
PHYSICAL REVIEW E 93, 052306 (2016)

Exciton-phonon system on a star graph: A perturbative approach
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Based on the operatorial formulation of the perturbation theory, the properties of an exciton coupled with
optical phonons on a star graph are investigated. Within this method, the dynamics is governed by an effective
Hamiltonian, which accounts for exciton-phonon entanglement. The exciton is dressed by a virtual phonon cloud
whereas the phonons are clothed by virtual excitonic transitions. In spite of the coupling with the phonons, it
is shown that the energy spectrum of the dressed exciton resembles that of a bare exciton. The only differences
originate in a polaronic mechanism that favors an energy shift and a decay of the exciton hopping constant. By
contrast, the motion of the exciton allows the phonons to propagate over the graph so that the dressed normal
modes drastically differ from the localized modes associated to bare phonons. They define extended vibrations
whose properties depend on the state occupied by the exciton that accompanies the phonons. It is shown that the
phonon frequencies, either red shifted or blue shifted, are very sensitive to the model parameter in general, and
to the size of the graph in particular.
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I. INTRODUCTION

Exploiting the propagation of an elementary excitation
in a molecular network is a promising way for performing
scalable quantum computing [1]. For instance, in a dendrimer,
that is a polymer whose hyperbranched structure looks like
the fractal patterns that occur in the plant kingdom [2], the
delocalization of an electronic exciton defines a physical
realization of a continuous time quantum walk (CTQW) [3].
Extensively studied during the past few years, CTQW has
become a very popular research subject due to its potential
use in quantum information processing [4–6]. For example,
a CTQW on a complex network provides a natural way for
performing efficient quantum searches in the spirit of the
well-known Grover’s algorithm [7–9]. In that context, CTQW
and exciton dynamics have been characterized in a great
variety of networks including extended dendrimers [10,11],
binary and glued trees [12,13], Apollonian networks [14,15],
fractal networks [16,17], sequentially growing networks [18],
and star graphs [19–24], to cite but a few examples. Similarly,
the exciton propagation in molecular lattices may be used
for performing high-fidelity quantum-state transfer (QST) at
nanoscale. In quantum computing, QST is a fundamental task
required to ensure an ideal communication between the ele-
ments of a computer or between adjacent computers [25]. Since
the seminal work of Bose on Heisenberg ferromagnets [26],
special attention has been paid for characterizing spin-
excitation-mediated QST. Different systems were considered
such as unmodulated spin chains and complex networks [27],
spin chains with preengineered interactions [28–30], parallel
spin chains [31], and time-dependent disordered chains [32].
But the spin degrees of freedom are not the only ones that can
be used to promote QST and many alternatives were proposed
such as phonons in crystals with reduced dimensionality
[33–35] and vibrons in molecular chains [36,37].

In that context, when one considers exciton-mediated
CTQW or QST in realistic systems, we face a major problem
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because the exciton does not propagate freely anymore.
Instead, it interacts with the remaining degrees of freedom of
the medium that usually form a phonon bath. The phonons are
thus responsible for quantum decoherence [38–40], the public
enemy number one in quantum computing. However, the
physics of the decoherence strongly depends on the size of the
network. In an infinite lattice, the phonons behave as a reservoir
insensitive to the exciton [41] and the Born-Markov approx-
imation is legitimate. Consequently, the exciton dynamics is
well described using a generalized master equation (GME) that
accounts for the irreversible decay of the coherence [42]. By
contrast, in finite-size chains, the phonons no longer behave
as a reservoir [43]. The Born-Markov approximation fails to
capture the exciton dynamics and the GME approach breaks
down [44].

To overcome this problem for the exciton-phonon system,
we have introduced a method based on the operatorial
formulation of the perturbation theory (PT) [45–48]. Within
PT, the dynamics is governed by an effective Hamiltonian that
takes exciton-phonon entanglement into account: the exciton
get clothed by a virtual phonon cloud and the phonons are
dressed by virtual excitonic transitions. In that case, quantum
decoherence is encoded in the decoherence function [39,40]
that provides information on the ability of the phonons
to evolve freely in spite of the exciton-phonon coupling.
At zero temperature, the phonons are in a pure state. The
decoherence function reduces to a phase factor involving the
frequency difference between free and dressed phonons. At
finite temperature, an average procedure yields a sum over the
phase factors, which interfere with the others, resulting in the
decay of the excitonic coherences.

The previous scenario reveals that exciton-phonon
interaction-induced phonon frequency shift is a key ingre-
dient for understanding quantum decoherence. However, our
previous works were restricted to linear chains. Therefore,
in the present paper, the PT formalism is generalized for
describing the Holstein model on a star graph, that is the
coupling between an exciton and a set of optical phonons [49].
The star graph is one of the most regular structures in graph
theory. Organized around a central core, it exhibits the local
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tree structure of irregular and complex networks. However,
its topology remains sufficiently simple so that analytical
calculations can be carried out.

The present work can thus be viewed as a first step where PT
is applied for describing both the exciton energy corrections
and the phonon frequency shifts. According to previous
theories [45–48], this step is required for describing phonon-
induced excitonic decoherence in a star graph, a phenomena
whose the physics will be investigated in forthcoming papers.

The paper is organized as follows. In Sec. II, the star graph is
introduced and the exciton-phonon Hamiltonian is established.
Then, PT is applied to partially remove the exciton-phonon
interaction and to derive the general expression of the exciton-
phonon effective Hamiltonian. In Sec. III, the corresponding
exciton energy corrections and dressed phonon normal modes
are defined and studied numerically. The obtained results are
discussed and interpreted, with a special emphasis on the
influence of the size of the network.

II. THEORETICAL BACKGROUND

A. Exciton-phonon Hamiltonian

The star graph SN we consider is shown in Fig. 1. It
corresponds to a tree that involves N branches that emanate
out from a central core. The central core, labeled by the index
� = 0, is connected to N branch sites � = 1, . . . ,N . Each site
� is occupied by a molecular subunit whose internal (i.e.,
electronic or vibrational) dynamics is described by a two-level
system. Let ω0 denote the corresponding Bohr frequency
and let |�〉 stand for the state in which the �th two-level
system occupies its first excited state, the other two-level
systems remaining in their ground state. The vacuum state
|�〉 describes all the two-level systems in their ground state.

Within these notations, the exciton Hamiltonian that gov-
erns the zero- and the one-exciton dynamics is defined as (with
the convention � = 1)

HA =
N∑

�=0

ω0|�〉〈�| +
N∑

�=1

�(|0〉〈�| + |�〉〈0|), (1)

where � is the exciton hopping constant. Because HA is
invariant under the discrete rotation of angle θ0 = 2π/N and
centered on the core site � = 0, its diagonalization is greatly
simplified when one works with the so-called Bloch basis that

FIG. 1. Representation of the star graph SN with N + 1 nodes
� = 0, . . . ,N and N branches.

involves the local state |� = 0〉 and N orthogonal Bloch states
|ψk〉 (k = 1, . . . ,N ) defined as

|ψk〉 = 1√
N

N∑
�=1

eik�θ0 |�〉. (2)

In the Bloch basis, SN supports two kinds of eigenstates.
First, its spectrum shows the (N − 1)-fold degenerate eigenen-
ergy εk = ω0, ∀k = 1, . . . ,N − 1, the corresponding eigen-
states being the N − 1 Bloch states |χk〉 = |ψk〉, with k =
1, . . . ,N − 1. Second, the graph supports two eigenstates |χ0〉
and |χN 〉 that correspond to superimpositions involving the
core state |0〉 and the Bloch state |ψN 〉 that is uniformly
distributed over the periphery of the star. These totally
symmetric eigenstates are defined as

|χ0〉 = 1√
2

(|0〉 − |ψN 〉) |χN 〉 = 1√
2

(|0〉 + |ψN 〉), (3)

the corresponding eigenenergy being ε0 = ω0 − √
N� and

εN = ω0 + √
N�. Within these notations, the exciton Hamil-

tonian, that acts in the Hilbert space EA whose dimension is
equal to N + 2, is rewritten as

HA =
N∑

k=0

εk|χk〉〈χk|. (4)

Note that, here, we only accounts on the rotational symmetric
of the star graph because we intent to describe realistic
branched molecules that share this symmetry owing to cou-
plings between neighboring branches (dendrimers, molecular
wheels, etc.). However, under the present form, the star graph
exhibits a stronger symmetry since it remains invariant under
the permutation of its branches. This property can thus be
exploited easily for defining a different set of eigenvectors
to generate the entire subspace connected to the degenerate
eigenenergy.

The exciton interacts with the external motions of the
lattice, which are described by N + 1 independent oscillators
localized on each site of the graph and with frequency

0. These oscillators form a set of optical phonons whose
Hamiltonian acts in the Hilbert space EB . This Hamiltonian is
defined in terms of the standard phonon operators a

†
� and a� as

HB =
N∑

�=0


0a
†
�a�. (5)

According to the potential deformation model [50], the
exciton-phonon interaction results from a random modulation
of each exciton local state energy induced by the lattice
vibrations. It is defined as

V =
N∑

�=0

M (�)(a†
� + a�), (6)

where M (�) = �0|�〉〈�| is expressed in terms of the exciton-
phonon coupling strength �0. Acting in EA only, M (�) is
diagonal in the local basis {|�〉}, the �th element representing
the influence of the �th optical phonon on the �th two-level
Bohr frequency. By contrast, in the exciton eigenbasis {|χk〉},
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M (�) is no longer diagonal. Its elements are defined as

M
(�)
kk′ = �0χ

∗
k�χk′�, (7)

where χk� = 〈�|χk〉 is the exciton wave function.
On the star graph, the exciton-phonon system is governed

by the Hamiltonian H = H0 + V where H0 = HA + HB is
the unperturbed Hamiltonian. Since H conserves the exciton
number, the Hilbert space E = EA ⊗ EB is partitioned into
independent subspaces as E = E0 ⊕ E1. In the zero-exciton
subspace E0, V = 0 so that the unperturbed states are eigen-
states of H . They correspond to tensor products involving
the vacuum |�〉 and the phonon number states |{n�}〉 =
|n1, . . . ,nN 〉. They describe n� free phonons with energy
n�
0 localized on each site �. In the one-exciton subspace
E1, the unperturbed states |χk〉 ⊗ |{n�}〉 refer to free phonons
accompanied by an exciton in state |χk〉. Since V turns on in E1,
they are no longer eigenstates of H . The exact eigenstates are
entangled exciton-phonon states that result from transitions,
which mix both exciton and phonon degrees of freedom.
Indeed, V yields exciton transitions from |χk〉 with energy
εk , to |χk′ 〉 with energy εk′ , via the exchange of a phonon �

with energy 
0. The allowed transitions are specified by the
selection rules M

(�)
kk′ �= 0.

In the following of the text, we shall restrict our attention
to the so-called nonadiabatic weak-coupling limit : ω0 � 
0

(high-energy exciton), 4
√

N� < 
0 (nonadiabatic limit) and
�0  � (weak-coupling limit). In that case, there is no
resonance between coupled unperturbed states since εk −
εk′ �= ±
0. Consequently, within the weak-coupling limit,
second-order PT can be applied to treat the influence of
the coupling V , as detailed in the next section. Note that
alternative procedures can be used to consider the nonadiabatic
strong-coupling limit by combining PT with a Lang-Firsov
transformation [47,48].

B. Perturbation theory

In its operatorial formulation [51], PT is based on the
introduction of a unitary transformation that provides a new
point of view in which the exciton-phonon dynamics is
described by an effective Hamiltonian. The key point is that
this Hamiltonian is diagonal in the unperturbed basis. Quite
powerful to treat finite-size chains [36,37,45,46], this approach
breaks down for the star graph because the unperturbed
Hamiltonian exhibits quasidegenerate states.

To illustrate this feature, let us consider the two states |χk〉 ⊗
|n1, . . . ,n�, . . . ,nN 〉 and |χk′ 〉 ⊗ |n1 − 1, . . . ,n� + 1, . . . ,nN 〉.
Since they refer to the same phonon number Nph = n1 +
, . . . ,n� + , . . . ,nN , they have exactly (or almost) the same
energy. Of course, these states do not directly interact
through the coupling V because they share the same phonon
number. However, through phonon exchanges, they may be
coupled with a same unperturbed state, such as for exam-
ple |χk′′ 〉 ⊗ |n1, . . . ,n� + 1, . . . ,nN 〉. As a consequence, an
effective coupling occurs between these exactly degenerate (or
quasidegenerate) states resulting in errors in the calculations
of the corrected energies and in divergences in the evaluation
of the entangled exciton-phonon states.

To overcome this problem, quasidegenerate PT is ap-
plied [52] (Appendix). To proceed, we take advantage of

the fact that the effective couplings conserve the phonon
number. Therefore, our procedure involves a transformation
U = exp(S) that generates a new point of view in which
the effective Hamiltonian Ĥ = UHU † is block diagonal in
the unperturbed basis. The generator S is expanded as a
Taylor series in the coupling V so that Ĥ becomes a phonon
conserving operator. Up to second order, it is written as

Ĥ = HA + δHA +
N∑

�=0

N∑
�′=0

[
0δ��′ + (��′)]a†
�a�′ , (8)

where δHA and (��′) are operators in EA whose matrix
elements are defined as (in the unperturbed basis {|χk〉})

δHAk1k2 = 1

2

N∑
�=0

N∑
k=0

M
(�)
k1k

M
(�)
kk2

εk1 − εk − 
0
+ M

(�)
k1k

M
(�)
kk2

εk2 − εk − 
0

(��′)k1k2 = 1

2

N∑
k=0

M
(�)
k1k

M
(�′)
kk2

εk1 − εk + 
0
+ M

(�′)
k1k

M
(�)
kk2

εk2 − εk − 
0

+ 1

2

N∑
k=0

M
(�′)
k1k

M
(�)
kk2

εk1 − εk − 
0
+ M

(�)
k1k

M
(�′)
kk2

εk2 − εk + 
0
. (9)

δHA defines the correction of the exciton Hamiltonian
owing to the coupling with the phonons. It results from the
spontaneous emission of a phonon during which the exciton
realizes a transition from |χk1〉 to |χk〉. However, in the
non adiabatic limit, the energy is not conserved during the
transition. The emitted phonon is immediately reabsorbed and
the exciton realizes a second transition from |χk〉 to |χk2〉. In
other words, the exciton does no longer propagate freely and
it is as if it were dressed by a virtual phonon cloud. This
dressing renormalizes the exciton energies εk by an amount
δεk = δHAkk . In addition, it induces effective interactions
δHAk1k2 between distinct unperturbed states that can no longer
be neglected for quasidegenerate states.

Similarly, (��′) defines the so-called phonon hopping
constant matrix that accounts for the correction of the phonon
Hamiltonian. It has two origins. First, a phonon can be
absorbed on a particular site � giving rise to excitonic
transition. Because this transition does not conserve the energy,
the phonon is immediately reemitted but on another site
�′. Second, a phonon localized on a site � can favor the
stimulated emission of a second phonon during which the
exciton realizes a transition. But, as previously, the emitted
phonon is immediately reabsorbed, but on a second site �′. Both
mechanisms are virtual processes indicating that the phonons
are dressed by virtual transitions realized by the exciton. As
a result, correlations between sites occur so that the dressed
phonons become able to delocalize over the star graph.

III. RESULTS AND DISCUSSION

In this section, the previous formalism is applied for de-
scribing the exciton energy corrections and the dressed phonon
normal modes induced by the exciton-phonon interaction.
To proceed, reduced parameters will be used [53]. First,
the adiabaticity will be measured by the standard parameter
B = 2�/
0. Nevertheless, to account for the specificity of the
star graph, we shall introduce the N -dependent adiabaticity
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BN = 2�
√

N/
0 = √
NB. The exciton-phonon coupling

strength will be measured by the reduced parameter C =
�0/
0. It is related to the so-called small polaron binding
energy EB = �2

0/
0 according to the relation C2 = EB/
0.

A. Quantum states of the dressed exciton

According to the previous formalism, the dynamics of a
dressed exciton is governed by the effective Hamiltonian ĤA =
HA + δHA whose eigenvalues ε̂k , with k = 0, . . . ,N , define
the corrected exciton energies. In the unperturbed eigenbasis
{|χk〉}, δHA is expressed as,

δHA =

⎛
⎜⎜⎜⎝

δε0 0 0 . . . δh

0 δε1 0 . . . 0
0 0 δε2 . . . 0
. . . . . . . . . . . . . . .

δh 0 0 . . . δεN

⎞
⎟⎟⎟⎠, (10)

where the different parameters are defined as

δε0 = −EB

N + 1

4N

(
1 + 1

1 + BN

+
(

N − 1

N + 1

)
4

2 + BN

)

δεk = −EB

N

(
N − 1 + 4

4 − B2
N

)
∀k = 1, . . . ,N − 1

δεN = −EB

N + 1

4N

(
1 + 1

1 − BN

+
(

N − 1

N + 1

)
4

2 − BN

)

δh = −EB

N − 1

8N

(
2 + 2

1 − B2
N

− 16

4 − B2
N

)
. (11)

From Eqs. (10) and (11), the effective Hamiltonian ĤA

can be diagonalized quite straightforwardly. The resulting
eigenvalues are shown in Fig. 2 that displays the influence
of the exciton-phonon coupling on the energy spectrum for
different N values. It turns out that the coupling with the
phonons have two main effects on the excitonic spectrum.

C
0.00 0.02 0.04 0.06 0.08 0.10

-8

-6

-4

-2

0

2

4

6

8

k=0

k=N

k=1,2,...,N-1

(
)/

k
0

FIG. 2. Coupling dependence of the exciton energy spectrum for
B = 0.01 and for N = 10 (full lines), N = 20 (long dashed lines)
and N = 30 (short dashed lines).

First, in the new point of view, the Bloch states {|χk〉} with k =
1, . . . ,N − 1 still define N − 1 eigenstates of the transformed
Hamiltonian ĤA. However, the corresponding eigenenergies
are red shifted by an amount δεk that is k independent [see
Eq. (11)]. Consequently, the coupling preserves the degeneracy
of the spectrum that still supports the (N − 1)-fold degenerate
energy, a characteristic of the spectrum of a bare exciton. This
degenerate energy level is almost N independent and it exhibits
a red shift that shows a quadratic dependence with the coupling
strength C. Then, the second effect of the exciton-phonon
interaction is to couple the two states |χ0〉 and |χN 〉 through
the parameter δh [see Eq. (10)]. Consequently, the spectrum
exhibits two discrete energy levels that refer to dressed states
which correspond a priori to superimpositions involving |χ0〉
and |χN 〉. After simple algebraic manipulations, these energy
levels are defined as

ε̂0 = ε̄N + ε̄0

2
−

√(
ε̄N − ε̄0

2

)2

+ δh2

(12)

ε̂N = ε̄N + ε̄0

2
+

√(
ε̄N − ε̄0

2

)2

+ δh2,

where ε̄N,0 = εN,0 + δεN,0. As shown in Fig. 2, the discrete
energy levels are located on each side of the (N − 1)-fold
degenerate eigenenergy. However, their position strongly
depends on the size of the graph. For C = 0, such a behavior
originates in the N dependence of the energies of the bare states
defined as ω0 ± √

N�. For nonvanishing C values, in addition
to this effect, a size dependence also occurs through the red
shift that affects each discrete energy level [see Eq. (11)].
This shift is enhanced by the coupling and it varies according
to a quadratic law with respect to C. Note that we have
observed a band narrowing effect. As C increases, the two
discrete energy levels become closer to each other, the energy
difference scaling as (ε̂N − ε̂0)/2

√
N� ≈ 1 − C2.

The behavior of the coupling δh between the nondegenerate
states |χ0〉 and |χN 〉 is illustrated in Fig. 3 for C = 0.01. The

/E
B

h

N
0 20 40 60 80 100

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

B=0.01

B=0.02

B=0.03

10
2

FIG. 3. Size dependence of the coupling δh between the non-
degenerate eigenstates |χ0〉 and |χN 〉 for C = 0.01 and for B = 0.01,
B = 0.02, and B = 0.03.
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N
0 20 40 60 80 100

k/
E B

-1.2

-1.1

-1.0

-0.9

-0.8

k=0

k=N

k=1,2,...,N-1

FIG. 4. Size dependence of the energy shifts δεk for C = 0.01 and
for B = 0.01 (full lines), B = 0.02 (long dashed lines), and B = 0.03
(short dashed lines).

coupling δh decreases almost linearly with N , a decay that is
enhanced by the adiabaticity. However, the key point concerns
the strength of the coupling. For instance, for B = 0.02, δh

evolves from −4.5 × 10−4EB for N = 10 to −5.3 × 10−3EB

for N = 100. As a result, δh is approximately six orders of
magnitude smaller than the difference 2

√
N� between the

energies of the states |χ0〉 and |χN 〉. This behavior is quite
well captured by the Taylor expansion for small B values
δh ≈ −(N − 1)B2EB/8. Consequently, δh is an extremely
small parameter that can be neglected in the calculations. The
coupling between the unperturbed states |χ0〉 and |χN 〉 can
be disregarded so that these states define approximately two
eigenstates of the effective Hamiltonian.

Within this approximation, the effective Hamiltonian ĤA

becomes diagonal in the unperturbed basis {|χk〉}, ∀k =
0, . . . ,N . Its eigenvalues reduce to the corrected unperturbed
energies defined as

ε̂0 ≈ ω0 −
√

N� + δε0

ε̂k = ω0 + δεk ∀k = 1, . . . ,N − 1 (13)

ε̂N ≈ ω0 +
√

N� + δεN .

The influence of the size of the star on the energy shifts
is displayed in Fig. 4 for a weak coupling C = 0.01 and for
three values of the adiabaticity B = 0.01 (full lines), B = 0.02
(long dashed lines), and B = 0.03 (short dashed lines). The
figure clearly shows that the order of magnitude of the energy
shifts is about the small polaron binding energy EB . However,
different behaviors take place depending on the nature of the
states. Indeed, the shift experienced by the energy of the
N − 1 degenerate Bloch states is basically independent on
both the size of the star and the adiabaticity, provided that B

remains sufficiently small. One thus obtains δεk ≈ −EB , ∀k =
1, . . . ,N − 1. By contrast, for the nondegenerate state |χ0〉, the
energy shift slightly increases with both the size of the star and
the adiabaticity. For instance, for B = 0.01, δε0 varies from
−0.98EB for N = 10 to −0.95EB for N = 100. Similarly,

for N = 50, δε0 increases from −0.97EB for B = 0.01 to
−0.91EB for B = 0.03. The opposite behavior occurs for the
state |χN 〉 whose energy shift slightly decreases when both
the size of the star and the adiabaticity increase. For instance,
for B = 0.01, δεN decreases from −1.02EB for N = 10 to
−1.05EB for N = 100. Similarly, for N = 50, δεN varies from
−1.04EB for B = 0.01 to −1.13EB for B = 0.03. Note that
we have observed that the energy shift of the non degenerate
states evolve almost linearly with B for small B values whereas
a quadratic correction occurs for larger B values. Note that
the different features observed in Figs. 4 are easily explained
when one considers the Taylor expansion of the shifts in the
non adiabatic limit. For small B values one obtains

δε0/EB ≈ −1 +
√

N

2
B − 3N + 1

8
B2

δεk/EB ≈ −1 − B2

4
∀k = 1, . . . ,N − 1 (14)

δεN/EB ≈ −1 −
√

N

2
B − 3N + 1

8
B2.

The previous results reveal that PT provides a new point
of view in which the exciton dynamics is governed by the
effective Hamiltonian ĤA that is diagonal in the unperturbed
basis {|χk〉}. In this point of view, |χk〉 defines a quantum state
in which the exciton no longer evolves freely but is dressed
by a virtual cloud of phonons. The corresponding energy
ε̂k = εk + δεk exhibits a correction δεk . It is a signature of
the dressing mechanism whose parameter dependence can be
interpreted using the small polaron theory [53,54]. Within this
formalism, the dressing favors two main effects. First, it yields
a red shift of the Bohr frequency of each two-level system
equal to the small polaron binding energy. Then, it modifies
the propagation of the exciton that delocalizes according
to a reduced hopping constant �̂ = � exp(−S), where the
band-narrowing factor at zero temperature is S = EB/
0. As
a result, the energy correction of the Bloch states scales as
δεk ≈ −EB , ∀k = 1, . . . ,N − 1, as observed in Fig. 4. By
contrast, for the discrete states whose energy depends on the
hopping constant, an additional effect occurs. The correspond-
ing energy shifts are defined as δε0 ≈ −EB + √

N�S and
δεN ≈ −EB − √

N�S, in a quite good agreement with the
results obtained in Eq. (14).

B. Dressed phonon normal modes and phonon frequency shifts

In the previous section, we have shown that ĤA behaves as a
diagonal operator in the excitonic basis {|χk〉}. At first glance,
this is no longer the case for the effective exciton-phonon
Hamiltonian Eq. (8). Couplings mediated by the phonon hop-
ping constant matrix (��′) remain between the unperturbed
states [see Eq. (9)]. However, our numerical analysis revealed
that the phonon hopping constant matrix yields very small
modifications of the exciton dynamics when compared with
those induced by the energy corrections δεk . As a result, up
to second order in V , a quite good approximation consists in
neglecting the nondiagonal part of these operators. Within this
approximation, the effective exciton-phonon Hamiltonian can
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be rewritten as

Ĥ ≈
N∑

k=0

ε̂k|χk〉〈χk| + Ĥ
(k)
B ⊗ |χk〉〈χk|, (15)

where Ĥ
(k)
B is the Hamiltonian that governs the phonon

dynamics when the exciton lies in the state |χk〉. By setting


(k)
��′ = (��′)kk , it is defined as

Ĥ
(k)
B =

N∑
�=0

N∑
�′=0

[

0δ��′ + 

(k)
��′

]
a
†
�a�′ . (16)

According to Eq. (16), the influence of an exciton in a
state |χk〉 that accompanies the phonons is twofold. First, it
favors a shift 

(k)
�� of the frequency of each local oscillator

� = 0, . . . ,N . Then, it provides a coupling 
(k)
��′ between

distinct local oscillators so that the dressed phonons become
able to delocalize along the star graph. According to Eqs. (7)
and (9), these couplings specify pathways for the phonon
propagation whose nature is intimately connected to the
overlaps between the excitonic wave functions involved in
the virtual transitions that dress the phonons. As a result, the
vibrational normal modes that define the dressed phonons are
fully different from the localized normal modes associated to
free phonons. These dressed normal modes are obtained from
the diagonalization of the phonon hopping constant matrix
(k). Such a procedure allows us to define N + 1 eigenvalues
δ
(k)

q and N + 1 eigenvectors β(k)
q (�) labeled by the index q =

0,1, . . . ,N . The index q refers to a particular phonon mode
with energy 
(k)

q = 
0 + δ
(k)
q , the eigenvalues of the phonon

hopping constant matrix defining the phonon frequency shifts.
The dynamics of each mode is described by the well-known
creation a

(k)†
q and annihilation a(k)

q operators, written as

a(k)
q =

N∑
�=0

β(k)∗
q (�)a� a(k)†

q =
N∑

�=0

β(k)
q (�)a†

�. (17)

Within the normal mode decomposition, the phonon
Hamiltonian is finally rewritten in the standard form as

Ĥ
(k)
B =

∑
q


(k)
q a(k)†

q a(k)
q . (18)

Note that to make the determination of the phonon normal
modes easier, it is convenient to introduce an abstract linear
vector space notation by considering the phonon operators a�

as the components of the vector |a) in the local representation
{|�)}. Then, one introduces the operators (k) and 
̄0 whose
matrix elements are defined as 

(k)
��′ = (�|(k)|�′) and 
0δ��′ =

(�|
̄0|�′), respectively. The normal modes are thus extracted
from the eigenvalue equation associated to the operator (k), as

(k)
∣∣β(k)

q

) = δ
(k)
q

∣∣β(k)
q

)
, (19)

where |β(k)
q ) denotes a column vector whose elements

β(k)
q (�) = (�|β(k)

q ) define the normal modes. Finally, within
these notations, the phonon operators reduce to a(k)

q = (β(k)
q |a)

and a
(k)†
q = (a|β(k)

q ) and the phonon Hamiltonian is rewritten as

Ĥ
(k)
B = (a|[
̄0 + (k)]|a). (20)

At this step, let us mention that the nature of the dressed
phonon normal modes is very sensitive to the state occupied
by the exciton that accompanies the phonons. Two different
situations occur depending on whether the exciton occupies
a totally symmetric state |χ0,N 〉 or a Bloch state |χk〉, with
k = 1, . . . ,N − 1, as shown in the following of the text.

1. Phonons dressed by an exciton occupying a totally
symmetric state

When the phonons are accompanied by an exciton that
occupies a totally symmetric state |χk〉 with k = 0 or N , the
only elements of the phonon hopping constant matrix that
contribute to the phonon dynamics are expressed as


(k)
00 = −α(k)


(k)
�0 = 

(k)
0� = α(k)

N
∀� �= 0

(21)


(k)
�� = −α(k) + (N − 1)γ (k)

N2
∀� �= 0


(k)
��′ = γ (k) − α(k)

N2
∀� �= �′ �= 0,

where the parameters α(k) and γ (k) are defined as

α(k) =
(

δkN − δk0

2

)
EBBN

1 − B2
N

(22)

γ (k) =
(

δkN − δk0

2

)
4EBBN

4 − B2
N

.

Note that the phonon hopping constant matrix satisfies the
relation

∑
�′ 

(k)
��′ = 0.

From Eq. (21), a moment’s reflection will convince the
reader that the phonon hopping constant matrix corresponds
to the adjacency matrix of a finite graph built from the
combination between a star graph and a complete graph. As
a result, this matrix is invariant under the discrete rotation
of angle θ0 = 2π/N and centered on the core site � = 0.
Therefore, to make its diagonalization easier, it is convenient
to work with the Bloch representation that involves the
local vector |� = 0) and N orthogonal Bloch vectors |ψq)
(q = 1, . . . ,N) defined as

|ψq) = 1√
N

N∑
�=1

eiq�θ0 |�). (23)

In the Bloch representation, (k) supports two kinds of
eigenstates. First, its spectrum shows a (N − 1)-fold degen-
erate eigenvalue δ
(k)

q = −γ (k)/N , ∀q = 1, . . . ,N − 1. This
phonon frequency shift is associated to N − 1 normal modes
that correspond to N − 1 Bloch vectors |β(k)

q ) = |ψq), with
q = 1, . . . ,N − 1. Such normal modes describe vibrations de-
localized over the periphery of the star. This spatial dependence
originates in the overlaps between the totally symmetric state
occupied by the exciton that accompanies the phonons and the
excitonic Bloch states that participate to the virtual transitions
responsible for the dressing mechanism.

Second, the phonon hopping constant matrix exhibits two
eigenstates |β(k)

0 ) and |β(k)
N ) that are superimpositions involving

the core vector |0) and the Bloch vector |ψN ). These totally
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symmetric normal modes are defined as

∣∣β(k)
0

) =
√

N

N + 1

(
|0) −

N∑
�=1

1

N
|�)

)
(24)∣∣β(k)

N

) = 1√
N + 1

(
|0) +

N∑
�=1

|�)

)
.

The normal mode |β(k)
0 ) describes a vibration mainly localized

on the central core and uniformly distributed over the periphery
of the star. The corresponding phonon frequency shift is equal
to δ


(k)
0 = −(N + 1)α(k)/N . By contrast, the normal mode

|β(k)
N ) refers to a vibration that is uniformly distributed over the

whole network. It thus describes an overall move of the vibra-
tions whose phonon frequency shift vanishes, i.e., δ


(k)
N = 0.

Note that in both cases, the spatial dependence of these modes
results from the overlaps between the totally symmetric state
occupied by the exciton that accompanies the phonons and the
other symmetric state involved in the virtual transitions.

According to Eq. (22), the phonon frequencies are either red
shifted or blue shifted depending on the nature of the exciton. A
red shift is induced when the exciton occupies the state k = N

whereas a blue shift occurs when the exciton occupies the state
k = 0. In fact, only the sign of the shift changes depending on
whether the exciton lies in the state k = 0 or k = N so that
δ
(0)

q = −δ
(N)
q , ∀q = 0, . . . ,N − 1.

When the exciton occupies the totally symmetric state |χ0〉,
the size dependence of the phonon frequency shifts δ
(0)

q is
shown in Fig. 5. For the normal mode q = 0 that is mainly
localized on the central core of the star, the frequency shift
increases with both the size of the star and the adiabaticity
[Fig. 5(a)]. Note that δ


(0)
0 is proportional to the small polaron

binding energy, as shown in Eq. (22). For instance, for
B = 0.01, δ


(0)
0 varies from 1.74 × 10−2EB for N = 10 to

5.10 × 10−2EB for N = 100. Similarly, for N = 50, δ
(0)
0 in-

creases from 3.62 × 10−2EB for B = 0.01 to 1.13 × 10−1EB

for B = 0.03. A different behavior occurs for the shift δ
(0)
q of

the extended normal modes q = 1, . . . ,N − 1. First, this shift
decreases with the size of the network [Fig. 5(b)]. Second,
depending on the lattice size, it is approximately two or three
orders of magnitude smaller than the shift experienced by
the localized mode q = 0. Finally, δ
(0)

q is proportional to
the small polaron binding energy and it increases with the
adiabaticity. For instance, for B = 0.01, δ
(0)

q decreases from
1.59 × 10−3EB for N = 10 to 5.01 × 10−4EB for N = 100.
Similarly, for N = 50, δ
(0)

q varies from 7.08 × 10−4EB for
B = 0.01 to 2.15 × 10−2EB for B = 0.03.

The different features observed in Figs. 5 are easily ex-
plained when one considers the Taylor expansion of the shifts
in the nonadiabatic limit. For small BN values one obtains

δ

(0)
0 ≈ N + 1

2
√

N
EBB

(25)

δ
(0)
q ≈ EBB

8
√

N
∀q = 1, . . . ,N − 1.

Provided that N is sufficiently important, these equations
reveals that δ


(0)
0 ∝ EBBN whereas δ
(0)

q ∝ EBBN/N .
Under this form, the N dependence of the shifts can be

N
0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

0

5

10

15

20

(a)

(b)

B=0.01

B=0.02

B=0.03

B=0.01

B=0.02

B=0.03

/E
(0
) q

B
/E

(0
) 0

B
10

2
10

2

FIG. 5. Size dependence of the phonon frequency shift δ
(0)
q

when the exciton occupies the totally symmetric state |χ0〉 for
C = 0.01 and for B = 0.01, B = 0.02, and B = 0.03. (a) Shift
that characterizes the phonon normal mode q = 0. (b) Shift that
characterizes the phonon normal mode q = 1, . . . ,N − 1.

explained by drawing a parallel between the star graph and the
linear chain. Indeed, a detailed analysis of the exciton-phonon
system in a finite chain have revealed that the typical value of
the phonon frequency shift can be expanded in a Taylor series
as δ
typ ∝ EB(�ε/
0)ν/L (see the results in Refs. [45–48]).
In this expression, �ε is the typical Bohr frequency of the
virtual excitonic transitions responsible for the dressing of
the phonons, EB measures the strength of the exciton-phonon
interaction, L denotes the extension of the phonon normal
mode and ν is an exponent that governs the order of the
expansion. In a linear chain with N sites, the phonons extend
over the whole lattice and the typical Bohr frequency of the
virtual excitonic transitions is approximately equal to 2�.
As a result, to first order (ν = 1), the phonon frequency shift
scales as δ
typ ∝ EBB/N [45–48].

In the star graph, the phonon normal modes q = 1, . . . ,N −
1 defining Bloch waves delocalized over the periphery of
the star, they behave as the vibrations that propagate in a
linear chain. However, in that case, the typical Bohr frequency
of the virtual excitonic transitions is about �ε = 2

√
N�.

Consequently, by analogy with what happens in the chain,
the phonons on the star graph experience a similar shift,
but with the correspondence B → BN . One thus obtains
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δ
typ ∝ EBBN/N . By contrast, the normal mode q = 0 refers
to vibrations that are mainly localized on the central core
of the network. Its extension thus reduces to unity giving
rise to the disappearance of the factor 1/N in the expression
of the corresponding frequency shift approximately equal to
δ
typ ∝ EBBN .

2. Phonons dressed by an exciton occupying a Bloch state

When the phonons are accompanied by an exciton that
occupies a Bloch state |χk〉 with k = 1, . . . ,N − 1, the only
elements of the phonon hopping constant matrix that contribute
to the phonon dynamics are expressed as


(k)
��′ = δ
(χ∗

k�χk�′ − χ∗
k�′χk�) ∀� �= �′ �= 0, (26)

where the parameter δ
 is defined as

δ
 = EBB2

4 − B2
N

. (27)

According to Eq. (26), the phonon hopping constant matrix
connects each site of the periphery to the others, but it lets
the core site isolated from the other sites. As previously, it
is invariant under the discrete rotation of angle θ0 = 2π/N

and centered on the core site � = 0 so that it can be
diagonalized by using the Bloch representation. In the context,
it is straightforward to show that (k) supports two kinds of
eigenstates. First, since the core site is disconnected from
the periphery, it exhibits an eigenstate |β(k)

0 ) = |� = 0) that is
localized on the central core of the star graph. The frequency
of this localized normal mode is equal to 
0 and it does not
support any shift, i.e., δ


(k)
0 = 0. Then, the phonon hopping

constant matrix exhibits N normal modes that correspond to N

Bloch vectors |β(k)
q ) = |ψq), with q = 1, . . . ,N . These modes

describe delocalized vibrations able to propagate along the
periphery of the star, only. This spatial dependence originates
in the overlaps between the Bloch state occupied by the exciton
that accompanies the phonons and the remaining states that
participate to the virtual transitions responsible for the dressing
mechanism. However, only two normal modes experience a
frequency shift, namely the modes q = k and q = N − k,
respectively. Note that the spatial dependence of these modes
basically matches that of the excitonic wave function χk�. The
shift, defined as δ
(k)

q = δ
(δq,N−k − δq,k), reveals that the
frequency of the mode q = k is red shifted whereas that of the
mode q = N − k is blue shifted.

The size dependence of the phonon frequency shifts δ


is shown in Fig. 6. The frequency shift increases with the
adiabaticity but it is clearly almost independent on the size of
the network. Note that δ
 is proportional to the small polaron
binding energy, as shown in Eq. (27). For instance, for B =
0.02, δ
 varies from 1.00 × 10−2EB for N = 10 to 1.01 ×
10−2EB for N = 100. Similarly, for N = 50, δ
 increases
from 2.50 × 10−3EB for B = 0.01 to 2.28 × 10−2EB for B =
0.03. Note that depending on the lattice size, the shift δ
 is
approximately two orders of magnitude smaller than the shift
experienced by the frequency of the phonons accompanied by
an exciton in a totally symmetric state.

The behavior displayed in Fig. 6 can be interpreted by
considering the Taylor expansion of the shift δ
 in the
nonadiabatic limit, that is δ
 ≈ EBB2/4. In a marked contrast

/E
B

N
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10
4

FIG. 6. Size dependence of the phonon frequency shift δ
 when
the exciton occupies a Bloch state k = 1, . . . ,N − 1 for C = 0.01
and for B = 0.01, B = 0.02, and B = 0.03.

with what happens when the exciton occupies a totally
symmetric state, one obtains a phonon frequency shift that is N

independent and that depends quadratically on the adiabaticity
B. These two surprising features can be understood as follows.
Indeed, still by drawing a parallel between the star graph and
the linear chain, the normal modes q = 1, . . . ,N characterize
extended phonons that propagate over the periphery of the
star. Therefore, since the typical Bohr frequency of the virtual
excitonic transitions is about �ε = 2

√
N�, the typical value

of the phonon frequency shift scales as δ
typ ∝ EB(BN )ν/N .
The key point here results from the fact that the exciton occu-
pies a Bloch state. In that case, the virtual transitions towards
the totally symmetric state |χ0〉 are exactly compensated by
those towards the totally symmetric state |χN 〉. Consequently,
the first-order contribution of the phonon frequency shift with
respect to the exciton Bohr frequency vanishes. One thus
obtains ν = 2 that gives rise to an N -independent phonon
frequency shift that scales as B2. Note that in addition to the
extended normal modes, we have shown that the star graph
supports a mode q = 0 localized on the core site. Since the
exciton occupies a Bloch states confined to the periphery of
the graph, the exciton-phonon interaction vanishes resulting in
a zero frequency shift for this localized phonon mode.

To conclude this section, let us mention that a careful
reading of Eq. (26) reveals that the phonon hopping constant
matrix vanishes for real values of the exciton wave func-
tions. However, the Bloch states are eigenstates associated
to a (N − 1)-fold degenerate energy level. Therefore, any
superimposition of Bloch states remaining an eigenstate,
it is straightforward to build a set of real excitonic wave
functions. An example among many is given by the set
of excitonic states |�(1)

� 〉 = (|1〉 − |�〉)/√2 for � = 2, . . . ,N .
Consequently, when the exciton occupies such a state, it does
not induce any phonon frequency shift.

IV. CONCLUSION

In this paper, we have introduced a microscopic model
for describing an exciton coupled with optical phonons on a
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star graph. Within the nonadiabatic weak-coupling limit, the
properties of the exciton-phonon system was studied using the
operatorial formulation of the quasidegenerate perturbation
theory. This method provides a new point of view in which the
dynamics is governed by an effective Hamiltonian that does
no longer characterize independent excitations but accounts
for exciton-phonon entanglement. The exciton is dressed by
a virtual phonon cloud whereas the phonons are clothed by
virtual excitonic transitions.

In accordance with the standard polaron concept, the
dressing of the exciton favors two main effects. First, it yields
a red shift of the energy of each excitonic local state. Then,
it modifies the propagation of the exciton that delocalizes
according to a reduced hopping constant. Consequently, it has
been shown that the graph exhibits a (N − 1)-fold degenerate
eigenenergy associated to N − 1 excitonic states delocalized
over the periphery of the star. Although the dressing preserves
the degeneracy, it induces a red shift of this degenerate energy
level approximately equal to the so-called small polaron
binding energy. In addition, the graph supports two totally
symmetric eigenstates both localized on the central core
and uniformly distributed over the periphery. These states
define two discrete energy levels located on each side of the
degenerate eigenenergy. Owing to the dressing, these energy
levels experience a shift that originates in both the red shift
of each excitonic local state and the band-narrowing effect
induced by the decay of the exciton hopping constant.

Similarly, we have shown that the influence of an exciton
that dresses the phonons is twofold. First, it induces a
shift of the frequency of each local oscillator. Then, it
provides couplings between distinct local oscillators that
specifies pathways for the phonon propagation whose nature
is intimately connected to the overlaps between the excitonic
wave functions involved in the virtual transitions that dress
the phonons. Therefore, the motion of the exciton confers the
ability of the dressed phonons to propagate over the graph
so that the corresponding normal modes are fundamentally
different from the localized normal modes associated to free
phonons. The key point is that the nature of the dressed
normal modes depends on the state occupied by the exciton
that accompanies the phonons. When the exciton lies in a
totally symmetric state, three kinds of normal modes occur.
First, the graph exhibits N − 1 normal modes that correspond
to vibrational plane waves delocalized over the periphery of
the star. Then, it supports a vibration mainly localized on
the central core and uniformly distributed over the periphery.
Finally, it shows a normal mode uniformly distributed over
the whole network that corresponds to an overall move of
the vibrations. When the exciton occupies a degenerate Bloch
state, two kinds of normal modes occur. Indeed, the graph
supports N normal modes fully delocalized over the periphery
of the star and a single mode localized only on the central core.

In all the previous situations, we have characterized the
behavior of the phonon frequencies with respect to the relevant
parameters of the model. In particular, it has been shown
that these frequencies are either red shifted or blue shifted,
depending on the nature of the dressing mechanism. Some of
them increase as the size of the graph increases whereas others
decrease with the star size.

Finally, with the objective of revisiting the concept of
dissipative quantum walk on complex networks, the present
study will serve as a starting point for investigating the
quantum decoherence that inherently affects the dynamics
of an excitonic qubit moving on a star graph. A qubit
corresponding to a superimposition between the vacuum and a
one-exciton state, the decoherence will result from the fact
that the phonons evolve differently depending on whether
the exciton is present or absent. The way the coherence
disappears is thus intimately related to the behavior of
the phonons frequencies shifts [45,46]. Therefore, its knowl-
edge will provide a clear understanding on the behavior of
the decoherence rate with respect to the model parameter in
general and with the size of the graph, in particular.
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E. de Prunelé for fruitful discussions.

APPENDIX: QUASIDEGENERATE SECOND-ORDER
PERTURBATION THEORY

The quasidegenerate PT involves a unitary transformation
U = exp(S) that yields a block-diagonal transformed Hamil-
tonian Ĥ = UHU † in the unperturbed basis |χk〉 ⊗ |{n�}〉.
The only restriction is that the desired Hamiltonian must
conserve the phonon number. To proceed, any operator O

acting in E can be split as O = OC + ONC , where OC is
the phonon conserving part whereas ONC is the phonon
nonconserving part. In that context, because VC = 0, one
seeks the anti-Hermitian generator S ≡ SNC as a phonon
nonconserving operator. It is expanded as a Taylor series as
S = S1 + S2 + . . . where Sq is the qth order correction in the
coupling V . Consequently, Ĥ becomes

Ĥ = H0 + V + [S1,H0] + [S1,V ] + [S2,H0]

+ 1
2 {S1,[S1,H0]} + . . . . (A1)

From Eq. (A1), S is derived order by order to obtain a block-
diagonal form for Ĥ at the desired order. Up to second order,
the solution is given by the equations

[H0,S1] = VNC

[H0,S2] = 1
2 [S1,V ]NC (A2)

Ĥ = H0 + 1
2 [S1,V ]C.

Because V is a linear combination of the phonon operators,
one seeks S1 = ∑N

�=0 Z(�)a
†
� − Z(�)†a� where the unknown

operator Z(�) acts in EA, only. Inserting this expression into
Eq. (A2) yields Z

(�)
kk′ = M

(�)
kk′/(εk − εk′ + 
0). The knowledge

of S1 allows us to compute the commutator [S1,V ] that is
required to derive both Ĥ and S2. This commutator is defined
as

1

2
[S1,V ] =

∑
��′

A(��′)a
†
�a

†
�′ + A(��′)†a�′a� +

∑
��′

A(��′)a
†
�a�′

+A(��′)†a†
�′a� +

∑
�

C(�), (A3)
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where C(�) = −(Z(�)†M (�) + M (�)Z(�))/2 and A(��′) =
[Z(�),M (�′)]/2. From the phonon conserving part of Eq. (A3),
Ĥ becomes

Ĥ = HA +
∑

�

C(�) +
∑
��′

(
0δ��′ + A(��′) + A(�′�)†)a†
�a�′ .

(A4)

We thus recover Eq. (8) with δHA = ∑
� C(�) and (��′) =

A(��′) + A(�′�)† whose representation in the unperturbed basis

yields Eq. (9). From the nondiagonal part of Eq. (A3), one
seeks S2 as

S2 =
∑
��′

E(��′)a
†
�a

†
�′ − E(��′)†a�′a�. (A5)

The unknown operators E(��′) acts in EA, only. Insert-
ing this expression into Eq. (A2) yields E

(��′)
kk′ = A

(��′)
kk′ /

(εk − εk′ + 2
0).
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