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Analysis of the high-dimensional naming game with committed minorities
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The naming game has become an archetype for linguistic evolution and mathematical social behavioral analysis.
In the model presented here, there are N individuals and K words. Our contribution is developing a robust method
that handles the case when K = O(N ). The initial condition plays a crucial role in the ordering of the system.
We find that the system with high Shannon entropy has a higher consensus time and a lower critical fraction of
zealots compared to low-entropy states. We also show that the critical number of committed agents decreases
with the number of opinions and grows with the community size for each word. These results complement earlier
conclusions that diversity of opinion is essential for evolution; without it, the system stagnates in the status
quo [S. A. Marvel et al., Phys. Rev. Lett. 109, 118702 (2012)]. In contrast, our results suggest that committed
minorities can more easily conquer highly diverse systems, showing them to be inherently unstable.
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I. INTRODUCTION

The study of sociology and political science by means of
mathematical and physical principles has been increasingly
popular recently [1–3]. One of the fundamental problems in
this area is the spread of opinion via social influence often
represented by the voter model, in which individuals adopt the
states of their neighbors [1,4–7]. Other related models of social
influence include social impact theory [1,8], threshold models
[9], and the naming game [10–16]. Here we use the naming
game as the archetype for social influence and investigate the
role of high opinion diversity on social systems [13,15,17–19].

We chose the naming game because, unlike other models,
it can account for several historical precedents in which the
majority opinion was overtaken by a committed minority (e.g.,
the suffragette movement in the early 20th century and the
adoption of the American civil rights in 1960s [13]). Such
processes are known in sociology under the term minority
influence [20]. When the committed minority fraction of the
population is small, their opinion will still be suppressed by an
existing majority opinion [21]. Yet when this fraction exceeds
a modest tipping point value [13,22], the minority opinion will
spread rapidly.

Here we aim to establish that the naming game model
can also account for dynamics of opinion spread in extreme
initial conditions. Our motivating historical precedents are
the dynamics of postrevolution opinion struggle. Often before
revolution happens, the government identifies and suppresses
the leading opposition minorities that are on the verge of
achieving tipping fraction of support (e.g., Islamists before
Iranian revolution of 1979 or Muslim Brothers before Egyptian
revolution of 2011), so the revolution is conducted by a motley
of opposition movements with different ideologies united only
by opposition to the government. After the revolution, the
winners remove suppression of such minorities, allowing them
to quickly win the majority of the population in agreement with
the naming game model. However, the case of the Russian
revolution of February 1917 was different. The revolt was
spontaneous, disorganized, and after they won, no dominant
minority exceeding the tipping point fraction of the population

emerged as in the previous examples. Yet, in the midst of
the disorder and dissent, a small Bolshevik party grasped the
power and support of uncommitted individuals by November
1917, because their leader Lenin correctly diagnosed that the
power laid on the streets. Here we study the case resembling
such situations in the context of naming game, when there are
committed minorities of multiple opinions. In [15], Waagen
et al. show that in such a case, a stalemate of opinion can
more easily occur, in which no decision is reached. Similar
transitions may occur without committed agents by modifying
the strategies of individuals with multiple opinions, which
leads to additional equilibrium states [23,24]. In contrast, we
identify the new set of conditions for this case under which
the loss of stability of a social system occurs. Under these
conditions, instead of stagnation with no decision, a rapid
change occurs in which a small minority quickly spreads their
opinion to the uncommitted subpopulation. In addition, we
show that in the presence of committed minorities, as opinion
diversity of the uncommitted subpopulation increases, the size
of the committed minority needed to the turn the uncommitted
to the minority opinion decreases. In extreme cases, this
critical committed minority is invariant of the system size.
This suggests that too much dissent between individuals makes
them susceptible to even a few zealots.

To gain these insights into the dynamics of social systems,
we solve the critical problem of complexity for the naming
game. For K opinions, the system of ordinary differential
equations (ODEs) that describe relative population sizes
has 2K − 1 equations, which is numerically and analytically
difficult to study [15]. Furthermore, if the number of opinions
also becomes infinite with N , then these ODE methods fail.
By applying more robust methods of analysis, we solve
the problem of exponential complexity, and by doing so
demonstrate the potential of solving other highly complex
systems by these means.

The format of the article is as follows. Section II describes
the details of the naming game model. The solutions that we
provide are given in terms of the dominant eigenvalues of the
system, which are found in Sec. III. Once we know the long
time behavior of the model, we calculate the time to eliminate a
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word from the system, the expected number of words over time,
and the time to reach consensus in Sec. IV. Then we introduce
committed minorities in the system (defined in Sec. II) and
analyze the tipping points in Sec. V.

II. CHARACTERISTICS OF THE K -WORD
LISTENER-ONLY NAMING GAME

Here we describe the naming game model in detail together
with the notation that we will use throughout this paper. We
use the listener-only naming game given in Ref. [25], which is
a slight variation of the model in Ref. [11]. In the model there
are K words (opinions), which we call A1,A2, . . . ,AK . In
social contexts, the words in the naming game are associated
with opinions, beliefs, or political allegiances. There are N

individuals, each with a word list, which is a set of words.
The individuals update their word lists as they change their
opinions in response to messages from others. We also assume
that any individual may speak to any other individual. This
means that the social network is a complete graph, which
is a common assumption [10–13,15,16,26], although other
networks have also been considered [27,28].

It has been observed that dynamics of the naming game
on real world networks are qualitatively similar to complete
graph results [15,29]. In Ref. [30] it was shown with agreement
with numerical simulations that the naming game behavior
is consistent over Erdős-Rényi (ER) networks with varying
average degree. This consistency between ER networks and
the complete graph is also true for the voter model [31].
However, when the network exhibits a strong community
structure, additional equilibrium states can emerge with
different communities holding different opinions [27].

Time is discretized so that one interaction of individuals
takes place within a time step. In one step, an individual is
chosen uniformly at random to be the speaker and another is
chosen uniformly at random as the listener. Let Ws and Wl be
the word lists of the speaker and the listener, respectively. The
speaker chooses a random word As in its word list to transmit
to the listener. If none of the two is committed, they update
their word lists according to the following rules:

(i) If As �∈ Wl , then Wl → Wl ∪ {As}.
(ii) If As ∈ Wl , then Wl → {As},{As} [25].
In brief, if the listener does not have the spoken word in its

list, then it adds it to its list. If the listener has the spoken word
in its list, the listener reduces its list to the spoken word. Only
the listener changes its word list as a result of an interaction,
which is a slight modification of the original naming game.
It has been shown in Ref. [25] that the naming game and the
listener-only variant have qualitatively similar behavior in the
complete graph case.

In addition to these rules, we also may include committed
agents (also known as zealots) in the system. A zealot never
changes their word list and adopts only a single opinion.
We consider two cases when these committed minorities are
present. We first consider the case when there are n′ zealots
of one word. Then we consider the case when there are n′
zealots for each word. We show that there are similar rates
of convergence for both cases in Sec. III. The critical fraction
of committed agents is the value of n′/N that yields a phase
transition in the system. When this fraction of zealots is below

this critical value, the opinion of the committed minorities will
be suppressed by the majority. When the committed fraction
is above the critical value, the minority opinion overcomes the
majority. We are also interested in the time until all individuals
have the same opinion, which we define as the consensus time.
This is discussed in detail in Sec. V.

We initialize the system by assigning a word list to each
individual. For simplicity, we assign one of the K words to an
individual. That is, no individual initially has a mixed word
list. However, the system will quickly saturate itself with word
lists with length 2 or more [12,25]. Also, in our mathematical
analysis, we assume that there is equal representation for each
word. In Sec. II we use the Shannon entropy to numerically
consider the case in which there is unequal representation in
the initial distribution of words.

Shannon entropy

Entropy in the naming game is a measurement of the amount
of disagreement and conflict in the system. The Shannon
entropy in particular measures the uncertainty of a random
variable, such as a message [32]. In the naming game, there
clearly are messages that are transmitted from person to person
and the entropy of these messages also has a clear social
meaning. If the system has high Shannon entropy, then a
listener has a significant probability of hearing a diverse range
of opinions. This also means that there is greater competition
among the opinions for dominance in the system. There is more
dissent, disorder, and disagreement in high-entropy systems.
In a low-entropy system, the listener is more likely to hear
the same message consistently. Low-entropy systems have
more consistency in the messages that are transmitted, so there
is more agreement within the population. These systems are
predictable, ordered, and united.

In one step of the naming game, a single opinion is spoken
to the listener. This spoken word is a random variable that
takes values in A1, . . . ,AK with a probability distribution that
depends on the macrostate of the system. Let the probability
of speaking As be Ps . By definition, the Shannon entropy of
the system is given by

H = −
K∑

s=1

Ps ln Ps. (1)

We take the natural logarithm in Eq. (1) for convenience. To
find the probability Ps of speaking each word, we let |Wj | be
the length of the word list corresponding to individual j for
j ∈ {1, . . . ,N}. With this, Ps can be expressed as

Ps = 1

N

N∑
j=1

1Wj
(As)

|Wj | , (2)

where 1Wj
is the indicator function defined by

1Wl
(As) =

{
1, As ∈ Wl

0, As �∈ Wl.
(3)

So, given the word lists of every node in the network, we
use Eqs. (2) and (1) to calculate the entropy of the system.
With this definition, we aim to demonstrate numerically and
analytically the following entropy principles:
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FIG. 1. Plots of the consensus time (top) and the critical number
of zealots (bottom) against the Shannon entropy of various initial
conditions. A committed minority of word A1 is introduced only in
the bottom figure. Data are shown for N = 200 and K = 20 (◦) and
N = 400 and K = 40 (�).

(i) The consensus time is expected to increase as H
increases.

(ii) The critical fraction of committed agents is expected to
decrease as H decreases.

Intuitively, the first item of the principle means that if there
is more uncertainty and disagreement in the system, the more
time it takes to reach agreement. In the case of the voter model
with two opinions, the consensus time on the complete graph
is exactly equal to this measure of entropy scaled by N [33,34].
The positive correlation between entropy and consensus time
in the naming game is demonstrated in Fig. 1. The second item
of the entropy principle suggests that if there is greater dissent
in a population, then it is easier for a minority of zealots
to dominate the system. This reinforces the if divided then

conquered maxim since it is easier to dominate the system in
the presence of greater internal conflict. Figure 1 demonstrates
the effect of the entropy of the initial condition on the critical
number of zealots.

III. RATE OF CONVERGENCE

Our analysis of the naming game is based on the rate
of convergence of the system. The rate of convergence is
given by the dominant eigenvalues of the transition matrix
for the probability distribution of the system. Knowing the
rate of convergence, we can estimate the time until a word
is eliminated (collapse time) as well as the consensus time.
For the case with committed minorities, we can also use this
analysis to estimate the number of zealots required until a
drastic qualitative change occurs in the system. This is because
the dominant eigenvalues of the transition matrix depend on the
number of zealots. When the fraction of committed minorities
is high enough, these eigenvalues no longer dominate the
ordering of the system. This means that different eigenvectors
determine the overall shape of the probability distribution over
time and there is a significant change in qualitative behavior.
Once we have the dominant eigenvalues, these solutions
become easy to find.

To find the convergence rate, we first express the transition
matrix componentwise. Let nW (m) be the total number of
individuals with word list W at discrete time m and let the
vector n take components nW . Also let

a(m)
α = Pr{n(m) = α}. (4)

We seek to express a
(m+1)
α in terms of a

(m)
α . To do this, we

must account for all possible transitions that the model allows.
Although this is a complicated task for the general K-word
naming game, we follow a simplified model to ameliorate this
issue while keeping the original qualitative properties intact.
In the simplified model, only the listener updates their word
list in response to a message from the speaker, as in [21]. This
we call the listener-only naming game. In every simulation,
we apply the original naming game rules, which shows that
there is still agreement under this modification.

Since we assume that only one individual changes their
word list in a given time step, an individual with word list W

may transition to having word list W ′ or vice versa. To account
for all transitions in the stochastic matrix, we must consider
all pairs of word lists (W1,W2) along with their respective
transition probabilities. Let D be the set of all pairs of word
lists. Also let LI [·] be the operator acting on the current
macrostate that accounts for the possible transitions involving
word pair I = (W1,W2). We then write

a(m+1)
α − a(m)

α =
∑
I∈D

LI

[
a(m)

α

]
. (5)

We estimate the rate of convergence of the model by the
spectral properties of each LI . Summing all of them together
gives the relative magnitude of a

(m+1)
α − a

(m)
α , which is the

change in probability over a single time step. We wish to find
the smallest change in probability possible that retains K words
in the system. Since each LI corresponds to pairs of word lists
that transition to each other, we exhaust each case of pairs of
word lists and find the smallest eigenvalues, many of which
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are zero. The meaning of each case is that we only allow the
given pair of word lists (W1,W2) to change their word lists in
a given step.

A. Case 1: |W1|,|W2| � 2

These cases tend to a stationary distribution that is not the
consensus state. If we only allow a pair of word lists that
contain multiple words, then it is impossible to update the
system in such a way that a word is eliminated. The only way
for a word to be eliminated is if a listener is the only holder of
it and hears and then adopts a familiar word. Since neither W1

nor W2 fits this criterion, we take the change to be 0 without
loss of generality. Note also that this conclusion applies to the
vast majority of cases for large K .

If the system does not converge to consensus, then it
converges to the stationary distribution acquired from these
cases. It is valuable to understand the behavior of the second
largest eigenvalues in these cases, especially when considering
zealots. The rate of convergence to the stationary distribution
yields the criteria for the phase transition as different sets of
eigenvectors starts governing the shape of the system. The
stationary distribution in this case is related to the metastable
distribution when the number of zealots is small. So we seek
to find the size of the rate of convergence to this stationary
distribution.

The only possible means of transition in this case occurs
when W1 and W2 differ by a single word. Otherwise it is
impossible for W1 and W2 to transition to each other. Let
W2 = W1 ∪ {Ap} and let Sp be the set of word lists that contain
Ap. Note that there are K different choices for Ap. Let pi be
the probability of transition from W1 to W2 given that nW1 = i,
which is given by

pi =
⎛
⎝ ∑

W∈Sp

nW

N |W |

⎞
⎠ i

N − 1
. (6)

Since it is impossible to transition from W2 to W1 in the naming
game, this constitutes a triangular transition matrix, whose
spectrum is λk = −pk . Let

μp =
∑
W∈Sp

nW

N |W | , (7)

which depends on the macrostate of the system and the
particular word pair. The total change in probability comes
from the sum of the relative changes for each word. That is,
we sum Eq. (6) for p = 1, . . . ,K . In doing so, we find that
the sum of μp is at most O(1) if the sum of nW achieves its
maximum value of O(N ). This yields a total rate of change
being proportional to 1/N to leading order.

We are also interested in a second term in total change
in probability, as it is significant for the naming game with
zealots. This is attained by supposing that the sum over μp does
not achieve its maximum value. If each nW is only O(1), then
the sum of μp is O(K/N2). This matches the leading term for
K = O(N ), but is smaller for K = O(1). These considerations
are utilized when calculating the total rate of convergence.

B. Case 2: W1 = {Ak}, |W2| > 2, and Ak ∈ W2

Here we only consider transitions in a word list that contains
a single word and a word list that has three or more words.
The size of the eigenvalues are easy to find in this case since
it is only possible for W2 to become W1. This is because it
is impossible for an individual with only a single word to
adopt three or more words in a single step. Mathematically,
this case corresponds to a triangular transition matrix, whose
eigenvalues are the diagonal elements. Let pi be the probability
that an individual with word W2 hears word Ak and thus
transitions to W1 given that there are i individuals with
W1. Since all other individuals with all other word lists are
considered fixed, let

μ1 =
∑

W∈Sk\{W1∪W2}

nW

|W | , (8)

which is considered constant. Now we express the transition
probability as

pi = (i + n′)(N ′ − i)

N (N − 1)
+ 1

|W2|
N ′ − i

N

N ′ − i − 1

N − 1

+μ1
(N ′ − i)

N (N − 1)
, (9)

where N ′ = nW1 + nW2 , which is conserved here. Also, n′ is
the number of zealots corresponding to the word Ak . The
eigenvalues for this case are −pi and the smallest eigenvalue
that does not correspond to consensus is

λ ∼ −N ′ + μ1 + n′

N2
. (10)

This can be seen by taking i = N ′ − 1. Note that μ1 and
N ′ capture the dependence on the state of the system on the
relative change in probability.

C. Case 3: W1 = {Ak} and W2 = {Ak,Al}
Here W1 has only one word and W2 has two words, one

of which is Ak for some k. This is the most dynamic of the
cases because W1 can transition to W2 and vice versa. Because
of the listener-only assumption, this constitutes a tridiagonal
transition matrix. Let pi and qi be the probability that nW1

increases and decreases, respectively, given that nW1 = i. Let

μ2 =
∑

W∈Sl\{W2}

nW

|W | (11)

and recall the definition of μ1 from Eq. (8). The transition
probabilities are then expressed as

pi = (i + n′)(N ′ − i)

N (N − 1)
+ (N ′ − i)(N ′ − i − 1)

2N (N − 1)

+ μ1
N ′ − i

N (N − 1)
, (12)

qi = i(N ′ − i)

2N (N − 1)
+ μ2

i

N (N − 1)
. (13)

To find the rate of convergence for this step, we wish to solve
the eigenvalue problem

λci = pi−1ci−1 + (−pi − qi)ci + qi+1ci+1. (14)

052311-4



ANALYSIS OF THE HIGH-DIMENSIONAL NAMING GAME . . . PHYSICAL REVIEW E 93, 052311 (2016)

In order to solve for all eigenvalues of this problem, we apply
the generating function method of Ref. [35], which exactly
diagonalizes the voter model. We begin by expressing Eq. (14)
in terms of a generating function G(x,y), which we define as

G(x,y) =
N ′∑
i=0

cix
iyN ′−i . (15)

Using shift and differentiation properties of G, we rewrite
Eq. (14) as

N (N − 1)λG = (
x − 1

2y
)
(x − y)Gxy + (n′ + μ1)(x − y)Gy

+ 1
2y(x − y)Gyy − μ2(x − y)Gx (16)

We solve this by the change of variables u = x − y and
G(x,y) = H (u,y). Here we have

H (u,y) =
N ′∑
i=0

biu
iyN ′−i . (17)

Making this change gives the equivalent equation for H ,

N (N − 1)λH = (
u2 − 1

2uy
)
Huy − u2Huu + 1

2uyHyy

+ (n′ + μ1)uHy − (n′ + μ1 + μ2)uHu.

(18)

The above written as a difference equation for the coefficients
of H gives

N (N − 1)λbi

= −[
1
2 i(N ′ − i) + i(i − 1) + i(n′ + μ1 + μ2)

]
bi

+(N ′ − i + 1)
[

1
2N ′ + 1

2 i − 1 + n′ + μ1
]
bi−1. (19)

This constitutes a lower triangular matrix problem for bi . If
there is not a singularity in bi for some i between 0 and N ′,
then all bi = 0, which is trivial. So, assuming that there exists
a singularity at some i = k, we require the bi to vanish. This
yields the following result for the eigenvalues of this case:

λk = −k(k − 1) + 1
2k(N ′ − k) + (n′ + μ1 + μ2)k

N (N − 1)
. (20)

Note that this result depends on the number of committed
agents n′. Each bi can be found explicitly by Eq. (19) by taking
bk = 1 and bi = 0 for i < k. We then find the coefficient of
G(x,y) by calculating H (x − y,y). Doing so gives

G(x,y) =
N ′∑
i=0

⎡
⎣ N ′∑

j=i

(
j

i

)
(−1)j−ibj

⎤
⎦xiyN ′−i . (21)

The value of ci in terms of bj is given in the square brackets
of Eq. (21). To find the dominant eigenvalue of this case, we
take k = 1 in Eq. (20), which yields

λ = −
1
2N ′ + n′ + μ1 + μ2

N2
. (22)

Similar to Eq. (10), the change in probability depends on the
state of the system.

D. Total rate of convergence

Now that we have results for each case, we put them together
to obtain the convergence rate of the naming game. We will
make some assumptions about the state of the system. First, we
assume that initially there is symmetry in the representation of
words. That is, no word initially dominates the other words in
accord with the applications given here. Second, we assume
that for each word, there are individuals with only this word
in their lists. The system quickly orders itself this way as
long word lists are replaced by lists of length 1. This second
assumption allows us to utilize cases 2 and 3 above when
determining the rate of convergence.

The rate of convergence is estimated by the smallest
nonzero change given by the above cases for LI . So the rate
of change of the probability distribution for a single word Ak

is

1 − λk = O

(
θ + n′

N2

)
, (23)

where θ = N ′ + μ1 + μ2, which describes the macrostate of
the system. If we take this to be the total change in probability,
then we have implicitly assumed that there are only two words
in the system and all others have been eliminated. So we
require that all K words are present in the system and sum the
smallest change in probability given by Eq. (23) for each word.
By symmetry, the total change in probability is K multiplied
by the right-hand side of (23). Therefore, the total rate of
convergence is given by

1 − λ = O

(
K(θ + n′)

N2

)
. (24)

We make use of Eq. (24) extensively to determine the collapse
time, consensus time, and the location of a phase transition
over the number of zealots. We need to carefully account for
the macrostate of the system when applying Eq. (24) due to
the presence of θ . We expect the macrostate of the system
to significantly affect the solution for the consensus time and
phase transition.

Now we wish to find the rate of convergence to the
metastable state in the presence of committed minorities.
These are given by case 1 above. The largest of these was
found to be O(1/N ) and the next largest was O(K/N2). Since
the rate of convergence is given by the sum of these cases, we
find that the rate of convergence to the metastable state is

1 − λ ∼ a

N
+ bK

N2
. (25)

Here a and b are constants. When the convergence rate to the
metastable state exceeds the convergence rate to consensus,
the system is trapped in the metastable state. Otherwise, the
system rapidly moves to consensus. This gives the criterion
for the phase transition over n′.

IV. NAMING GAME WITHOUT ZEALOTS

We start with the simple case when the system does not
have committed minorities. That is, we take n′

k = 0 for every
word. Also, we assume that each word has nearly equal
representation in the initial condition. That is, we do not
assume that any given word significantly dominates any other
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word in the population. We also assume that none of the
individuals have mixed word lists initially. Now θ can be as
large as O(N ) since there can be O(N ) individuals with words
lists of length 2 or more. Even though θ = O(1) initially, the
system quickly saturates itself with individuals that have longer
word lists. Assuming that this is the case, we take θ = O(N )
in Eq. (24) and have

λ ∼ 1 − O

(
K

N

)
(26)

as the rate of convergence. We apply this to calculate the
amount of time until an opinion is eliminated from the system
entirely, which allows us to estimate the number of states over
time as well as the consensus time.

A. Collapse time

We define the collapse time as the amount of scaled time
until a word is eliminated from the system. Scaled time is
the number of discrete time steps divided by the number of
nodes in the network. That is, the scaled time t is defined by
t = m/N . Now we wish to find the amount of time until the
system is expected to transition from having k words to at most
k − 1 words.

If the system is not near consensus, then it is not dominated
by the diffusion terms in the random walk. That is, the
entire probability distribution cannot be estimated above by
the dominant eigenvalue when away from consensus. When
this is the case, we take the survival probability, which is the
probability that there are k words in the system at time t , and
set it to 1/N . When this is the case, it is expected that less than
one individual will have one of the K words. Given that there
are k � K words in the system at scaled time t , the survival
probability is λtN . So, using this criterion, we have that

λτkN = 1

N
, (27)

which implies that

τ
(outer)
k = O

(
ln N

k

)
. (28)

We use the notation τ
(outer)
k to designate that this holds when

the system is not near consensus. When the system is near
consensus, the system is diffusionlike and we use the infinite
series to calculate the expected value. That is, the collapse time
near consensus τ

(inner)
k is given by

τ
(inner)
k =

∞∑
m=0

sm

m

N
, (29)

where sm is the probability of collapse. The probability of
collapse is the change in the survival probabilities: sm =
λm−1 − λm. Making this substitution into the infinite series
for τ

(inner)
k gives

τ
(inner)
k = O

(
1

k

)
. (30)

The collapse time from the outer region differs from the
collapse time from the inner region by a factor of ln N . As
the system approaches consensus, this ln N tends to O(1) as

the system transitions from one region to another. We make
use of these observations as well as the collapse times in the
following section.

B. Opinions over time and consensus time

Here we estimate the number of words in the system over
time as well as the time to consensus. To estimate the number of
words over time, we sum the collapse times for their respective
regions to find these quantities. Starting with the outer region,
we estimate the time it takes to achieve S words by

t =
K∑

k=S

O

(
ln N

k

)
(31)

= O

(
ln N ln

K

S

)
. (32)

Solving for S gives

Souter(t) � K exp

(
− αt

ln N

)
. (33)

This shows an exponential convergence in S on a logarithmic
scale for t . Repeating this process for the inner region shows
that the time to reach S words is

t = O

(
ln

K

S

)
. (34)

Solving for S gives

Sinner(t) � K exp(−αt). (35)

The inner region converges on a faster time scale than the outer
region. The convergence of the outer region will, however,
accelerate as the system approaches consensus. These results
are shown numerically in Fig. 2.

Now we will estimate the consensus time, which is defined
as the total amount of scaled time until the entire system adopts
a single word. For the naming game with two words A and B,
the consensus time is O(ln N ) [11,12,36]. However, this may
vary when the number of words is large. Also of importance
is the fact that each word is equally represented to acquire
an upper bound on the consensus time. This is due to the
observation that the consensus time increases with entropy.

To find the consensus time, we estimate the time spent in
the outer and inner regions. Once this is known, the time to
consensus is given by the sum of these two. To do this, we
make use of Eqs. (32) and (34). Since we do not know exactly
which value of S is the transition point when the system is
near consensus, we take S = 1 to yield an upper bound for the
consensus time. With these assumptions, we have

touter = O(ln N ln K), (36)

tinner = O(ln K). (37)

Therefore, the expected time to consensus is

E[τ ] ∼ c1 ln N ln K + c2 ln K, (38)

where c1 and c2 are constants. This is consistent with known
information regarding the case when K = 2, which for Eq. (38)
is O(ln N ) for K = 2. It also accounts for cases when K takes
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FIG. 2. Semilogarithmic plot of the number of words in the
system as a function of scaled time t . Notice that it takes longer
for words to be eliminated when the system is in the outer region.
Also shown is a line of best fit for the inner region, which confirms
that the states over time tend to an exponential in t . The naming game
is averaged over 100 runs with N = K = 100.

extreme values. For K = O(N ), the consensus time increases
to O(ln2 N ). An example of an extreme K case is given in
Fig. 3.
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FIG. 3. Plot of the consensus time averaged over 50 runs of the
naming game for various N with K = N . Also plotted is the estimate
given in Eq. (38) fitted to the data. The best fit yields c1 = 1.18 and
c2 = 2.84 in the context of Eq. (38). The figure shows good agreement
with the theory of Sec. IV B.

V. NAMING GAME WITH ZEALOTS

Here we consider the case in which there are zealots in the
system. If a zealot hears an unfamiliar word, then the new word
is not added to the zealot’s word list. We will use the above
theory on the rates of convergence to analyze the properties
of the naming game when zealots are included. We consider
two cases. The first case is when the zealots all have the same
word. The second case is when there is an equal number of
zealots with each word.

A. Zealots of one word

This system assumes that all zealots share the same word.
Without a loss of generality, let us say that there are n′ zealots
with word A1. We do not assume here that there are any zealots
with words A2, . . . ,AK . In the case where K = 2, a bifurcation
occurs over the number of zealots. It has been shown that
when n′/N ≈ 10%, there are enough zealots to quickly turn
an entire population. If the fraction of zealots is below this
value, then the system is trapped in a metastable state and
it takes an exponential time for the population to adopt the
zealots’ opinion [13,15].

We seek to extend this to cases when K is arbitrary. In
particular, we consider cases when K is large and the spectral
method is required to analyze the system. This problem was
briefly discussed by Waagen et al. [15] and their conclusion
was that the same 10% critical fraction holds for all K

and initial conditions to guarantee the zealots dominate the
system. Their approach is to consider the worst case initial
condition and show that it reduces to the K = 2 case. The
worst case initial condition minimizes entropy and, according
the the entropy principle above, this maximizes the number of
zealots required. We take the analysis of Waagen et al. [15] a
step further by assuming the opposite scenario for the initial
condition: Each uncommitted community is initially of equal
size, which maximizes entropy.

Let C be the number of individuals initially with word Ak ,
where Ak is not the zealots’ opinion. For the case when there
are only zealots of a single type, we have N = (K − 1)C + n′.
For fixed N , this gives a dependence on C in terms of K , given
by

N = (K − 1)C + n′. (39)

Of particular interest is the dependence of the critical number
of zealots n′

c on K , N , and C. By Eq. (39), if we keep N fixed,
then the dependence on C can be found from the dependence
on K by substitution.

To find the phase transition over n′, the criterion we use is
simple. This occurs when Eq. (24) is dominated by a different
class of eigenvalues that describe a stationary distribution. This
stationary distribution is the metastable state and the system
will converge to it if the rate is higher than the consensus rate.
The rate to the metastable state is given in Eq. (25). Setting
Eq. (24) equal to Eq. (25) gives

1 − λ = a

N
+ bK

N2
, (40)

where a and b are constants. We take θ = O(1) in 1 − λ

since the system is initially dominated by uncommitted words.
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FIG. 4. Critical fraction of committed agents plotted against C/N

for N = 1000 (◦ and �) and N = 500 (+ and ×). Data for a
committed minority of a single word are shown (◦ and +) and the
best fit of Eq. (42) in blue. Also shown is the case when there are
committed minorities of every word (� and ×) with the fit of Eq. (43)
in red.

Taking Eq. (40) and solving for n′ gives

n′
c = aN

K
+ b. (41)

Here a,b = O(1). This tells us that we expect the number
of zealots required to turn a population decays as 1/K to
a constant. We express this in terms of C by substitution.
This produces a nonlinearity in n′

c, which we approximate to
provide the following fit:

n′
c = aNC

N + dC
+ b, (42)

where d is another constant. A comparison of this against
simulation data is given in Fig. 4. This result shows that as
the relative sizes of the community grow larger, it takes more
zealots to turn the population.

B. Zealots of every word

The case where each opinion has zealots follows by a
similar argument. If n′ < n′

c, then one opinion eventually will
suppress all others. When n′ > n′

c, a stalemate develops and
no opinion gains dominance. We still apply the criterion of

Eq. (40) along with Eq. (24) for the phase transition. This
means that the dependence of the critical number of zealots
as a function of K has the same form as Eq. (41). However,
now we have N = K(C + n′). When substituting K for C, we
obtain

n′
c = a′C + b′. (43)

We use a′ and b′ to denote different constants from the previous
case that are also both O(1). Figure 4 depicts this relationship
in practice.

VI. DISCUSSION

The first contribution presented here is technical. We
introduce an innovative approach to deal with a large number
K of opinions, which requires analyzing O(2K ) equations in
the traditional ODE-based approach. Another contribution is
advancing our understanding of the naming game dynamic
by considering its dependence on the initial condition. We
demonstrate that the consensus time and the critical number
of zealots have distinct correlations with the entropy of the
state. This reinforces the divide and conquer rule and also
suggests that social systems with great dissent can foster many
committed minority groups that may block each other from
reaching a tipping point, which is high in the case of the uncom-
mitted groups sharing a few opinions only. Our results suggest
that high opinion diversity among uncommitted individuals
changes the dynamics. In such situations, the tipping point can
be reached with the number of committed minority members
being small, or even independent of the system size, making the
system unstable and quickly transferring to the state in which
uncommitted individuals adopt one of the minority opinions.
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