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Game story space of professional sports: Australian rules football
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Sports are spontaneous generators of stories. Through skill and chance, the script of each game is dynamically
written in real time by players acting out possible trajectories allowed by a sport’s rules. By properly characterizing
a given sport’s ecology of “game stories,” we are able to capture the sport’s capacity for unfolding interesting
narratives, in part by contrasting them with random walks. Here we explore the game story space afforded by
a data set of 1310 Australian Football League (AFL) score lines. We find that AFL games exhibit a continuous
spectrum of stories rather than distinct clusters. We show how coarse graining reveals identifiable motifs ranging
from last-minute comeback wins to one-sided blowouts. Through an extensive comparison with biased random
walks, we show that real AFL games deliver a broader array of motifs than null models, and we provide consequent
insights into the narrative appeal of real games.
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I. INTRODUCTION

While sports are often analogized to a wide array of other
arenas of human activity, particularly war, well-known story
lines, and elements of sports are conversely invoked to describe
other spheres. Each game generates a probablistic, rule-based
story [1], and the stories of games provide a range of motifs
which map onto narratives found across the human experience:
dominant, one-sided performances; back-and-forth struggles;
underdog upsets; and improbable comebacks. As fans, people
enjoy watching suspenseful sporting events, unscripted stories,
and following the fortunes of their favorite players and teams
[2–4].

Despite the inherent story-telling nature of sporting con-
tests, and notwithstanding the vast statistical analyses sur-
rounding professional sports including the many observations
of and departures from randomness [5–11], the ecology of
game stories remains a largely unexplored, data-rich area [12].
We are interested in a number of basic questions such as
whether the game stories of a sport form a spectrum or a
set of relatively isolated clusters, how well models such as
random walks fare in reproducing the specific shapes of real
game stories, whether or not these stories are compelling to
fans, and how different sports compare in the stories afforded
by their various rule sets.

Here we focus on Australian Rules Football, a high-skills
game originating in the mid-1800s. We describe Australian
Rules Football in brief and then move on to extracting and
evaluating the sport’s possible game stories. Early on, the
game evolved into a winter sport quite distinct from other
codes such as soccer or rugby while bearing some similarity
to Gaelic football. Played as state-level competitions for most
of the 1900s with the Victorian Football League (VFL) being
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most prominent, a national competition emerged in the 1980s
with the Australian Football League (AFL) becoming a formal
entity in 1990. The AFL is currently constituted by 18 teams
located in five of Australia’s states.

Games run over four quarters, each lasting around 30 min
(including stoppage time), and teams comprise 18 on-field
players. Games (or matches) are played on large ovals typically
used for cricket in the summer and of variable size (generally
135 to 185 m in length). The ball is oblong and may be kicked
or handballed (an action where the ball is punched off one
hand with the closed fist of the other) but not thrown. Marking
(cleanly catching a kicked ball) is a central feature of the game,
and the AFL is well known for producing many spectacular
marks and kicks for goals [13].

The object of the sport is to kick goals, with the customary
standard of highest score wins (ties are relatively rare but
possible). Scores may be six points or one point as follows,
some minor details aside. Each end of the ground has four tall
posts. Kicking the ball (untouched) through the central two
posts results in a “goal” or six points. If the ball is touched or
goes through either of the outer two sets of posts, then the score
is a “behind” or one point. Final scores are thus a combination
of goals (six) and behinds (one) and on average tally around
100 per team. Poor conditions or poor play may lead to scores
below 50, while scores above 200 are achievable in the case of
a “thrashing” (the record high and low scores are 239 and 1).
Wins are worth four points, ties two points, and losses
zero.

Of interest to us here is that the AFL provides an excellent
test case for extracting and describing the game story space of
a professional sport. We downloaded 1310 AFL game scoring
progressions from http://afltables.com (ranging from the 2008
season to midway through the 2014 season) [14]. We extracted
the scoring dynamics of each game down to second-level
resolution, with the possible events at each second being (1)
a goal for either team, (2) a behind for either team, or (3)
no score [15]. Each game thus affords a “worm” tracking the
score differential between two teams. We will call these worms
“game stories,” and we provide an example in Fig. 1. The game
story shows that Geelong pulled away from Hawthorn, their
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FIG. 1. Representative “game story” (or score differential
“worm”) for an example AFL contest held between Geelong and
Hawthorn on April 21, 2014. Individual scores are either goals (six
points) or behinds (one point). Geelong won by 19 with a final score
line of 106 (15 goals, 16 behinds) to 87 (12 goals, 15 behinds).

great rival over the preceding decade, towards the end of a
close, back-and-forth game.

Each game story provides a rich representation of a game’s
flow and, at a glance, quickly indicates key aspects such as
largest lead, number of lead changes, momentum swings,
and one-sidedness. And game stories evidently allow for a
straightforward quantitative comparison between any pair of
matches.

For the game story ecology we study here, an important
aspect of the AFL is that rankings (referred to as the ladder)
depend first on number of wins (and ties) and then percentage
of “points for” versus “points against.” Teams are therefore
generally motivated to score as heavily as possible while still
factoring in increased potential for injury.

We order the paper as follows. In Sec. II we first present
a series of basic observations about the statistics of AFL
games. We include an analysis of conditional probabilities for
winning as a function of lead size. We show through a general
comparison to random walks that AFL games are collectively
more diffusive than simple random walks leading to a biased
random walk null model based on skill differential between
teams. We then introduce an ensemble of 100 sets of 1310
biased random walk game stories which we use throughout
the remainder of the paper. In Secs. IV and V we demonstrate
that game stories form a spectrum rather than distinct clusters,
and we apply coarse graining to elucidate game story motifs at
two levels of resolution. We then provide a detailed comparison
between real game motifs and the smaller taxonomy of motifs
generated by our biased random walk null model. We explore
the possibility of predicting final game margins in Sec. VI. We
offer closing thoughts and propose further avenues of analysis
in Sec. VII.

II. BASIC GAME FEATURES

A. Game length

While every AFL game officially comprises four 20 min
quarters of playing time, the inclusion of stoppage time means
there is no set quarter or game length, resulting in some
minor complications for our analysis. We see an approximate
Gaussian distribution of game lengths with the average game
lasting a little over 2 hr at 122 min, and 96% of games

run for around 112 to 132 min (σ � 4.8 min). In comparing
AFL games, we must therefore accommodate different game
lengths. A range of possible approaches include dilation,
truncation, and extension (by holding a final score constant),
and we will explain and argue for the latter in Sec. IV.

B. Scoring across quarters

In postgame discussions, commentators will often focus on
the natural chapters of a given sport. For quarter-based games,
matches will sometimes be described as “a game of quarters”
or “a tale of two halves.” For the AFL, we find that scoring
does not, on average, vary greatly as the game progresses
from quarter to quarter (we will, however, observe interesting
quarter-scale motifs later on). For our game database, we find
there is slightly more scoring done in the second half of the
game (46.96 versus 44.91), where teams score one more point,
on average, in the fourth quarter versus the first quarter (23.48
versus 22.22). This minor increase may be due to a heightened
sense of the importance of each point as game time begins to
run out, the fatiguing of defensive players, or as a consequence
of having “learned an opponent” [12,16].

C. Probability of next score as a function of lead size

In Fig. 2 we show that, as for a number of other sports,
the probability of scoring next (either a goal or behind) at
any point in a game increases linearly as a function of the
current lead size (the National Basketball Association is a
clear exception) [10–12,17]. This reflects a kind of momentum
gain within games and could be captured by a simple biased
model with scoring probability linearly tied to the current lead.
Other studies have proposed this linearity to be the result of
a heterogeneous skill model [12], and, as we describe in the
following section, we use a modification of such an approach.

D. Conditional probabilities for winning

We next examine the conditional probability of winning
given a lead of size � at a time point t in a game,
Pt (Winning | �). We consider four example time points, the
end of each of the first three quarters and with 10 min left in
game time, and plot the results in Fig. 3. We fit a sigmoid curve

FIG. 2. Conditional probability of scoring the next goal or behind
given a particular lead size. Bins are in six-point blocks with the
extreme leads collapsed: < −72, −71 to −66, . . . ,−6 to −1, 1 to 6,
7 to 12, . . . , > 72 . As for most sports, the probability of scoring next
increases approximately linearly as a function of current lead size.
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FIG. 3. Conditional probability of winning given a lead of size
� at the end of the first three quarters (a–c) and with 10 min
to go in the game (d). Bins comprise the aggregate of every six
points as in Fig. 2. The dark blue curve is a sigmoid function
of the form [1 + e−k(�−�0)]−1 where k and �0 are fit parameters
determined via standard optimization using the Python function
scipy.optimize.curve_fit (Note that �0 should be 0 by construction.)
As a game progresses, the threshold for likely victory (winning
probability 0.90, upper red lines) decreases as expected, as does a
threshold for a close game (probability of 0.60, lower red line). The
slope of the sigmoid curve increases as the game time progresses
showing the evident greater impact of each point. We note that the
missing data in panel (a) are a real feature of the specific 1310 games
in our data set.

(see caption) to each conditional probability. As expected, we
immediately see an increase in winning probability for a fixed
lead as the game progresses.

These curves could be referenced to give a rough indication
of an unfolding game’s likely outcome and may be used to
generate a range of statistics. As an example, we define likely
victory as P (Winning | �) � 0.90 and find � = 32, 27, 20, and
11 are the approximate corresponding lead sizes at the four
time points. Losing games after holding any of these leads
might be viewed as “snatching defeat from the jaws of victory.”

Similarly, if we define close games as those with
P (Winning | �) � 0.60, we find the corresponding approxi-
mate lead sizes to be � � 6, 5, 4, and 2. These leads could
function in the same way as the save statistic in baseball
is used, i.e., to acknowledge when a pitcher performs well
enough in a close game to help ensure their team’s victory.
Expanding beyond the AFL, such probability thresholds for
likely victory or uncertain outcome may be modified to apply
to any sport and could be greatly refined using detailed
information such as recent performances, stage of a season,
and weather conditions.

III. RANDOM WALK NULL MODELS

A natural null model for a game story is the classic, possibly
biased, random walk [10,18]. We consider an ensemble of
modified random walks, with each walk (1) composed of steps
of ±6 and ±1, (2) dictated by a randomly drawn bias, (3)

running for a variable total number of events, and (4) with
variable gaps between events, all informed by real AFL game
data. For the purpose of exploring motifs later on, we will
create 100 sets of 1310 games.

An important and subtle aspect of the null model is the
scoring bias, which we will denote by ρ. We take the bias for
each game simulation to be a proxy for the skill differential
between two opposing teams, as in Ref. [12], though our
approach involves an important adjustment.

In Ref. [12], a symmetric skill bias distribution is generated
by taking the relative number of scoring events made by one
team in each game. For example, given a match between
two teams T1 and T2, we find the number of scoring events
generated by T1, n1, and the same for T2, n2. We then estimate
a posteriori the skill bias between the two teams as

ρ = n1

n1 + n2
. (1)

In constructing the distribution of ρ, f (ρ), we discard
information regarding how specific teams perform against each
other over seasons and years, and we are thus only able to
assign skill bias in a random, memoryless fashion for our
simulations. We also note that for games with more than one
value of points available for different scoring events (as in six
and one for Australian Rules Football), the winning team may
register fewer scoring events than the losing one.

In Ref. [12] random walk game stories were then generated
directly using f (ρ). However, for small time scales this is
immediately problematic and requires a correction. Consider
using such an approach on pure random walks. We of course
have that f (ρ) = δ(ρ − 1/2) by construction, but our estimate
of f (ρ) will be a Gaussian of width ∼ t−1/2, where we have
normalized displacement by time t . And while as t → ∞,
our estimate of f (ρ) approaches the correct distribution δ(ρ −
1/2), we are here dealing with relatively short random walks.
Indeed, we observe that if we start with pure random walks, run
them for, say, 100 steps, estimate the bias distribution, run a
new set of random walks with these biases, and keep repeating
this process, we obtain an increasingly flat bias distribution.

To account for this overestimate of the spread of skill bias,
we propose the tuning of an input Gaussian distribution of
skill biases so as to produce biased random walks whose
outcomes best match the observed event biases for real games.
We assume that f should be centered at ρ = 0.50. We then
draw from an appropriate distribution of number of events
per game and tune the standard deviation of f , σ , to minimize
the Kolmogorov-Smirnov (KS) D statistic and maximize the p

value produced from a two-tailed KS test between the resulting
distribution of event biases and the underlying, observed
distribution for our AFL data set.

We show the variation of D and the p value as a function of
σ in Fig. 4. We then demonstrate in Fig. 5 that the σ -corrected
distribution produces an observably better approximation of
outcomes than if we used the observed biases approach of
Ref. [12]. Because the fit for our method in Fig. 5 is not exact,
a further improvement (unnecessary here) would be to allow
f to be arbitrary rather than assuming a Gaussian.

With a reasonable estimate of f in hand, we create 100
ensembles of 1310 null games where each game is generated
with (1) one team scoring with probability ρ drawn from the
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(a)

(b)

FIG. 4. Skill bias ρ represents a team’s relative ability to score
against another team and is estimated a posteriori by the fraction
of scoring events made by each team Eq. (1). (a, b) Kolmogorov-
Smirnov test D statistic and associated p-value comparing the
observed output skill bias distribution produced by a presumed input
skill distribution f with that observed for all AFL games in our data
set, where f is Gaussian with mean 0.5 and its standard deviation
σ is the variable of interest. For each value of σ , we created 1000
biased random walks with the bias ρ drawn from the corresponding
normal distribution. Each game’s number of events was drawn from
a distribution of the number of events in real AFL games (see text).
Panel (b) is an expanded version of the shaded region in panel (a)
with finer sampling. The black vertical dashed lines bound a plateau
in the measured p-values, and the blue vertical dashed line is our
estimated best fit of σ � 0.088. We compare the resulting observed
bias distribution with that of Ref. [12] in Fig. 5.

σ -corrected distribution described above; (2) individual scores
being a goal or behind with probabilities based on the AFL
data set (approximately 0.53 and 0.47); and (3) a variable
number of events per simulation based on (a) game duration
drawn from the approximated normal distribution described in
Sec. II and (b) time between events drawn from a chi-squared
distribution fit to the interevent times of real games.

For a secondary test on the validity of our null model’s game
stories, we compute the variance σ 2 of the margin at each
event number n for both AFL games and modified random
walks (for the AFL games, we orient each walk according to
home and away status, the default ordering in the data set). As
we show in Fig. 6, we find that both AFL games and biased
random walks produce game stories with σ 2 ∼ n1.239±0.009 and
σ 2 ∼ n1.236±0.012 respectively. Collectively, AFL games thus
have a tendency toward runaway score differentials, and while
superdiffusive-like, this superlinear scaling of the variance can
be almost entirely accounted for by our incorporation of the
skill bias distribution f .

IV. MEASURING DISTANCES BETWEEN GAMES

Before moving on to our main focus, the ecology of game
stories, we define a straightforward measure of the distance

FIG. 5. Comparison of the observed AFL skill bias distribution
[balance of scoring events ρ given in Eq. (1), dashed blue curve] with
that produced by two approaches: (1) We draw ρ from a normal
distribution using the best candidate σ value with mean 0.50 as
determined via Fig. 4 (solid red curve) and (2) we choose ρ from
the complete list of observed biases from the AFL (hashed green
curve, the replication method of Ref. [12]). For the real and the two
simulated distributions, both ρ and 1 − ρ are included for symmetry.
The fitted σ approach produces a more accurate estimate of the
observed biases, particularly for competitive matches (ρ close to
0.50) and one-sided affairs. Inset: Upper half of the distributions
plotted on a semi-logarithmic scale (base 10) revealing that the
replication method of Ref. [12] also overproduces extreme biases, as
compared to the AFL and our proposed correction using a numerically
determined σ .

between any pair of games. For any sport, we define a distance
measure between two games i and j as

D(gi,gj ) = T −1
T∑

t=1

|gi(t) − gj (t)|, (2)

where T is the length of the game in seconds, and gi(t) is
the score differential between the competing teams in game
i at second t . We orient game stories so that the team whose
score is oriented upwards on the vertical axis wins or ties
[i.e., gi(T ) � 0]. By construction, pairs of games which have

FIG. 6. Variance in the instantaneous margin as a function of
event number for real AFL games (solid red curve) and biased random
walks as described in Sec. III, (solid blue curve). We perform fits
in logarithmic space using standard least squares regression (solid
black curve for real games, dashed black for the null model). The
biased random walks satisfactorily reproduce the observed scaling
of variance. It thus appears that AFL games stories do not exhibit
inherently superdiffusive behavior but rather result from imbalances
between opposing teams.
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a relatively small distance between them will have similar
game stories. The normalization factor 1/T means the distance
remains in the units of points and can be thought of as the
average difference between point differentials over the course
of the two games.

In the case of the AFL, due to the fact that games do not
run for a standardized time T , we extend the game story of the
shorter of the pair to match the length of the longer game by
holding the final score constant. While not ideal, we observe
that the metric performs well in identifying games that are
closely related. We investigated several alternatives such as
linearly dilating the shorter game and found no compelling
benefits. Dilation may be useful in other settings, but the
distortion of real time is problematic for sports.

In Fig. 7 we present the 10 most similar pairs of games
in terms of their stories. These close pairs show the metric
performs as it should and that, moreover, proximal games
are not dominated by a certain type. Figures 7(a) and 7(b)
demonstrate a team overcoming an early stumble, Figs. 7(e)
and 7(f) showcase the victor repelling an attempted comeback,
Figs. 7(q) and 7(r) exemplify a see-saw battle with many lead
changes, and Figs. 7(s) and 7(t) capture blowouts: one team
taking control early and continuing to dominate the contest.

V. GAME STORY ECOLOGY

Having described and implemented a suitable metric for
comparing games and their root story, we seek to group
games together with the objective of revealing large-scale
characteristic motifs. To what extent are well-known game
narratives, from blowouts to nail-biters to improbable come-
backs, and potentially less well known story lines featured in
our collection of games? And how does the distribution of real
game stories compare with those of our biased random walk
null model? (We note that in an earlier version of the present
paper, we considered pure, unbiased random walks for the null
model [19].)

A. AFL games constitute a single spectrum

We first compute the pairwise distance between all games
in our data set. We then apply a shuffling algorithm to order
games on a discretized ring so that similar games are as close
to each other as possible. Specifically, we minimize the cost

C =
∑

i,j∈N,i �=j

d 2
ij · D(gi,gj )−1, (3)

where dij is the shortest distance between i and j on the ring.
At each step of our minimization procedure, we randomly
choose a game and determine which swap with another game
most reduces C. We use d 2

ij by choice, and other powers give
similar results.

In Fig. 8 we show three heat maps for distance D with
(a) games unsorted, (b) games sorted according to the above
minimization procedure, and (c) indices of sorted games cycled
to reveal that AFL games broadly constitute a continuous
spectrum. As we show below, at the ends of the spectrum
are the most extreme blowouts, and the strongest comebacks:
i.e., one team dominates for the first half and then the tables
are flipped in the second half.

FIG. 7. Top 10 pairwise neighbors as determined by the distance
measure between each game described by Eq. (2). In all examples,
dark gray curves denote the game story. For the shorter game of each
pair, horizontal solid blue lines show how we hold the final score
constant to equalize lengths of games.
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FIG. 8. Heat maps for (a) the pairwise distances between games
unsorted on a ring; (b) the same distances after games have been
reordered on the ring so as to minimize the cost function given in
Eq. (3); (c) the same as panel (b) but with game indices cycled to
make the continuous spectrum of games evident. We include only
every 20th game for clarity and note that such shuffling is usually
performed for entities on a line rather than a ring. The games at the
end of the spectrum are most dissimilar and correspond to runaway
victories and comebacks (see also Fig. 9).

B. Coarse-grained motifs

While little modularity is apparent, there are no evident
distinct classes of games, we may nevertheless perform a
kind of coarse graining via hierarchical clustering to extract a
dendrogram of increasingly resolved game motifs.

Even though we have just shown that the game story
ecology forms a continuum, it is important that we stress that
the motifs we find should not be interpreted as well-separated
clusters. Adjacent motifs will have similar game stories at
their connecting borders. A physical example might be the
landscape roughness of equal area regions dividing up a
country: two connected areas would typically be locally similar
along their borders. Having identified a continuum, we are
simply now addressing the variation within that continuum
using a range of scales.

We employ a principled approach to identifying meaningful
levels of coarse graining, leading to families of motifs. As
points are the smallest scoring unit in AFL games, we use
them to mark resolution scales as follows. First, we define ρi ,

FIG. 9. Heat matrix for the pairwise distances between games,
subsampled by a factor of 20 as per Fig. 8. A noticeable split is visible
between the blowout games (first six clusters) and the comeback
victories (last three clusters). We plot dendrograms along both the top
and left edges of the matrix, and as explained in Sec. V C, the boxed
numbers reference the 18 motifs found when the average intracluster
distance is set to 11 points. These 18 motifs are variously displayed
in Figs. 12 and 13.

the average distance between games within a given cluster i as

ρi = 1

ni(ni − 1)

ni∑

j=1

ni∑

k=1,k �=j

D(gj ,gk). (4)

Here j and k are games placed in cluster i, ni is the number
of games in cluster i, and D is the game distance defined in
Eq. (2). At a given depth d of the dendrogram, we compute
ρi(d) for each of the N (d) clusters found, and then average
over all clusters to obtain an average intracluster distance:

〈ρ(d)〉 = 1

N (d)

N(d)∑

i=1

ρ(d). (5)

We use Ward’s method of variance to construct a dendro-
gram [20], as shown in Fig. 9. Ward’s method aims to minimize
the within cluster variance at each level of the hierarchy. At
each step, the pairing which results in the minimum increase
in the variance is chosen. These increases are measured as a
weighted squared distance between cluster centers. We chose
Ward’s method over other linkage techniques based on its
tendency to produce clusters of comparable size at each level
of the hierarchy.

At the most coarse resolution of two categories, we see in
Fig. 9 that one-sided contests are distinguished from games that
remain closer, and repeated analysis using k-means clustering
suggests the same presence of two major clusters.

As we are interested in creating a taxonomy of more
particular, interpretable game shapes, we opt to make cuts as
〈ρ(d)〉 first falls below an integer number of points, as shown
in Fig. 10 [we acknowledge that 〈ρ(d)〉 does not perfectly
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FIG. 10. Average intracluster distance 〈ρ〉 as a function of cluster
number N . Vertical red lines mark the first occurrence in which the
average of the intracluster distance of the N motif clusters had a
value below 12, 11, 10, 9, and 8 (red text beside each line) points
respectively. The next cut for seven points gives 343 motifs.

decrease monotonically]. As indicated by the red vertical lines,
average intracluster point differences of 12, 11, 10, 9, and 8
correspond to 9, 18, 30, 71, and 157 distinct clusters. Our
choice, which is tied to a natural game score, has a useful
outcome of making the number of clusters approximately
double with every single point in average score differential.

C. Taxonomy of 18 motifs for real AFL games

In the remainder of Sec. V, we show and explore in some
depth the taxonomies provided by 18 and 71 motifs at the 11-
and nine-point cutoff scales.

We first show that for both cutoffs, the number of motifs
produced by the biased random walk null model is typically
well below the number observed for the real game. In Fig. 11
we show histograms of the number of motifs found in the
100 ensembles of 1310 null model games with the real game
motif numbers of 18 and 71 marked by vertical red lines.
The number of random walk motifs is variable with both
distributions exhibiting reasonable spread, and also in both
cases, the maximum number of motifs is below the real game’s
number of motifs. These observations strongly suggest that
AFL generates a more diverse set of game story shapes than
our random walk null model.

We now consider the 18 motif characterization, which we
display in Fig. 12 by plotting all individual game stories in each
cluster (light gray curves) and overlaying the average motif
game story (blue, gray, and red curves, explained below).

All game stories are oriented so that the winning team aligns
with the positive vertical axis, i.e., gi(T ) � 0 (in the rare case
of a tie, we orient the game story randomly), and motifs are
ordered by their final margin (descending). In all presentations
of motifs that follow, we standardize the final margin as the
principle index of ordering. We display the final margin index
in the top center of each motif panel to ease comparisons when
motifs are ordered in other ways (e.g., by prevalence in the null
model). We can now also connect back to the heat map of Fig. 9
where we use the same indices to mark the 18 motifs.

(a)

(b)

FIG. 11. Histograms of the number of motifs produced by 100
ensembles of 1310 games using the random walk null model and
evaluating at 11- and nine-point cutoffs (a, b) as described in Sec. V B.
For real games, we obtain by comparison 18 and 71 motifs [vertical
red lines in panels (a) and (b)], which exceeds all 100 motif numbers
in both cases and indicates AFL game stories are more diverse than
our null model would suggest.

In the bottom right corner of each motif panel, we record
two counts: (1) the number of real games belonging to the
motif’s cluster and (2) the average number of our ensemble of
100×1310 biased random walk games (see Sec. III) which are
closest to the motif according to Eq. (2). For each motif, we
compute the ratio of real to random adjacent game stories, R,
and, as a guide, we color the motifs as:

Red if R � 1.1 (real game stories are more abundant)
Gray if 0.9 < R < 1.1 (counts of real and random game

stories are close) and
Blue if R � 0.9 (random game stories are more abun-

dant).
We immediately observe that the number of games falling

within each cluster is highly variable, with only three in the
most extreme blowout motif [no. 1, Figs. 12(a) and 13(a)]
and 169 in a gradual-pulling-away motif [no. 8, Figs. 12(h)
and 13(b)].

The average motif game stories in Fig. 12 provide us with
the essence of each cluster, and, though they do not represent
any one real game, they are helpful for the eye in distinguishing
clusters. Naturally, by applying further coarse graining as we
do below, we will uncover a richer array of more specialized
motifs.

Looking at Figs. 12 and 13, we now clearly see a continuum
of game shapes ranging from extreme blowouts (motif no. 1)
to extreme comebacks, both successful (motif no. 17) and
failed (motif no. 18). We observe that while some motifs
have qualitatively similar story lines, a game motif that has
a monotonically increasing score differential that ends with a
margin of 200 (no. 1) is certainly different from one with a
final margin of 50 (no. 6).

In considering this induced taxonomy of 18 game motifs,
we may interpret the following groupings:

No. 1–no. 6, no. 8: One-sided, runaway matches
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

FIG. 12. Eighteen game motifs as determined by performing hier-
archical clustering analysis and finding when the average intracluster
game distance 〈ρ〉 first drops below 11 points. In each panel the
main curves are the motifs, the average of all game stories (shown
as light gray curves in background) within each cluster, and we
arrange clusters in order of the motif winning margin. All motifs
are shown with the same axis limits. Numbers of games within each
cluster are indicated in the bottom right corner of each panel along
with the average number of the nearest biased random walk games
(normalized per 1310). Motif colors (online version) correspond
to relative abundance of real versus random game ratio R as red:
R � 1.1; gray: 0.9 < R < 1.1; and blue: R � 0.9. See Fig. 13 for
the same motifs reordered by real game to random ratio.

No. 9: Losing early on, coming back, and then pulling
away

No. 7 and no. 10: Initially even contests with one side
eventually breaking away

No. 11 and no. 12: One team taking an early lead and
then holding on for the rest of the game

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

FIG. 13. Real game motifs for an 11 point cut off as per Fig. 12
but reordered according to decreasing ratio of adjacent real to biased
random games, R, and with closest biased random walk rather than
real game stories plotted underneath in light gray. See the caption for
Fig. 12 for more details.

No. 13, no. 14, and no. 16: Variations on tight contests
No. 15 and no. 17: Successful comebacks
No. 18: Failed comebacks.

We note that the game stories attached to each motif might
not fit these descriptions; we are only categorizing motifs. As
we move to finer grain taxonomies, the neighborhood around
motifs diminishes, and the connection between the shapes of
motifs will become increasingly congruent with its constituent
games.

The extreme blowout motif for real games has relatively
fewer adjacent random walk game stories [Fig. 13(a)], as do
the two successful comeback motifs [Figs. 13(c) and 13(f)],
and games with a lead developed by half time that then remains
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stable [Fig. 13(e)]. A total of five motifs show a relatively even
balance between real and random (i.e., within 10%) including
two of the six motifs with the tightest finishes [Figs. 13(h)
and 13(i)]. Biased random walks most overproduce games in
which an early loss is turned around strongly [Fig. 13(q)] or
an early lead is maintained [Fig. 13(r)]. In terms of game
numbers behind motifs, we find a reasonable balance with 603
(46.0%) having R � 1.1 (seven motifs), 430 (32.8%) with
0.9 < R < 1.1 (five motifs), and 277 (21.1%) with R � 0.9
(six motifs).

Depending on the point of view of the fan and again at this
level of 18 motifs, we could argue that certain real AFL games
that feature more often that our null model would suggest
are more or less “interesting.” For example, we see some
dominating wins are relatively more abundant in the real game
(no. 1, no. 2, and no. 4). While such games are presumably
gratifying for fans of the team handing out the “pasting,” they
are likely deflating for the supporters of the losing team. And
a neutral observer may or may not enjoy the spectacle of a
superior team displaying their prowess. Real games do exhibit
relatively more of the two major comeback motifs (no. 15 and
no. 17), certainly exciting in nature, –though less of the failed
comebacks (no. 18).

D. Taxonomy of 71 motifs for real AFL games

Increasing our level of resolution corresponding to an
average intracluster game distance of 〈ρ〉 = 9, we now resolve
the AFL game story ecology into 71 clusters. We present all
71 motifs in Figs. 14 and 15, ordering by final margin and
real-to-random game story ratio R respectively (we will refer
to motif number and Fig. 15 so readers may easily connect
to the orderings in both figures). With a greater number of
categories, we naturally see a more even distribution of game
stories across motifs with a minimum of one [motif no. 1,
Fig. 15(ac)] and a maximum of 48 [motif no. 43, Fig. 15(ah)].

As for the coarser 18 motif taxonomy, we again observe
a mismatch between real and biased random walk games.
For example, motif no. 14 [Fig. 15(af)] is an average of 25
real game stories compared with on average 15.13 adjacent
biased random walks while motif no. 20 [Fig. 15(cs)] has
R = 10/22.67. Using our 10% criterion, we see 25 motifs
have R � 1.1 (representing 553 games or 42.2%), 23 have
0.9 < R < 1.1 (420 games, 32.0%), and the remaining 23
have R � 0.9 (337 games, 25.7%). Generally, we again see
blowouts are more likely in real games. However, we also
find some kinds of comeback motifs are also more prevalent
(R � 1.1) though not strongly in absolute numbers; these
include the failed comebacks in motifs no. 67 [Fig. 15(ad)]
and no. 71 [Fig. 15(ae)], and the major comeback in motif no.
64 [Fig. 15(ab)].

In Fig. 16 we give summary plots for the 18 and 71 motif
taxonomies with motif final margin as a function of the of
the real-to-random ratio R. The larger final margins of the
blowout games feature on the right of these plots (R � 1.1),
and, in moving to the left, we see a gradual tightening of games
as shapes become more favorably produced by the random
null model (R � 0.9). The continuum of game stories is also
reflected in the basic similarity of the two plots in Fig. 16,
made as they are for two different levels of coarse graining.

Returning to Figs. 14 and 15, we highlight ten examples in
both reinforcements and refinements of motifs seen at the 18
motif level. We frame them as follows (in order of decreasing
R and referencing Fig. 15):

Fig. 15(ab), no. 64 (R = 11/5.71): The late, great
comeback

Fig. 15(ae), no. 71 (R = 7/4.00): The massive comeback
that just falls short

Fig. 15(aj), no. 52 (R = 29/19.80): Comeback over the
first half connecting into a blowout in the second (the winning
team may be said to have ‘Turned the corner’)

Fig. 15(am), Motif no. 13 (R = 32/23.33): An exemplar
blowout (and variously a shellacking, thrashing, or hiding)

Fig. 15(ax), no. 55 (R = 26/23.16): Rope-a-dope (taking
steady losses and then surging late)

Fig. 15(bz), no. 68 (R = 7/8.05): Hold-slide-hold-surge
Fig. 15(cd), no. 56 (R = 12/14.69): See-saw battle
Fig. 15(ck), no. 62 (R = 19/26.26): The tightly fought

nail-biter (or heart stopper)
Fig. 15(cp), no. 50 (R = 15/28.25): Burn-and-hold (or

the game-manager, or the always dangerous playing not-to-
lose)

Fig. 15(cq), no. 36 (R = 9/17.19): Surge-slide-surge.
These motifs may also be grouped according to the number

of “acts” in the game. Motif no. 53 [Fig. 15(ao)], for example,
is a three-act story while motifs no. 56 [Fig. 15(cd)] and no. 68
[Fig. 15(bz)] exhibit four acts. We invite the reader to explore
the rest of the motifs in Fig. 15.

VI. PREDICTING GAMES USING SHAPES OF STORIES

Can we improve our ability to predict the outcome of a
game in progress by knowing how games with similar stories
played out in the past? Does the full history of a game help
us gain any predictive power over much simpler game state
descriptions such as the current time and score differential? In
this last section, we explore prediction as informed by game
stories, a natural application.

Suppose we are in the midst of viewing a new game. We
know the game story gobs from the start of the game until the
current game time t < Tobs, where Tobs is the eventual length
of game (and is another variable which we could potentially
predict). In part to help with presentation and analysis, we will
use minute resolution (meaning t = 60n for n = 0,1,2, . . .).
Our goal is to use our database of completed games, for which
of course we know the eventual outcomes, to predict the final
margin of our new game, gobs(Tobs).

We create a prediction model with two parameters: (1) N :
the desired number of analog games closest to our present game
and (2) M: the number of minutes going back from the current
time for which we will measure the distance between games.
For a predictor, we simply average the final margins of the
N closest analog games to gobs over the interval [t − 60M,t].
That is, at time t , we predict the final margin of gobs, F , using
M minutes of memory and N analog games as

F (gobs,t/60,M,N ) = 1

N

∑

i∈�(gobs,t/60,M,N)

gi(Ti), (6)
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(aa) (ab) (ac) (ad) (ae)
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(ag) (ah) (ai) (aj) (ak) (al)

(am) (an) (ao) (ap) (aq) (ar)

(as) (at)

(ay) (az)

(bg) (bh) (bi) (bj) (be) (bf)
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(bs) (bt) (bu) (bv) (bq) (br)
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(cc) (cd) (ce) (cf) (cg) (ch)
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(au) (av) (aw) (ax)

FIG. 14. Seventy-one distinct game motifs as determined by hierarchical clustering analysis with a threshold of nine points, the fourth
cutoff shown in Fig. 10 and described in Sec. V. Motifs are ordered by their final margin, highest to lowest, and real game stories are shown in
the background of each motif. Cutoffs for motif colors red, gray, and blue correspond to real-to-random ratios 1.1 and 0.9, and the top number
indicates motif rank according to final margin (see online version). The same process applied to the biased random walk model for our 100
simulations typically yields only 45 to 50 motifs (see Fig. 11). We discuss the 10 highlighted motifs in the main text and note that we have
allowed the vertical axis limits to vary.
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FIG. 15. Motifs (red curves) from Fig. 14 rearranged in order of descending ratio of the number of real games to the number of adjacent
biased random walk games, as described in Sec. V C, and adjacent real game stories are shown in gray for each motif.
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FIG. 16. Final margin of motifs as a function of real-to-random
ratio R for real AFL games at the 18 and 71 motif levels, panels
(a) and (b), respectively, with linear fits. On the right of each plot,
extreme blowout motifs ending in high margins have no or relatively
few adjacent random walks (red, R � 1.1). On the left, game stories
are more well represented by random walks (blue, R � 0.9). There is
considerable variation, however, particularly in the 71 motif case, and
we certainly see some close finishes with R � 1 [e.g., the massive
comeback, motif no. 71, Fig. 15(ae)].

where �(gobs,t/60,M,N ) is the set of indices for the N games
closest to the current game over the time span [t − 60M,t],
and Ti is the final second of game i.

For an example demonstration, in Fig. 17 we attempt
to predict the outcome of an example game story given
knowledge of its first 60 min (red curve) and by finding
the average final margin of the N = 50 closest games over
the interval 45–60 min (M = 15, shaded gray region). Most
broadly, we see that our predictor here would correctly call

FIG. 17. Illustration of our prediction method given in Eq. (6).
We start with a game story gobs (red curve, see online version) for
which we know up until, for this example, 60 min (t = 3600). We
find the N = 50 closest game stories based on matching over the
time period 45 to 60 min (memory M = 15) and show these as gray
curves. We indicate the average final score F (gobs,t/60,M,N ) for
these analog games with the horizontal blue curve.

the winning team. At a more detailed level, the average final
margin of the analog games slightly underestimates the final
margin of the game of interest, and the range of outcomes for
the 50 analog games is broad with the final margin spanning
from around −40 to 90 points.

Having defined our prediction method, we now systemati-
cally test its performance after 30, 60, and 90 min have elapsed
in a game currently under way. In aiming to find the best
combination of memory and analog number, M and N , we use
Eq. (6) to predict the eventual winner of all 1310 AFL games
in our data set at these time points. First, as should be expected,
the further a game has progressed, the better our prediction.
More interestingly, in Fig. 18 we see that for all three time
points, increasing N elevates the prediction accuracy, while
increasing M has little and sometimes the opposite effect,
especially for small N . The current score differential serves
as a stronger indicator of the final outcome than the whole
game story shape unfolded so far. The recent change in scores,
momentum, is also informative, but to a far lesser extent than
the simple difference in scores at time t .

Based on Fig. 18, we proceed with N = 50 analogs and two
examples of low memory: M = 1 and M = 10. We compare
with the naive model that, at any time t , predicts the winner as
being the current leader.

FIG. 18. Fraction of games correctly predicted using the average final score of N analog games, with adjacency evaluated over the last M

min at the three game times of (a) 30, (b) 60, and (c) 90 min. Increasing the number of analogs provides the strongest benefit for prediction
while increasing memory either degrades or does not improve performance. Because prediction improves as a game is played out, the color
bars cover the same span of accuracy (0.06) but with range translated appropriately.
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FIG. 19. Prediction accuracy using the described game shape
comparison model using N = 50 analogs and a memories of M = 1
(blue curve) and M = 10 (green curve), compared with the naive
model of assuming that the current leader will ultimately win (red
curve).

We see in Fig. 19 that there is essentially no difference
in prediction performance between the two methods. Thus,
memory does not appear to play a necessary role in prediction
for AFL games. Of interest going forward will be the extent
to which other sports show the same behavior. For predicting
the final score, we also observe that simple linear extrapolation
performs well on the entire set of the AFL games (not shown).

Nevertheless, we have thus far found no compelling evi-
dence for using game stories in prediction, nuanced analyses
incorporating game stories for AFL and other professional
sports may nevertheless yield substantive improvements over
these simple predictive models [21].

VII. CONCLUDING REMARKS

Overall, we find that the sport of Australian Rules Football
presents a continuum of game types ranging from dominant
blowouts to last minute, major comebacks. Consequently, and
rather than uncovering an optimal number of game motifs,
we instead apply coarse graining to find a varying number of
motifs depending on the degree of resolution desired.

We further find that (1) a biased random walk affords a
reasonable null model for AFL game stories; (2) the scoring
bias distribution may be numerically determined so that the

null model produces a distribution of final margins which
suitably matches that of real games; (3) blowout and major
comeback motifs are much more strongly represented in
the real game whereas tighter games are generally (but not
entirely) more favorably produced by a random model; and
(4) AFL game motifs are overall more diverse than those of
the random version.

Our analysis of an entire sport through its game story
ecology could naturally be applied to other major sports such as
American football, Association football (soccer), basketball,
and baseball. A cross-sport comparison for any of the above
analysis would likely be interesting and informative. And at
a macroscale, we could also explore the shapes of win-loss
progressions of franchises over years [22].

It is important to reinforce that a priori, we were unclear
as to whether there would be distinct clusters of games or
a single spectrum, and one might imagine rough theoretical
justifications for both. Our finding of a spectrum conditions our
expectations for other sports and also provides a stringent, nu-
anced test for more advanced explanatory mechanisms beyond
biased random walks, although we are wary of the potential
difficulty involved in establishing a more sophisticated and
still defensible mechanism.

Finally, a potentially valuable future project would be an
investigation of the aesthetic quality of both individual games
and motifs as rated by fans and neutral individuals [23].
Possible sources of data would be (1) social media posts
tagged as being relevant to a specific game and (2) information
on game-related betting. Would true fans rather see a boring
blowout with their team on top than witness a close game
[3,24]? Is the final margin the main criterion for an interesting
game? To what extent do large momentum swings engage an
audience? Such a study could assist in the implementation of
new rules and policies within professional sports.
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