation masking. We have used the mean, the
variance, the skewness, and the kurtosis measured at the
reversal points of time series in a 2AFC staircase process.
We demonstrate that contrast thresholds are governed by
on-off intermittency (Fig. 2) and follow fluctuation scaling
with a nonuniversal scaling exponent (β = 2.48 ± 0.07) over
a wide range of experimental conditions [Fig. 4(a)]. We
also find that the shape of threshold distributions is related
between stimulus conditions and can be described by a
unique quadratic relation in the skewness-kurtosis plane K1 =
(1.19 ± 0.04)S2

1 + (2.68 ± 0.06) [Fig. 4(b)]. The quadratic
relation departs from the 4/3 power function of the generalized
version of fluctuation scaling. This quadratic relation has
a powerful impact in the statistical properties of threshold
distributions and shares common organizing principles with
plasma physics and climate variability, etc. A random multi-
plicative process with weak additive noise provides a unifying
description of fluctuation scaling and the S-K relations; it
predicts the corresponding scaling exponents (Fig. 6) as well
as the shape of the TvC functions (Fig. 5). Our findings are
of importance for better understanding the functional role of
intermittency in sensory perception and could be relevant for
designing better brain-machine interfaces.
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