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Complete synchronization equivalence in asynchronous and delayed coupled maps
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Coupled map lattices are paradigmatic models of many collective phenomena. However, quite different patterns
can emerge depending on the updating scheme. While in early versions, maps were updated synchronously, there
has been in recent years a concern to consider more realistic updating schemes where elements do not change
all at once. Asynchronous updating schemes and the inclusion of time delays are seen as more realistic than the
traditional parallel dynamics, and, in diverse works, either one or the other has been implemented separately.
But are they actually distinct cases? For coupled map lattices with adjustable range of interactions, we prove,
using both numerical and analytical tools, that an adequate delayed dynamics leads to the same completely
synchronized states as an asynchronous update, providing a unified framework to identify the stability conditions
for complete synchronization.
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I. INTRODUCTION

An emblematic example of the spatiotemporal collective
properties that can arise in “complex systems” is provided by
the phenomenon of synchronization. Such emergent behavior
can be found in many real world systems, e.g., laser arrays,
pacemaker heart cells, circadian rhythms, flashing fireflies,
among many others [1–3]. Simple models that capture the
essential features of the synchronization phenomenon [4]
are coupled map lattices (CMLs). Moreover, they are useful
to model systems of scientific and technological interest
as diverse as Josephson junction arrays, multimode lasers,
vortex dynamics, and even evolutionary biology [1] and also
constitute good prototypes to investigate control of chaos.

Traditionally, when studying emergent patterns in CMLs,
the updating of the constituent units is made synchronously
(parallel updating), but meanwhile the elements in real arrays
are not perfectly synchronous. This issue is particularly
important, for example, in biological neural networks [5],
but, more generally, when modeling real systems in diverse
contexts, it seems more adequate to take into account some
kind of asynchronicity. This choice is crucial, with important
consequences on the final collective states [6–10]. For instance,
asynchronous updating may open windows in parameter space
where synchronization becomes allowed [7] and may induce
regularity in coupled systems in contrast to a synchronous
updating [6,11,12]. Alternatively, the introduction of time
delays, to account for finite delays in information transmission
between units [13–16], also has a noticeable impact on
the collective patterns; e.g., although synchronization is still
possible, chaos is suppressed [13].

Another realistic ingredient in modeling extended systems,
within the spatial domain, is the coupling range. As a matter
of fact, the range of the interactions plays a crucial role in the
determination of the emergent patterns in any extended system
[14,17–23]. Insofar as the range of the interactions can affect
the propagation of information, it is important to explore its
interplay with the updating scheme.
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Asynchronous updating and time-delayed interactions
seem natural choices for a realistic modeling of coupled
systems, but the correspondence between both descriptions
has not been investigated yet. In this work, we demonstrate,
through numerical and analytical tools, that the complete
synchronization of a CML with asynchronous updating can
be emulated by a delayed dynamics. Additionally, through the
range of the interactions, we will show the interplay of the
temporal and spatial dimensions. We will derive analytical
conditions for complete synchronization valid for a large class
of CMLs and local dynamics.

II. THE MODEL

We consider an array of N elements with periodic boundary
conditions. The coupled elements evolve according to the
mapping

xi �→ (1 − ε)f (xi) + ε

N ′∑
r=1

A(r)[f (xi−r ) + f (xi+r )] (1)

for i = 1, . . . ,N , where xi describes the state of element i,
whose local dynamics is governed by the chaotic map x →
f (x). This is a fully connected array where elements interact,
through a coupling also given by f (x), with intensity A(r),
where r is the integer inter-element distance over the ring.
Parameter ε (0 � ε � 1) governs the balance between global
and local influences.

In numerical examples, we will consider A(r) = r−α/η,
where α ∈ [0,∞) determines the range of the interactions,
and η(α) = 2

∑N ′
r=1 r−α is a normalization factor, where N ′ =

(N − 1)/2 for odd N . This coupling scheme allows us to
scan continuously from global (α = 0) to nearest-neighbor
(α → ∞) interactions. Additionally, in numerical simulations,
we will use, as paradigmatic example, the logistic map x →
f (x) = 4x(1 − x). However, the analytical expressions that
we will derive are valid for generic A(r) and chaotic unimodal
maps x → f (x).

In the usual synchronous evolution, all the N new states
(at discrete time t) are computed in parallel from the N

previous values (at time t − 1), that is, all the sites are updated
simultaneously. Alternatively, we will also investigate the
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asynchronous (i.e., random sequential) evolution, where the
updates are not simultaneous. Finally, we will consider also
time-delayed evolutions of the array by introducing random or
fixed delays in Eq. (1).

III. RESULTS

We performed numerical simulations of the CML defined
by Eq. (1), using the different evolution protocols, starting from
random initial conditions. The patterns that emerge through
each updating will be compared, as a function of the coupling
strength ε and the range of the interactions ruled by α.

We monitor the collective behavior by means of the
instantaneous mean field h defined as [13,23]

ht = 1

N

N∑
i=1

xi
t (2)

and use the time average, 〈σ 〉, of its instantaneous standard
deviation

σt =
√√√√ 1

N

N∑
i=1

(
xi

t − ht

)2
(3)

to measure the degree of synchronization. When 〈σ 〉 = 0, it
means that the system is completely synchronized (CS), i.e,
x1 = x2 = · · · xN = x�, where x� can evolve in a chaotic or in
a regular trajectory. Another relevant parameter, which allows
to characterize the chaoticity of a dynamical system, is the
largest Lyapunov exponent λmax [24]. If λmax is positive, the
system displays a chaotic behavior, while if it is negative,
the dynamics is in a regular regime. We compute λmax using
the Benettin algorithm [25].

We will show below the results for each updating scheme.

A. Synchronous updating

We first review, as a reference that will be useful later, the
well-known case where all the maps are updated at once, in
which case Eq. (1) reads

xi
t = (1 − ε)f

(
xi

t−1

) + ε

N ′∑
r=1

A(r)
[
f

(
xi−r

t−1

) + f
(
xi+r

t−1

)]
. (4)

In a CS state, the mapping (4) becomes x�
t = f (x�

t−1), for all i,
that is, the nonlocal influences vanish, and each map evolves
with the uncoupled local chaotic dynamics. However, the array
parameters ε and α participate in determining the stability of
the CS state.

The domain of CS can be obtained analytically as follows
(see, for instance, Refs. [18,23]). Linearizing Eq. (4) around
the CS state (where all maps are in a state x�

t at time t), one
gets the map of small displacements δxt+1 = Ft δxt , where Ft

is the N × N matrix

Ft = [(1 − ε)1 + εA]f ′(x�
t ) (5)

with Aij = (1 − δij )A(rij ), being rij = mink|i − j + kN |.
Moreover, recall that the Lyapunov exponent of the uncou-
pled map is eλu = limt→∞

∏t−1
n=0 |f ′(x�

n)|1/t , computed over a
chaotic trajectory. Therefore, the chaotic synchronized state is
stable, if the eigenvalues of the matrix eλu [(1 − ε)1 + εA],
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FIG. 1. Asynchronous updating. Phase diagrams, in the param-
eter plane ε − α, showing 〈σ 〉 (a) and λmax (b) in color scale. The
black solid lines correspond to the theoretical prediction given by
Eq. (7). The dashed line, which delimits the region of chaotic CS in
the synchronous case A, is given by Eq. (6). In all cases the array
size is N = 1000. For each value of ε, we used 100 time steps, after
t = 104 has elapsed, over a typical trajectory, starting from random
initial configurations where each xi is random in [0,1], to compute
〈σ 〉 and λmax.

related to transverse eigenvectors, are smaller than one in
absolute value. This means

−1 � eλu [1 − ε(1 − ak)] � 1, for all k < N, (6)

where ak = ∑N ′
m=1 A(m) cos(2πkm/N ), for 1 � k � N are

the eigenvalues of A, which can be obtained by Fourier
diagonalization [18]. The domain of chaotic synchronization
defined by the double inequality (6) is the region in the
plane ε-α below the dashed line in Fig. 1(a). This region
agrees perfectly with the region where 〈σ 〉 = 0 in numerical
simulations (not shown). In this domain λmax takes the positive
value of the chaotic uncoupled map (i.e., λmax = λu = ln 2
in our case), because the maps in the array follow the local
dynamics. The critical strength εc increases with α, hence,
the synchronization interval shrinks and collapses at α 	 0.8.
Therefore, overly short-range interactions are not able to fully
synchronize the system [7,18].

B. Asynchronous updating

In this case, we proceed as follows:
(i) An element of the array is selected at random.
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(ii) Its state is updated according to Eq. (1), using the most
recent state of the array.

(iii) After N iterations (updates), the discrete time is
increased in one unit.

We performed numerical simulations of the asynchronous
dynamics defined above, for arrays of size N (essentially the
same results are observed for sizes N � 200) and different
values of the parameters. The effect of the interaction range
parameter α is depicted continuously in the phase diagrams
that show 〈σ 〉 [Fig. 1(a)] and λmax [Fig. 1(b)], on the plane
(ε,α). The CS domain (white region) is enhanced with respect
to the synchronous case (below dashed curve), for α > 0.
When α increases, a window of CS, εc < ε < ε′

c, persists for
any α in the asynchronous case. While εc remains constant, ε′

c

diminishes with α, above α = 2, but a window of CS survives
even in the limit α → ∞, in accord with results previously
reported for nearest-neighbor interactions [7].

The bifurcation diagrams of ht , as well as 〈σ 〉 and λmax,
versus the coupling strength ε are shown in Fig. 2, in the
extreme cases α → ∞ (a) and α = 0 (b). First, we notice
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FIG. 2. Asynchronous updating. Cuts of the phase diagrams in
Fig. 1, at α = ∞ (a) and α = 0 (b), showing 〈σ 〉 (red solid line), λmax

(blue dash-dot line), and the order parameter ht (light-gray dots), all
vs the coupling ε. The green dashed line, in (a) and (b), corresponds
to the fixed point at ht = 3/4, plotted as a reference.

that even in the case of nearest neighbors (α → ∞), CS can
emerge (pointed by intervals of ε where 〈σ 〉 = 0). But, in those
regions, the negative λmax indicates that, differently from the
synchronous case, CS is nonchaotic. In fact, synchronization
occurs at x� = 3/4, which corresponds to a fixed point of the
logistic map, as evinced by the plot of ht . Chaos is suppressed
in all the CS domain such that the collective state of the system
is always the spatially homogeneous one given by x� = 3/4.
This is the unstable fixed point of the individual map, which
gained stability in the coupled system [12].

We can derive the critical values of ε, under the asyn-
chronous updating, by analyzing first the stability of the fixed
point under a synchronous dynamics. In the latter case, the
stability condition of a CS solution at a fixed point can be
obtained analytically from the eigenvalues φk , k = 1, . . . ,N

of the matrix F defined in Eq. (5). Differently from case
A, in the fixed point x� = 3/4 where f ′(x�) = −2, F is
time independent. For stability, we must ask that |φk| � 1
for k = 1, . . . ,N − 1. Therefore the condition for transverse
stability is the same given by Eq. (6). However, this stability
is transversal, while, in case A, x� = 3/4 is unstable along
the synchronization subspace, therefore the dynamics becomes
chaotic, as seen in the previous subsection. In the asynchronous
case, the scenario is rather different, as shown in Fig. 1, and
can be heuristically understood as follows [11]. Near the lower
frontier εc, where the eigenvalues are close to −1, and therefore
the individual deviations from the fixed point change sign at
each iteration, the nonlocal contribution is expected to cancel
out. Therefore, the stability condition that the eigenvalues must
fulfill becomes −1 � −2(1 − ε), implying εc = 1/2 for all α.
Differently, in the upper frontier ε′

c, such cancellation does not
take place, then the inequality (6) for ε′

c in the synchronous
case must still hold. Therefore,

1/2 = εc � ε � ε′
c = 3/[2(1 − min[{ak}])], (7)

which is in excellent accord with numerical outcomes, as can
be seen in Fig. 1(a).

C. Delayed dynamics

Now we consider the following time-delayed CML

xi
t+1 = (1 − ε)f

(
xi

t

) + ε

N ′∑
r=1

A(r)
[
f

(
xi−r

t−τi,i−r

) + f
(
xi+r

t−τi,i+r

)]
,

(8)

where the whole number τi,j is the delay of element i in
response to element j . The updating of the set of maps is
performed simultaneously.

We analyzed different distributions of delays, where τij

can be fixed or randomly chosen at each time t with a given
probability distribution. We report below the cases that we
found better match with the asynchronous case B.

First, we consider a binary distribution where τ can take
solely the values 1 and 0, with probabilities p and 1 − p,
respectively. Hence p = 0 recovers the synchronous case A,
while p = 1 corresponds to a dynamics with fixed delay τ = 1.

Phase diagrams of 〈σ 〉 for values of p ≈ 0.5 are shown in
Fig. 3. For 0 � α � 1 the portraits shown in Figs. 1(a) and 3(b)
(p = 0.5) are equivalent, in the sense that the intervals of ε for
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JUAN CARLOS GONZÁLEZ-AVELLA AND CELIA ANTENEODO PHYSICAL REVIEW E 93, 052230 (2016)

∞

0. .00.2 0.4 0.6 0.8
0.0

1.0

2.0

3.0

α

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

∞

0. .00.2 0.4 0.6 0.8
0.0

1.0

2.0

3.0

α

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

∞

0. 10 .00.2 0.4 0.6 0.8
0.0

1.0

2.0

3.0

α

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

(a) 

(b) 

(c)

FIG. 3. Time-delayed dynamics. Phase diagrams, in the parame-
ter plane ε-α, showing 〈σ 〉 in color scale, for the binary distribution
(τ = 1,0, with probabilities p, 1 − p), with p = 0.45 (a), p = 0.5
(b), and p = 0.55 (c). White regions indicate CS states, where
〈σ 〉 = 0.

nonchaotic CS are coincident. In fact, the case that better ap-
proaches the asynchronous updating scenario B is provided by
p = 0.5 (see Fig. 3), which yields the largest domain of CS in
the plane ε-α. Furthermore, like in case B, the chaotic dynam-
ics is suppressed with CS occurring at x� = 3/4. However, for
α > 1, differently to the asynchronous case where εc remains
constant [Fig. 1(a)], now εc increases with α [Fig. 3(b)]. As a
consequence, the CS domain shrinks and collapses at α 	 3.
Then, for α � 3, CS never occurs in the binary delayed case.
That is, the equivalence of CS domains for the delayed and
asynchronous dynamics fails for short-range couplings.

In fact, while long-range couplings favor homogenization,
through spatial averaging, short-range couplings promote the
formation of spatial domains of synchronized and nonsynchro-
nized regions. These spatial patterns are persistent, hindering
CS. Some sort of temporal average might compensate the
lack of spatial homogenization, through the interplay between
temporal and spatial dimensions. However, binary delays do
not perform well that task when short-range interactions are
involved. We also tested other (nonbinary) distributions of
discrete delays, without finding improvements in the sense of
mimicking the asynchronous dynamics.

If the asynchronous updating can be thought as a sort of
delayed dynamics, as far as a distribution of noninteger delays
is behind, integer values of τij fail in providing equivalence of
CS when the range of the interactions is too short. A question
is whether that in-equivalence arises due to the discrete nature
of time delays. Since the states are accessible at discrete times
only, a way to emulate continuous time delays in the real
interval [0,1] is by interpolation between the states at τ = 0 and
τ = 1, as if the trajectory were continuous by parts. Namely,
we consider the intermediate state

x̂t = βxt−1 + (1 − β)xt−0, (9)

where β controls the interpolation point and can take fixed or
distributed values. We introduced this prescription into Eq. (8),
which becomes

xi
t+1 = (1 − ε)f

(
xi

t

) + ε

N ′∑
r=1

A(r)
[
f

(
x̂i−r

t

) + f
(
x̂i+r

t

)]
.

(10)

We observed that when β is uniformly distributed in [0,1],
then, the critical frontier is closer to the asynchronous one than
in the case of binary delays (not shown), but the similarity
is enhanced when the distribution concentrates around the
middle point and the coincidence is perfect when β = 1/2,
as depicted in Fig. 4, where we consider different values of
β 	 0.5. We remark that outside the CS domain, differential
features emerge, as can be seen by comparing the color maps
in Figs. 1(a) and 4(b), with more complex structures in the
delayed system. That is, the equivalence holds only for the CS
domain when β = 0.5.

The CS frontier for the system described by Eq. (10) can
be analytically determined as follows. First, we cast the CML
(10) in Markovian form by the usual procedure of extending
the phase space, such that δx̃t = (δxt ,δxt−1).

As a consequence, the matrix F̃ which rules the linearized
evolution around the fixed point, δx̃t = F̃δx̃t−1, is the block
matrix

F̃ =
(

[(1 − ε)1 + (1 − β)εA]f ′ βεAf ′
1 0

)
, (11)

where f ′ ≡ f ′(x∗) = f ′(3/4) = −2. By setting F̃(u,v)t =
λ(u,v)t , and substituting Eq. (11), it can be easily shown
that the eigenvalues λ of the block matrix are related to the
eigenvalues of A, through the characteristic equation

λ2 + 2λ[1 − ε + ε(1 − β)ak] + 2βεak. (12)
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FIG. 4. Time-delayed dynamics. Phase diagrams, in the param-
eter plane ε-α, showing 〈σ 〉 in color scale for different values of
β of the pseudocontinuous dynamics [x̂t = βxt−1 + (1 − β)xt−0]:
β = 0.45 (a), β = 0.5 (b), and β = 0.55 (c). White regions indicate
CS states, where 〈σ 〉 = 0. The thick lines were obtained analytically
through the stability condition |λ| � 1, where λ are the eigenvalues
of F̃ defined by Eq. (11), as explained in the text. They delimit the
region where the CS state is a fixed point (x� = 3/4, subdomain “I”).
While the subdomain “II” corresponds to regular CS states of period
larger than 1.

(Notice that, since this is a second order polynomial, two values
of λ arise for each value ak .) Of course, if β = 0, then the

eigenvalues of F are recovered. The condition |λ| � 1 for all
the eigenvalues furnishes the region of stability of the fixed
point. For β = 1/2, the frontier of the asynchronous case is
exactly recovered, as can be seen in Fig. 4(b). The eigenvalues
λ associated to the largest eigenvalue of A, aN = 1, provide
the longitudinal stability, while the remaining ones furnish the
transverse stability.

In Figs. 4(a)–4(c), the white region corresponds to CS
states (〈σ 〉 = 0). Inside that region, the CS state is a fixed
point (x� = 3/4) in subdomain “I”, while the subdomain “II”
corresponds to regular CS states of period larger than 1.
Frontiers of the region where CS occurs at the fixed point are
given by transverse stability condition, except those borders
separating regions I and II [Figs. 4(a) and 4(c)], which are
given by the longitudinal stability condition, 1/4 � βε � 1/2.
If β = 0, the fixed point cannot be stable for any coupling
strength ε, but above β = 1/2, there emerges an interval of
values of ε for which the fixed point becomes stable. This
explains the emergence of the stability of the locally unstable
fixed point.

IV. FINAL REMARKS

We found that binary discrete delays manage to mimic
CS observed in asynchronous dynamics, but this occurs
only if the interactions are sufficiently nonlocal. In contrast,
pseudocontinuous delays reproduce exactly the asynchronous
CS states, independently of the range of the interactions. This
equivalence allows to embrace, in a unified frame, delayed
and asynchronous dynamics, usually treated separately. The
asynchronous case is usually analyzed heuristically, due to the
mathematical difficulties involved, while there are analytical
procedures to treat the delayed dynamics (by extending the
phase space to turn the system Markovian). In this context,
our finding provides an alternative way to determine the CS
domains for an asynchronous update through a delayed one.

As side results, the outcomes put into evidence the interplay
between the spatial and temporal dimensions in pattern
formation and also have implications in control of chaos, as
far as we found a time-delayed scheme more efficient than
discrete delays in the stabilization of a locally unstable state,
which can be understood along the lines discussed at the end
of Sec. III C.

Despite we used a particular CML in numerical examples,
the analytical considerations apply to a general class of CMLs,
following the form given by Eq. (1), with generic A(r), and a
chaotic unimodal map as local dynamics. However, the results
might apply to a larger class of CMLs, e.g., including advective
[26] coupling or bistable local dynamics [27].
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