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Finite-size effects in the Nagel-Schreckenberg traffic model
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We examine the Nagel-Schreckenberg traffic model for a variety of maximum speeds. We show that the
low-density limit can be described as a dilute gas of vehicles with a repulsive core. At the transition to jamming,
we observe finite-size effects in a variety of quantities describing the flow and the density correlations, but only if
the maximum speed Vmax is larger than a certain value. A finite-size scaling analysis of several order parameters
shows universal behavior, with scaling exponents that depend on Vmax. The jamming transition at large Vmax can
be viewed as the nucleation of jams in a background of freely flowing vehicles. For small Vmax no such clean
separation into jammed and free vehicles is possible.
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I. INTRODUCTION

The flow of traffic represents a many-particle nonequilib-
rium problem with important practical consequences. Traffic
flow shows well-defined collective behavior where the free
flow of traffic at low density changes abruptly with growing
density to a denser phase with jams. The jams themselves
show organized motions with start-stop waves as the cars creep
forward. In addition to free-flow and jam phases, there are also
instances of synchronized flow at low velocity. Understanding
the collective dynamical behavior and controlling the jams
will give insight into effective traffic management. The flow
of traffic also gives us an example of a nonequilibrium system
with a phase transition, and it is interesting to inquire into the
cause of the transition and whether long-range correlations
appear near the transition.

Traffic behavior has been studied for decades, using a
variety of approaches, including fluid dynamics models [1],
Boltzmann equations [2], and, most recently, cellular automa-
ton (CA) approaches [3–5]. In CA models, the vehicles occupy
discrete sites and have discrete velocities, hopping from site to
site according to simple rules. Despite their simplicity, these
CA models appear to capture much of the collective behavior
observed in real traffic.

Nagel and Schreckenberg [6] introduced a relatively simple
CA model for traffic flow. The road is represented as a set of L

equally spaced sites, each of which can be occupied by at most
one of N vehicles. Vehicles have discrete velocities vn from
0 to a maximum velocity Vmax. The hopping dynamics follow
four simple rules, applied in the following sequence. First,
each car with vn < Vmax increases its velocity by one. The gap
to the next car gn = rn+1 − rn − 1 is computed, where rn is
the position of the nth car. If the car has a speed greater than
gn, it will brake to reduce its speed to gn to prevent a collision
(gap rule). Variations in driver behavior are modeled by then
lowering the speed vn → vn − 1 with a fixed probability p.
Finally, the position is updated via rn → rn + vn.

The Nagel-Schreckenberg (NS) model mimics some, but
by no means all, of the observed features of traffic flow. As the
first of a series of increasingly detailed CA traffic models, it

*balouchi.ashkan@gmail.com
†phowne@lsu.edu

has been widely studied during the past 20 years to understand
the nature of the phase transition from free flow to jams. Nagel
and Schreckenberg [6] showed that at low density d = N/L,
a free-flow state occurred where the cars all have a speed
of Vmax or Vmax − 1, with a mean speed of Vmax − p. At a
certain density, the steady state changes to a phase with a
nonzero fraction of the cars participating in a jam of slowly
moving or stopped vehicles. Nagel and Paczuski [7] showed in
a variant of the NS model, where cars with V = Vmax maintain
their velocity as a kind of cruise control, that the jam lifetime
showed a power-law distribution at the transition to the jam
phase. Lubeck et al. [8] studied the density distribution in the
NS model and suggested that the free-flow and jam phases
coexist after the transition. Chowdhury et al. [9,10] examined
the gap distribution and time-headway distribution (the time
delay between two consecutive cars passing a site) and also
concluded that there is a two-phase coexistence after the tran-
sition. Roters et al. [11] investigated the dynamical structure
factor and concluded that a continuous phase transition occurs,
but later work [12,13] suggested that the simulations were
not long enough and that the critical behavior was actually a
crossover phenomenon. Kerner et al. [14] observed evidence
of two first-order phase transitions, with an intermediate phase
of synchronized flow between the free-flow phase and the jam
phase.

Many quantities have been used to study the transition to
the jam phase. A number of them use the velocity distribution,
such as the number of stopped cars (V = 0) [15], slowly
moving cars (V � Vmax/2) [16], or cars not moving at the
speed limit (V < Vmax) [7]. Other authors have chosen the
number of vehicles forced to brake [17] or the difference
between the average velocity and the free-flow velocity [18].
All of these resemble order parameters, being nearly zero
in the free-flow phase and nonzero in the jam phase. Other
quantities have been studied that are not necessarily zero in
the free phase, but show an abrupt change at the transition,
such as the vehicle flux [6] or the change in the vehicle’s
kinetic energy per step [19,20]. A number of different traffic
correlations have also been studied, including different charac-
teristic velocities in the spatial dynamical structure factor [8],
different maxima in the velocity-position correlation [11], the
gap or time-headway distribution [10], the number of cars
moving cooperatively [21], and velocity correlations among
the cars [22].
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Despite this effort, a comprehensive picture of the transition
in the NS model is still incomplete, with different approaches
producing differing conclusions about the nature of the
transition or the presence of long-range order. In this paper
we will examine how the value of Vmax affects the transition.
We will show that, while the static structure factor shows
long-range behavior appearing at the transition for any Vmax,
we only see finite-size effects in the order parameter for
Vmax � 6. This indicates that the nature of the long-range
behavior is different at high and low values of Vmax. We
use these finite-size effects to extract the scaling behavior
at the transition for several order parameters. Our work
indicates that the onset of the jam phase can be analyzed
as a two-phase coexistence of free flow and localized jams,
as others have observed [8,10,11]. We show that the presence
or absence of long-range correlations can be attributed to a
qualitative change in the way jams nucleate at high and low
values of Vmax.

Despite the fact that the NS model misses some features
observed in actual traffic flow [23,24], it remains a useful
model to probe the nature of a nonequilibrium phase transition.
It also provides a backdrop to understand the transitions
observed in real traffic flow, which exhibits an intermediate
synchronized flow phase [14,24] in some conditions.

In Sec. II of this paper we review the details of our
simulation and the quantities we use in our analysis. Section III
presents a quantitative analytic model of the behavior of the
free-flow phase as a repulsive-core gas. Section IV contains our
analysis of the phase transition, long-range correlations, and
finite-size effects. Section V discusses how the value of Vmax

affects the fluctuations of jammed regions and how that affects
the finite-size effects we see. Our conclusions are summarized
in Sec. VI.

II. METHODOLOGY

All the simulations in this paper are done for a single lane
track with periodic boundary conditions. The track lengths
varied from 5000 to 100 000. We initially distributed the cars
uniformly around the track. The system was then evolved for
at least 106 time steps to form a random steady state, a time
step being one update of all N vehicle positions and velocities.
We then sampled the system every ten time steps for the next
107–108 time steps, the exact length depending on the system
size.

Since this is a nonequilibrium problem, we were careful to
look for nonergodic effects and sensitivity to initial conditions.
We used different random seeds to generate five to ten different
steady states for each choice of density and track length.
We also did simulations using two different random number
generators. We have seen no evidence that the choice of
initial condition or random generator affected our results,
although we have seen the need for long simulation times
(much longer than typically used) to ensure that we are
seeing the steady-state behavior. If one were to use the ending
configuration of a system at a higher density and use its ending
configuration (minus a few cars) as a starting configuration
at lower density, one would see the same results as starting
from an initially uniform distribution of cars for the lower
density. The values we show in this paper represent averages

over simulation time, initial condition, and random number
generator.

To analyze this model, we chose to study density correla-
tions using the static structure factor S(q),

S(q) = 〈|ρ(q)|2〉, ρ(q) =
L∑

r=1

e−iqrn(r),

and the pair correlation G(r),

G(r) = 1

L

∑
q

eiqr

(
S(q)

N
− 1

)
=

〈
1

N

L∑
l=1

n(l)n(l + r)

〉
,

where n(r) = 1 if there is a car at site r and zero otherwise. The
angular brackets denote an average over configurations. The
other function we examine is the nearest-neighbor distribution
P (r),

P (r) =
〈

1

N

N−1∑
n=0

δ(rn+1 − rn,r)

〉
,

where rn denotes the position of the nth car, δ( , ) denotes a
Kronecker delta, and P (r) is simply the probability that the
distance to the next car ahead is equal to r [25].

III. FREE-FLOW REGIME

In this model the only interaction between the vehicles is the
gap rule, which comes into play only when the distance to the
next car is less than or equal to Vmax. At low density d = N/L,
when the vehicle spacing is typically much larger than Vmax,
naively applying the other dynamical rules produces a steady
state with each vehicle having a speed of Vmax or Vmax − 1
with a mean speed of Vmax − p. If the vehicles have this speed
distribution, the vehicle spacing evolves as a random walk
with a diffusion constant of p(1 − p). However, this produces
a steady state where all spacings between cars are equally
likely, including spacings of less than Vmax.

Therefore, even in the dilute regime, the gap rule followed
by the random slowdown forces some cars to spend a small
fraction of the time at a speed of Vmax − 2 because the gap to
the vehicle ahead of it is Vmax − 1. This vehicle will, in the
next time step, have a gap of Vmax − 1 or larger. Thus each
car has a repulsive core that strongly favors at least Vmax − 2
empty sites ahead of it. In Fig. 1 we show a typical example.

If we assume that no cars have a gap of less than Vmax − 1,
we can find P (r) from a simple kinetic equation, as we show in
the Appendix. For r > Vmax + 2, P (r) obeys a drift-diffusion
Fokker-Planck equation in the continuum limit

∂P (r)

∂t
= α

∂P (r)

∂r
+ [p(1 − p) + α/2]

∂2P (r)

∂r2
, (1)

where α = P (Vmax). The term α/2 is the leading repulsive-
core correction to the diffusion constant. The steady-state
solution to the Eq. (1) for r > Vmax + 2 is

P (r) = P0 exp

(
− α

p(1 − p) + α/2
r

)
, (2)

where P0 is a constant determined from solving the equations
for P (Vmax + 1) and P (Vmax + 2), together with the normal-
ization condition

∑
r P (r) = 1.
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FIG. 1. Semilogarithmic plot of simulated P (r) and that cal-
culated from the Appendix for Vmax = 9 and p = 0.1 at a density
d = 0.04, about half the critical density for the jams to form.

There is a simple interpretation of the form of Eq. (2). Each
vehicle has an excluded region of size approximately equal
to Vmax ahead of it. If the typical vehicle spacing is L/N =
1/d, the effective free space between vehicles is 1/d − Vmax ≈
p(1 − p)/α + 1/2. An example of the agreement between the
simulations and this analytic model is shown in Fig. 1.

The model above assumes that no vehicles have a gap of
less than Vmax − 1. The event that first results in a gap of
Vmax − 2 requires a configuration of three cars, each separated
by a gap of Vmax − 1, with the middle car then slowing down
by the randomization rule while the last car does not. Thus we
need three-body interactions to see violations of this analytic
model.

Since three-body interactions are neglected, we expect
that the pair-correlation function G(r) in the dilute limit can
be found from the nearest-neighbor distribution P (r) via an
Ornstein-Zernicke relation

G(r) = P (r) +
r−1∑
i=1

P (i)G(r − i). (3)

Figure 2(a) shows the nearest-neighbor correlation P (r) and
the G(r) we get from the simulations in this regime. Since P (r)
is vanishingly small for r < Vmax, Eq. (3) predicts that P (r)
and G(r) are identical up to r = 2Vmax, which Fig. 2(a) shows.
The G(r) that we find from Eq. (3) is indistinguishable from
the simulations. Figure 2(b) shows the corresponding structure
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FIG. 2. (a) Simulated nearest-neighbor distribution P (r) and pair
correlation G(r) for Vmax = 9 and p = 0.1 at a density d = 0.08.
(b) Structure factor S(q) obtained from G(r) through Eq. (3) and
from simulations.

(a) (b)

FIG. 3. (a) Nearest-neighbor distribution P (r) and pair correla-
tion G(r) for Vmax = 9 and p = 0.1 for a density d = 0.088, just
above the density where jams appear. (b) Corresponding structure
factor S(q) with an upturn near q → 0.

factor S(q). The peaks in S(q) at multiples of q = 2π/Vmax

are simply the result of the repulsive core seen in G(r). We
note for future reference that S(q) shows no upturn at q → 0,
indicating there is no long-range order in the dilute regime.

IV. FINITE-SIZE EFFECTS:
LONG-RANGE CORRELATION

As the vehicle density is raised, the repulsive-core gas
description we developed above remains qualitatively correct,
with a gradual growth in the number of vehicles spaced
at shorter distances Vmax − 2,Vmax − 3, . . . . When the jams
appear, we see an abrupt change in the shape of the nearest-
neighbor distribution P (r) with the sudden appearance of
a nonzero fraction of vehicles with r = 1,2. As Fig. 3(a)
shows, the pair correlation G(r) no longer agrees with P (r)
for r � 2Vmax and the Ornstein-Zernicke relation (3) between
the two no longer holds. At the same time, Fig. 3(b) exhibits
an upturn in S(q) for q → 0, indicating the appearance of
long-range correlations in the density.

We interpret this as indicating that the free-flow phase is still
stable, but that we have nucleated a new phase of localized jams
that appear and disappear. Indeed, by examining the permanent
stability of a localized jam, Gerwinski and Krug [26] have
shown that the jams should be stable at a density greater than
or equal to (1 − p)/(1 + Vmax − 2p), which is a higher density
than where we see the onset of jams.

The upturn in S(q) for small q indicates some long-range
order, which implies that we might observe finite-size effects
in various quantities that are sensitive to the presence of that
long-range order. Figure 4 shows how the average velocity
changes with density for different values of Vmax and different
track lengths. For Vmax � 6 we observe no length dependence.
The figure also shows that once the density is well above the
transition density, the system is insensitive to both the value
of Vmax and the system size.

This size sensitivity is even more apparent in the mean flux
of vehicles, presented in Fig. 5. As in the previous figure, it
is only for Vmax � 6 that we see this size sensitivity. It also
means that in a system of smaller size, the vehicle flux is
actually higher than it is in larger systems and that the size of
the effect depends on Vmax. This behavior is the reverse of what
one would expect from hysteresis, where a large system would
get trapped in a high-flux free-flow regime while a smaller
system would not.
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FIG. 4. Dependence of the mean velocity on density for various
values of Vmax and p = 0.1, and a variety of track lengths (shown as
different colors).

Since the value of Vmax represents the number of degrees
of freedom for each car, it is not surprising that the finite-size
behavior can depend on the number of degrees of freedom, as
it does in equilibrium systems. However, we do not have any
clear evidence that there is a critical value of Vmax for which
the finite-size effects appear, but they are clearly suppressed
for Vmax � 5.

To characterize the transition, we need a quantity sensitive
to the presence of jams. We discussed in the Introduction a
variety of choices that others have used that are based on the
velocity distribution. In this study, where we focus on the
spatial distribution of the cars, we have used the gaps rather
than the vehicle speeds to characterize the jams. The gap rule,
however, produces a strong correlation between the speed of a
vehicle and the distance to the next car, so our order parameter
is closely related to these other choices.

Figure 6 shows how the probability of finding gaps of
different sizes varies with density near the transition. We see
that the probability of having a gap less than or equal to Vmax/2
changes dramatically here. Therefore, we will define the order
parameter x0 to be the fraction of vehicles with a gap less than
or equal to Vmax/2. We could have used just the vehicles with
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FIG. 5. Average flux versus density for various Vmax with p = 0.1
and track lengths (different colors) of L = 5k,10k,20k,30k,40k,50k.

FIG. 6. Probability of finding a gap of a particular size for various
densities for Vmax = 9 and p = 0.1.

a gap of zero [15], but using all of these gaps gives us more
reliable statistics.

Figure 7 shows that this order parameter x0 exhibits the
same finite-size effects, including its dependence on Vmax, that
we observed for the mean flux and velocity. These finite-size
effects observed for Vmax � 6 are most pronounced for small
systems, not large systems, unlike the hysteresis seen in an
equilibrium first-order transition.

In order to examine the long-range correlations in this
transition, we use a finite-size scaling approach [27–29].
Accordingly, we assume that the order parameter x0 near the
transition point depends on the size of the system as

x0 = L−a0f (L/ξ ), (4)

(a)

(b)

FIG. 7. Plots of the probability of having a gap less than or equal
to Vmax/2 for different track lengths and p = 0.1 for (a) Vmax = 5 and
(b) Vmax = 9.
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FIG. 8. Dynamic susceptibility χ4 for Vmax = 9, p = 0.1, and
various system sizes.

where a0 is the scaling exponent and ξ is the correlation length,
which itself depends on L via

ξ ∝ [d − dc(L)]−ν, (5)

where dc(L) is the critical density.
In most finite-size scaling studies, the transition point

itself is dependent on the system size. That effect is usually
considered as a correction to scaling [29] and dc(L) is then
considered independent of L. We found that we got much
better scaling fits by considering a length-dependent critical
density via

dc(L) = d0 + cL−b, (6)

(a)

(b)

[ ]

[ ]

FIG. 9. Scaling plots of (a) x0L
a0 and (b) χ4L

a4 versus
[d − dc(L)]Lν for Vmax = 9 and p = 0.1.

max

FIG. 10. Exponents ν and a for various values of Vmax, with
p = 0.1. The smaller error bars on Vmax = 9 result from using more
track sizes.

where d0 is the critical density for the infinite system. We
have tested [30] this approach on the three-dimensional Ising
model, which was studied by Ferrenberg and Landau [29] in
their study of finite-size scaling corrections, and we found
excellent agreement with their results.

To find the shift in the critical density, the typical ap-
proach [29] is to study a quantity like a susceptibility that
has a peak at the transition. Our order parameter has no
maximum at the transition, so we study its derivative [29]
instead. While at first thought a quantity like 〈x2

0 〉 might act
like a susceptibility, we have found that this jamming transition
is not like an equilibrium transition with large fluctuations in
the order parameter correlations before the transition. Instead,
we are seeing the nucleation of a different phase (the jams)
in a background of the free phase and the fluctuations in x0

basically track x0.
Instead, we examined the dynamic susceptibility χ4, which

was used to study glassy behavior in the NS model in the
p → 1 limit [21]

χ4 = 1

〈v2〉 − 〈v〉2

〈
1

N

N∑
i=1

N∑
j=0

(vi − v)(vj − v)

〉
, (7)

where vi is the velocity of the ith car at a particular time,
v denotes the mean speed of all the cars at that time, and χ4

measures the number of vehicles that move cooperatively [31].
As Fig. 8 shows, χ4 has finite-size effects for Vmax � 6 with
a peak as it goes through the transition. We assume that χ4

obeys a finite-size scaling form

χ4 = L−a4f (L/ξ ).

Using the peak in χ4 in Fig. 8 as the critical density, we find
for Vmax = 9 and p = 0.1 that the bulk transition occurs at
d0 = 0.081 22 ± 0.000 04 and the shift in the transition due to
the finite system size has an amplitude of c = 0.375 ± 0.006
and a scaling exponent of b = 0.54 ± 0.02.

If we instead calculate the derivative of our order parameter
x0 and use its peak to calculate the shift of the transition
point, we find d0 = 0.082 67 ± 0.000 01, c = 9.415 ± 5.278,
and b = 0.956 ± 0.065. There is no reason to expect that the
peak in the derivative of x0 should be at the same place as
the χ4 peak, so it is not surprising that the two results give
different results for the shift in the transition point.
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(a)

(b)

FIG. 11. Behavior of (a) the total structure factor S(q) and (b) the
structure factor for jammed vehicles S0(q) for small q. The data are for
Vmax = 9, p = 0.1, and L = 5000. The densities correspond to before
the transition, in the transition region, and beyond the transition.

After determining the shift in the transition, we collapse
the data onto a single curve by plotting the quantity versus
[d − dc(L)]Lν and adjust the exponents to minimize the area
bounded by the scaled data. The scaled plots of x0 and χ4 are
shown in Fig. 9. No matter which method we use to determine
the shift in the transition point, we find that x0 and χ4 produce
values for the correlation length exponent ν of 0.13 ± 0.02
and 0.14 ± 0.02, respectively. The scaling exponent for the
amplitude of x0 is a0 = 0.24 ± 0.04 and that of χ4 is a4 =
0.52 ± 0.02. We also examined the scaling behavior of several
alternative order parameters: the probability of a car having a
speed less than Vmax/2 [16], the difference between the mean
speed and that of the free-flow speed [18], and the difference
between the variance in the velocity and its value in the free-

TABLE I. Exponents ν and a0 for Vmax = 9 and various values of
p.

p ν a0

0.1 0.13 ± 0.02 0.24 ± 0.04
0.2 0.12 ± 0.02 0.26 ± 0.04
0.5 0.14 ± 0.02 0.30 ± 0.01

flow regime [30]. All of them gave results for ν and the scaling
amplitude exponent a0 that were consistent with those found
for x0.

We determined the values of ν and the scaling exponents
for the amplitude of x0 and χ4 for a range of values of Vmax

and p. The values of the exponents for different values of Vmax

and p = 0.1 are shown in Fig. 10. The scaling behaviors of
χ4 and x0 both yielded values for ν that were statistically the
same for Vmax > 7. For Vmax = 6 and Vmax = 7, the finite-size
dependence was so weak that we could not get reliable values
for the scaling amplitude of x0 and we were only able to extract
a value for ν from χ4.

While these data do not imply a sharp change in the scaling
behavior for Vmax = 6, they do indicate that the finite-size
effects for Vmax > 7 are completely different than for Vmax �
6, which is already apparent in Figs. 4 and 5. Figure 10
clearly shows that the exponent ν appears to vanish or take
on unphysical negative values for Vmax = 5 and 6, indicating
that the long-range correlations are absent below Vmax = 7.

Table I shows the scaling exponents for Vmax = 9 and three
values of p and we see no significant variation of ν or a0

with p. The results agree with our expectation that we do
not observe any variation of the exponents for 0 < p < 1,
since the value of p controls the amount of stochastic behavior
and the rate the system evolves through its configurations.
Of course, in the special limits p → 0 [19] and p → 1 [21],
glassy irreversible behavior is observed instead.

V. GROWTH OF THE JAMS

As we noted earlier in Fig. 3, the finite-size effects that
appear at the transition are accompanied by an upturn in the
structure factor S(q) for small q. It is therefore tempting to see
whether the upturn in S(q) merely reflects long-range spatial
correlations in x0. We therefore define a local density n0(r),

(a) (b)

FIG. 12. Behavior of S(q = 2π/L) and S0(q = 2π/L) for L = 10 000 and (a) Vmax = 9 and (b) Vmax = 5, both with p = 0.1.
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FIG. 13. Time evolution of the number of cars in jam N0 for a
track of length 5000 for Vmax = 9 (left) and Vmax = 5 (right) and
p = 0.1.

which is 1 if a vehicle is at site r and the gap to the next
car ahead is less than Vmax/2. The extensive quantity N0 =∑

r n0(r) ≡ x0N provides a measure of the number of cars
participating in a jam.

A. Spatial correlations of jams

To study the spatial correlations in n0(r), we examine the
static structure factor

S0(q) = 〈|ρ0(q)|2〉, ρ0(q) =
∑

r

n0(r)e−iqr .

In Fig. 11 we show the magnitude of S(q) and S0(q) at small
values of q for several densities spanning the transition to
jamming for Vmax = 9 and p = 0.1. We see that most of the
upturn in S(q) for small q in the transition to jamming comes
from correlations in n0(r) of order less than 100 lattice spacings
or so. The behavior for Vmax = 5 is similar, except that the
width of the peak in S0(q) [and S(q)] is much wider, indicating
that the jammed regions are significantly smaller at low Vmax.
This behavior is also visible in Fig. 12, where we display
the variation of S(q) and S0(q) with density for the longest
wavelength q = 2π/L in our simulation. The behavior for
Vmax = 5, shown in Fig. 12(b), is very similar to that seen
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FIG. 15. Histogram of 
0/N for the simulations show in Fig. 13.

for Vmax = 9, so we can conclude that the upturn in S(q) in
the transition region is due to long-range correlations in n0(r).
This is surprising, since we did not see finite-size effects for
Vmax = 5. We will see in the next section that it is the dynamics
and statistics of the jams that are different for the two situations.

B. Jam dynamics

To explore the difference between the low-Vmax and high-
Vmax behavior, we looked at the time evolution of the system
at the transition area. Figure 13 shows how N0(t) behaves for
different densities for Vmax = 9 and Vmax = 5. The densities
shown are chosen so that the system is initially in the pure
free-flow phase, then early in the transition region near the
peak flux from Fig. 5, then late in the transition region, and
finally in the jam phase. In the free-flow phase, we see isolated
fluctuations into the jam phase very rarely for Vmax = 9,
while these fluctuations are more frequent in the Vmax = 5
simulations. In the transition region close to the peak in the flux
shown in Fig. 5, the Vmax = 9 simulations still show isolated
bursts of appearance of the jam phase, while for Vmax = 5 the
number of jammed vehicles is fluctuating but always nonzero.

Since our order parameter x0 for small Vmax might be
showing this behavior is due to an inability to cleanly separate
freely flowing vehicles from jammed vehicles, we also use an
order parameter that examines second neighbor correlations.
Instead of just asking that the distance to the car ahead be less

(a) (b)

FIG. 14. Fraction of time that the two order parameters N0 and 
0 are nonzero for different densities for (a) Vmax = 5 and (b) Vmax = 9.

052302-7



ASHKAN BALOUCHI AND DANA A. BROWNE PHYSICAL REVIEW E 93, 052302 (2016)

L=30k 

L=10k 

L=5k 

L=10k 

L=30k 

0.00 0.06 0.12 0.00 
Time 0/N 

P
ro

ba
bi

lit
y 

0.0 

0.2 

0.0 

0.2 

0.0 

0.6 

  0 

150 

  0 

150 

  0 

150 

N
um

be
r o

f C
ar

s 
in

 J
am

: 
0

L=5k 

5×104 1×105

FIG. 16. Time evolution and histogram of 
0/N for systems with
the same density d = 0.084 and different lengths.

than Vmax/2, we consider three cars in succession located at
rn, rn+1, and rn+2 and require each pair of cars to be spaced by
less than Vmax/2:

φ(r)

=
{

1 for rn =r, |rn+1−rn|<Vmax/2, |rn+2−rn+1|<Vmax/2
0 otherwise.

The total number of cars with this condition is 
0 = ∑
r φ(r).

We show in Fig. 14 the fraction of time the two order
parameters are nonzero for Vmax = 5 and Vmax = 9. For Vmax =
5 both order parameters are always nonzero after d = 0.115,
but that is actually a density before the peak flux in Fig. 5 occurs
for Vmax = 5, so the two order parameters become identical
before the transition to jams occurs. For Vmax = 9, the two
order parameters coincide and the transition from nearly zero
to unity is the density range where we see finite-size effects. So
improving our definition of a jammed vehicle does not change
the conclusion that the nucleation of the jams for Vmax � 6 is
qualitatively different from those for Vmax � 7.

The difference in behavior for different Vmax is also clearly
visible in histograms of the fraction of the cars in a jam 
0/N .
Figure 15 shows the histograms for the same simulations
shown in Fig. 13. The peak at 
0/N = 0 is the vehicles in
the free-flow phase. While the distributions for the free-flow

regime at low density and the jammed regime are similar for
both values of Vmax, they are clearly different in the transition
regime. For Vmax = 9 the jam phase appears as a distinct
phase in the transition region, while for Vmax = 5 this does
not happen, with the distribution of jammed cars growing
smoothly out of the free-flow phase.

Figure 16 shows how the length of the track affects itself
in the time evolution 
0 and in the distribution of 
0. The
density in all of the plots is the same, but the histogram and
the time evolution for the shortest track are characteristic of the
free-flow phase regime. For the intermediate track length, the
behavior is that of two-phase coexistence. The longest track
length data show it to be in the jam phase. Therefore, we see
that shorter track lengths inhibit the transition to jamming and
thus we expect to see finite-size effects.

The transition region at high Vmax can thus be thought of
as a coexistence of cars condensed into jams and cars flowing
freely. The appearance of a single localized jam will reduce the
density of freely flowing cars elsewhere and this effect is more
significant for shorter tracks. Since the probability of creating
a jammed region drops as the density of freely flowing cars
goes down, the appearance of one jam inhibits the appearance
of an additional one, stabilizing the dilute gas of jams.

This picture favors a fewer large jams rather many small
jams. Figure 17 shows a histogram of the number of jams
for Vmax = 9 at a density d = 0.084 and also the distribution
of jam lengths. The distribution is not Poissonian, as we
would expect for independent events. Instead, we see a marked
tendency for one or two large jams, with the probability of three
or more jams greatly reduced. We find that the jam would be of
order 50 sites in length, in agreement with the width of S0(q)
for small q seen in Fig. 11.

For low Vmax, the system does not break easily into tightly
packed jams and a lower density of freely flowing cars. The
nucleation of one jam does not depress the density of freely
flowing cars sufficiently to inhibit the formation of subsequent
jams. As a result, the low-Vmax system does not have a clear
transition region where isolated jams appear and it is the
isolated jams that are responsible for the finite-size effects
we see at higher Vmax. This is clearly seen in the distribution
of the number of jams and jam lengths shown in Fig. 18. The
simulations were done at a density close to the peak flux for
Vmax = 5. The jams are smaller and more frequent than in the
Vmax = 9 data of Fig. 17.

(a) (b)

FIG. 17. Statistics for 200 000 samples in a system of size L = 10 000 for Vmax = 9, p = 0.1, and d = 0.084: (a) distribution of the number
of jams and (b) distribution of jam lengths.

052302-8



FINITE-SIZE EFFECTS IN THE NAGEL- . . . PHYSICAL REVIEW E 93, 052302 (2016)

(a) (b)

FIG. 18. Statistics for 200 000 samples in a system of size L = 10 000 for Vmax = 5, p = 0.1, and d = 0.142: (a) distribution of number of
jams and (b) distribution of jam lengths.

Once the nucleation of one jam does not significantly inhibit
the formation of a second one, we have reached the heavily
jammed region and the finite-size effects that appear at high
Vmax disappear. The mean velocity and flux then follow the
relations shown in Figs. 4 and 5 that are insensitive to the
value of Vmax.

C. Coexistence at the transition

This picture of a few localized jams condensing out of the
free-flow phase allows us to make a quantitative description
of the finite-size effects in the large-Vmax simulations. If we
assume that the jams consist of cars traveling as fast as the gap

(a)

(b)

FIG. 19. (a) Calculated and (b) simulated average velocity for
different track lengths versus density of cars for Vmax = 9 and
p = 0.1.

rule would allow, then their mean speed would be

VJ =
∑

i<Vmax/2

(i − 1)P (i) (8)

and the fraction of the track occupied by the jams is

LJ = N
∑

i<Vmax/2

iP (i). (9)

Since N0 is the number of cars in a jam, then the density of
free cars is changed to

deff = N − N0

L − LJ
. (10)

We then expect that the mean velocity of the mixture would be

Vtot = N0

N
VJ +

(
1 − N0

N

)
VF(deff), (11)

where VF(deff) is the flow velocity in the free-flow phase taken
from the average velocity plot (Fig. 4) at an effective density
deff given by Eq. (10). We evaluate Eqs. (8) and (9) and VF(deff)
directly from our simulations to find Vtot. Figure 19 shows
the result of this for several track lengths. The agreement
with the simulations is excellent in the transition region and
underestimates the mean velocity at higher density where this
simple picture of two-phase coexistence breaks down.

VI. CONCLUSION

We have shown that the interactions in the NS model for a
dilute gas of vehicles can be described as weakly interacting
except for a repulsive interaction of range approximately equal
to Vmax. The gap distribution can be found from solving
the kinetic equations keeping only these pair interactions.
Spatial correlations among cars further apart can be described
quantitatively through an Ornstein-Zernicke relation.

As the density is raised to the point where jams form, we
see that the nearest-neighbor interactions fail to describe the
density correlations. The jam formation results in a peak in
the gap distribution P (r) for small r arising from jammed
vehicles. At the same time, the structure factor S(q) shows a
significant upturn for small q, indicating the onset of long-
range correlations. These new correlations are not the result of
including just second or third neighbor correlations.
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Several authors [8,10,11] have noticed that the transition to
jams can be described as the nucleation of isolated jams in a
background of freely flowing cars. Our work shows that the
characteristics of the transition depend on the value of Vmax.
In this regard, Vmax plays the role of the number of degrees
of freedom (possible velocities) for each object, much like the
role of the number of components of a spin variable in an
equilibrium system.

Systems with Vmax � 6 show a transition with an inter-
mediate phase that exhibits significant finite-size effects. We
attribute these effects to the existence of large isolated jams
that coexist with the free-flow phase in this intermediate
regime. These large jams act to segregate vehicles and keep
the free-flow phase stable. The finite-size scaling analysis
shows that these long-range correlations appear to be universal,
with scaling exponents that depend on Vmax. We are able to
quantitatively fit the overshoot seen in the vehicle flux in a
finite-size system by accounting for the segregation of the
vehicles into jams. While our choice for an order parameter
was convenient in terms of getting good statistics, we have
shown that other order parameters that have been used also
show these finite-size effects.

For Vmax � 6 we are unable to separate the vehicles into
two phases and finite-size effects in the transition region are
either absent or extremely small. However, both high and low
values of Vmax show an upturn in the structure factor, indicating
that the regions of large correlated motion, even if they cannot
be cleanly defined as jams, are responsible for the long-range
correlations in S(q).

Since we see a smooth growth of the order parameter
with density, a peak in the susceptibility χ4 and long-range
correlations in the density, we would characterize the transition
to jamming as a second-order transition. However, unlike an
equilibrium second-order transition, the finite-size effects arise
not from long-range correlations but rather because the jam
formation lowers the density and delays the onset to multiple
jams.

APPENDIX: KINETIC MODEL FOR DILUTE TRAFFIC

In the dilute limit, the interaction between cars produced
by the gap rule only applies to a pair of vehicles at a time and
simultaneous interactions among a triple of adjacent vehicles
are rare. We define a distribution function f (v,g) as the
probability that a car has a velocity v and the gap to the vehicle
ahead is g.

From this distribution we can calculate the velocity distri-
bution Pv(v) as

Pv(v) =
L−1∑
g=0

f (v,g). (A1)

We can also calculate the distribution of gaps �(g) via

�(g) =
Vmax∑
v=0

f (v,g), (A2)

from which we can find the nearest-neighbor distribution P (r)
from the relation P (r) = �(r − 1).

Each of the four rules of the NS model alters the form
of f (v,g). We find it simplest to examine f (v,g) right after
the velocity updates and before the position update. This is
tantamount to assigning the position update as the first step
instead of the last.

The position update rule produces an altered distribution
f̂ (v,g) via

f̂ (v,g) =
m∑

u=0

Pv(u)f (v,g + v − u)t , (A3)

where for convenience we have denoted Vmax by m, since it
will appear frequently in this section. Since we are ignoring
triple correlations, the speed distribution of the vehicle ahead
is Pv(v) from Eq. (A1). The velocity update rules then alter
the f̂ (v,g) distribution. For gaps greater than or equal to Vmax

the rules yield

f (m,g) = (1 − p)[f̂ (m,g) + f̂ (m − 1,g)],

f (m − 1,g) = p[f̂ (m,g) + f̂ (m − 1,g)]

+ (1 − p)f̂ (m − 2,g),

f (v,g) = pf̂ (v,g) + (1 − p)f̂ (v − 1,g),

v = 1, . . . ,m − 2

f (0,g) = pf̂ (0,g), (A4)

while for gaps smaller than Vmax we have

f (v,g)t+1 = 0, v = g + 1, . . . ,m

f (g,g)t+1 = (1 − p)

⎡
⎣ m∑

u=g−1

f̂ (u,g)

⎤
⎦,

f (g − 1,g)t+1 = p

⎡
⎣ m∑

u=g−1

f̂ (u,g)

⎤
⎦ + (1 − p)f̂ (g − 2,g),

f (v,g)t+1 = pf̂ (v,g) + (1 − p)f̂ (v − 1,g),

v = 1, . . . ,g − 2

f (0,g)t+1 = pf̂ (0,g). (A5)

Our simulations show that the three velocity update steps for
dilute traffic rapidly create a local equilibrium in the velocity
distribution where the vehicle is moving at the highest speed it
can with probability 1 − p or at the next to highest speed with
probability p. For g � m, the highest speed is Vmax and so the
distribution is

f (v,g) =
⎧⎨
⎩

(1 − p)�(g) for v = m

p�(g) for v = m − 1
0 for v = 0, . . . ,m − 2,

(A6)

while for gaps less than Vmax we have

f (v,g) =

⎧⎪⎨
⎪⎩

0 for v = g + 1, . . . ,m

(1 − p)�(g) for v = g

p�(g) for v = g − 1
0 for v = 0, . . . ,g − 2.

(A7)

Deviations from this distribution relax exponentially as pn

after n steps.
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FIG. 20. Plots of the simulations and Eq. (A12) for V = 9 and p = 0.1 at a density of 0.02 on (a) a regular scale and (b) a semilogarithmic
scale.

The leading-order correction that arises from the gap rule
occurs when a faster vehicle catches up to a slower vehicle
so that the gap between them is Vmax − 1. The gap rule then
limits the speed of the car behind to Vmax − 1, causing it to
spend a fraction of its time at a speed of Vmax − 2. The fraction
of vehicles that do that is Pv(Vmax − 2) = p�(Vmax − 1).

The speed distribution from Eq. (A1) is then

Pv(m − 2) = αp,

Pv(m − 1) = (1 − α)p + α(1 − p), (A8)

Pv(m) = (1 − α)(1 − p),

where α = �(m − 1) is the fraction of cars with a gap of
Vmax − 1. Putting this speed distribution into Eq. (A3) with the
assumed distribution for f (v,g) given by Eqs. (A6) and (A7),
we can produce an evolution equation for the gap distribution
of the form

�(g)t+1 =
∑
g′

(g′ → g)�(g′)t .

We find for g � m + 2 that

�(g)t+1 − �(g)t = A[�(g − 1)t − �(g)t ]

+B[�(g + 1)t − �(g)t ]

+C[�(g + 2)t − �(g)t ]

≡ 
[�(g)], (A9)

where A = p′(1 − α), B = p′ + α(1 − 3p′), and C = αp′,
with p′ = p(1 − p). The evolution equations for smaller gaps
are then

�(m + 1)t+1 − �(m + 1)t

= 
[�(m + 1)] + A�(m − 1)t ,

�(m)t+1 − �(m)t

= 
[�(m)] + [1 − 3p′ + α(1 − 2p′)]�(m − 1)t ,

�(m − 1)t+1 = α. (A10)

In the continuum limit and for g > m + 1, Eq. (A9) becomes
a drift-diffusion Fokker-Plank equation of the form

∂�

∂t
= α

∂�

∂g
+ [p(1 − p) + α/2]

∂2�

∂g2
, (A11)

for which the steady-state solution is of the form

�(g) ∝ exp

(
− α

p(1 − p) + α/2
g

)
. (A12)

If we solve Eqs. (A9) and (A10) and compare them to
our simulations, we see from Fig. 20 that the agreement is
excellent except near the peak of the distribution. Since both

FIG. 21. Comparison of the simulations and the analytic prediction at a higher density of 0.09 for Vmax = 9 and p = 0.1.
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distributions are normalized, the error at the peak results in
slightly different slopes for large g. At higher densities, the
agreement is not as good. Figure 21 shows that the analytic

description predicts the position of the peak at g = Vmax, but
the presence of the second jam phase in the simulations alters
the distribution.
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