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In contrast to other large-scale network models for propagation of electrical activity in neural tissue that have no
analytical solutions for their dynamics, we show that for a specific class of integrate and fire neural networks the
acceleration depends quadratically on the instantaneous speed of the activity propagation. We use this property
to analytically compute the network spike dynamics and to highlight the emergence of a natural time scale for the
evolution of the traveling waves. These results allow us to examine other applications of this model such as the
effect that a nonconductive gap of tissue has on further activity propagation. Furthermore we show that activity
propagation also depends on local conditions for other more general connectivity functions, by converting the
evolution equations for network dynamics into a low-dimensional system of ordinary differential equations. This
approach greatly enhances our intuition into the mechanisms of the traveling waves evolution and significantly
reduces the simulation time for this class of models.
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I. INTRODUCTION

Traveling waves of electrical activity have been widely
observed and measured in various brain regions under both
spontaneous and evoked conditions, for example, in the visual
[1–6], olfactory [7,8], auditory [9,10], somatosensory [11],
and motor cortices [12]. These traveling waves are thought
to play an important role in sensory processing [13], phase
coding [14,15], and sleep [16]. Research also suggests the
existence of traveling waves for hippocampal theta oscillations
which may act as local clocks to govern spatial-temporal
dynamics [17,18]. This area of research is essential not only
for understanding the functions of the brain during sensory
processing, but also for providing insights into irregular neural
dynamics [19] or abnormal states such as epileptic seizure
[20,21], migraine [22], hallucination [23,24], and the ones
observed after brain injury [25].

Computational models are essential for the understanding
of traveling waves in neural tissue, yet the lack of analytical
solutions for the dynamics of activity propagation detracts
from their usefulness. These models usually describe the
neural tissue as a vast interconnected network of homogeneous
excitatory units, such as firing rate models [26–29], integrate
and fire models [26,30–35], theta neuron models [36,37],
or more complex models of neurons [30,38–45]. In these
models, propagating waves have been studied numerically in
an extensive fashion using the assumptions that the strength
of the synaptic connections between neurons depends only on
the distance between them. Typically, these models give rise
to a pair of traveling wave speed solutions, where the slower
wave is unstable, and the fast one is stable. The assumptions
listed above make it possible to formulate a set of integro-
differential equations describing the propagation of the one-
spike traveling wave fronts in a continuous one-dimensional
integrate-and-fire network. Using these equations, we have
derived the transition between initiation and evolution toward
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constant speed traveling waves for Gaussian connectivity
[32] and finite support connectivity [34]. We confirmed these
findings through numerical simulations, leading to methods for
optimizing and improving simulations of large-scale networks
[35], and we extended these results for the case of constant
speed waves with a finite and an infinite number of spikes
[33].

In this paper, we formulate a system of ordinary differen-
tial equations for traveling wave propagation that examines
the evolution of first, second, and potentially higher order
derivatives of firing times as a function of space. For a specific
choice of the spatial connectivity and the time evolution of
the spike-induced synaptic excitation, the consequence of
expressing the set of evolution equations in this analytically
tractable form is that the dynamics of the traveling waves
depend on local dynamics. This is a very surprising result
since the excitation due to one neuron spiking affects all other
neurons in the network. Furthermore, in contrast with previous
models used in this area, these evolution equations can be
solved analytically. More precisely, we show that the wave
acceleration depends quadratically on the instantaneous speed,
which allows us to solve the equation explicitly and to exactly
determine how wave velocity and acceleration change as a
function of time and space. In order to obtain these analytical
results we restrict our analysis to integrate and fire neurons
that spike only once, that is, we examine single-spike activity
propagation. We then use this model to explain the existence
of three regimes of wave propagation and neural dynamics, in
agreement with previous results from numerical simulations.
A major finding is that propagation failure or evolution toward
a stable constant speed traveling wave proceeds according to
a natural time scale that depends explicitly on the network
excitability parameters as well as on time scales of neural
integration and excitation decay. Finally, we show that these
results extend to more generalized connectivity functions that
still allow for local evolution equations. Not surprisingly,
when these functions are more complicated, finding analytical
solutions becomes much more challenging. Nevertheless,
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the use of the local evolution equations, obtained from a
low-dimensional system of differential equations, drastically
reduces the simulation time for the full network dynamics.

II. EVOLUTION EQUATIONS IN
INTEGRATE-AND-FIRE MODEL

In this study, we seek analytical solutions for the evolution
of one-spike activity propagation in a class of neural networks.
Here we use a simple and widely used model for a spiking
neuron, the integrate-and-fire model, which integrates the input
signal with temporal constant τ1 until its voltage reaches a
threshold VT , at which point the neuron sends an excitatory
spike to the rest of the network. To describe the network
interactions we make use of the following two functions.
First, J (x,y) describes the synaptic coupling between neurons
at positions x and y. Second, A(t) represents the excitation
provided by a presynaptic spike onto the postsynaptic neuron.
The functions J (x,y) and A(t) = A2(t) − A1(t) take the
following explicit form:

J (x,y) = e
−|x−y|

σ

2σ
, A(t) = e

− t
τ2

1 − τ1
τ2

− e
− t

τ1

1 − τ1
τ2

. (1)

For function J (x,y), which depends only on the absolute value
of |x − y|, the symbol σ indicates the connectivity spatial
scale. Other explicit functions for J (x,y) will be considered
later. For the temporal function A(t), τ2 is the time constant
for the decay of the synaptic excitation, which is assumed to
be greater than τ1; also A(t) = 0 for t < 0. The membrane
voltage for a neuron in the network then can be expressed in
integral form [32]:

V (x,t)

gsyn
= J ⊗ A =

∫ x

−∞
J (x,y)A[t − t(y)] dy, (2)

where ⊗ denotes convolution and t(y) is the spiking time
for the neuron at position y. Here gsyn is a constant that
controls the excitation of the network. It is assumed that
dynamics in the network are completely determined by the
excitation due to the previous neuron spikes that occur at
t(y) < t . We note here that initiation of activity propagation
may initially occur through applying an external current to a
subset of neurons in the network. For example, a preferred
way to do this in the numerical simulation is to induce a
large group of neurons to spike at the same time, t = 0, and
then to monitor propagation to the right of that region. For
simplicity we assume that the wave propagates only in one
direction, taken here to be from left to right, and we ignore
neural spikes that may occur to the left of the initiation region.
After integrating the excitatory signals, the firing condition
of a neuron at position x, taken to be at the leading edge of
the propagation, becomes V (x,t(x)) = VT . Since t(x) is the
time at which the voltage V (x,t) of neuron at position x first
crosses threshold, this constitutes a consistency equation. In
this one-dimensional network, it can be shown that neurons’
firing time is a monotonic function of their position x; this
holds true for many other classes of connectivity functions
[34,35].

We take two derivatives of equation (2) with respect to x,
with the goal of obtaining an equation that connects t ′ = dt/dx

and t ′′ = d2t/dx2:

d(VT /gsyn)

dx
= (J ⊗ A)′ = J ′ ⊗ A + (J ⊗ A′)t ′ = 0, (3)

0 = J ′′ ⊗ A + 2t ′J ′ ⊗ A′ + t ′′J ⊗ A′

+ (t ′)2J ⊗ A′′ + J0A
′
0t

′, (4)

where we used A0 = A(0) = 0 in Eq. (4). The other notations
used here are J0 = J (0) = 1/2/σ and A′

0 = A′(t = 0) =
1/τ1. Equations (2)–(4) constitute a system of evolution
equations that shape the traveling wave propagation. In the
next section, we will show how we can convert them to an
ordinary differential equation.

III. ANALYTICAL SOLUTIONS

Since functions J (x), A1(t), and A2(t) are all exponentials,
the system of Eqs. (2)–(4) contains only two unknowns,
of the form K1 = J ⊗ A1 and K2 = J ⊗ A2. Solving for
them as a function of t ′ in the Eqs. (2)–(3) and substituting
these solutions in (4) yields an equation where t ′′ is a func-
tion of t ′. We obtain J ′ = dJ (x)

dx
= J/(−σ ),A′

k = dAk(t(x))
dx

=
Ai/(−τk)t ′,k = 1,2. Then we can write Eqs. (2)–(3) in a
compact way:

VT

gsyn
= K2 − K1, (5)

K2

(
1

σ
+ 1

τ2
t ′
)

= K1

(
1

σ
+ 1

τ1
t ′
)

. (6)

Terms K1 and K2 can now be determined from Eqs. (5)–(6) as
functions of the instantaneous speed c = 1/t ′:

K1 = VT

gsyn

(
c

σ
+ 1

τ2

)/(
1

τ1
− 1

τ2

)
, (7)

K2 = VT

gsyn

(
c

σ
+ 1

τ1

)/(
1

τ1
− 1

τ2

)
. (8)

After simplifications, we can rewrite Eq. (4) as a single
equation that relates t ′′ to c:

d2tx

dx2
= K1

(
1
σ

+ 1
cτ1

)2 − K2
(

1
σ

+ 1
cτ2

)2 − 1
2σcτ1

K1
τ1

− K2
τ2

. (9)

After substituting the explicit solutions for the terms K1

and K2 in Eq. (9), we can determine d2tx/dx2 as a function
of speed. As an additional step, we convert d2tx/dx2 into the
instantaneous acceleration, which is a more intuitive measure
for the activity propagation, using the following relationship
between these two quantities:

a(x) = d2x

dt2
x

= − 1(
dtx
dx

)2

d2tx

dx2

dx

dtx
= −c3 d2tx

dx2
. (10)

Combining these equations, we obtain a remarkably simple
analytical relationship between a(x) and c(x):

a(x) = − [c(x) − c1][c(x) − c2]

σ
, (11)
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FIG. 1. (a) Theoretical results and numerical simulations for the
dependence of wave acceleration on instantaneous speed, a = a(c).
The acceleration’s quadratic dependence on speed (curve with merged
blue, green, and red regions) is in perfect agreement with numerical
simulations (dotted black line) on all areas except for the low speed
regime where the agreement again becomes excellent with finer dis-
cretization of the spatial domain. The parameters used here are τ1 =
4 ms, τ2 = 30 ms, σ = 0.288 mm, VT = 15 mV, gsyn = 98.4 mV,
yielding c1 = 0.0046 m/s, and c2 = 0.15 m/s. These parameters are
in agreement with published data, and they are used as default values
unless noted otherwise. (b) Theoretical results for acceleration vs
speed for different excitability levels gsyn. Depending on the overall
excitability level, there are no traveling wave solutions (red line),
one solution (green line), or two solutions (blue line). As excitability
increases, c1 and c2 decrease or increase, respectively, provided that
the overall excitability exceeds the critical value gcritical = 0.0559V

[see Eq. (13)].

where c1 and c2 are the speed for the slow-unstable and the fast-
stable constant speed traveling wave solutions, respectively.
This quadratic equation is easy to visualize [Fig. 1(a)]. These
constant speed wave solutions depend only on parameters σ ,
τ1, τ2, and B = gsyn/(2Vtτ1),β = (τ1 + τ2)/(τ1τ2), shown here
explicitly:

c1,2 = σ/2

[
B − β ∓

√
(B − β)2 − 4

τ1τ2

]
. (12)

The pair of speeds, c1 and c2, are real and positive for
different values of network excitability gsyn, provided that this
parameter exceeds a critical value gcritical [Fig. 1(b)]:

gcritical = 2Vtτ1

(
τ1 + τ2

τ1τ2
+

√
4

τ1τ2

)
. (13)

In agreement with previous results, the decrease of the
excitability parameter gsyn brings the two solutions c1 and c2

closer and closer together, until these solutions collide and
cease to exist. Below gcritical, c1 and c2 become complex,
and in turn, the acceleration can take only negative values,
resulting in eventual propagation failure regardless of how
activity propagation is initiated. This relationship is evident
in Fig. 2(a), where the connection between c1,2 and gsyn is
illustrated. The slow-unstable wave has a horizontal speed
asymptote at zero as gsyn goes to ∞, while the fast-stable
wave has an oblique asymptote with slope σB. The same
properties exhibited by Eq. (12) were found numerically [30],
in agreement with later results [31,33]. The dependence of the
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FIG. 2. Dependence of traveling wave solutions c1 (red) and c2

(blue) on neuron and network parameters. (a) Speed vs synaptic
excitability gsyn, with bifurcation occurring at gcritical = 0.0559 mV.
(b) Speed vs σ , revealing linear correlations between propagating
velocity and parameter σ . (c) Speed vs τ1, showing a decrease of
c2 as the neuron integration time, τ1, increases. (d) Speed vs τ2,
indicating that fast solutions increase with the growth of decay time,
τ2, in contrast to the slow solutions showing the opposite trend.

c1 and c2 on other network parameters such as connectivity
footprint σ , the neuron integration time τ1, and the decay time
of synaptic excitation τ2 is illustrated in Figs. 2(b)–2(d).

A consequence of the relationship between acceleration
and speed [Eq. (11)] is that the traveling wave fails if c < c1

or evolves toward c(∞) = c2 if c > c1. These outcomes are
illustrated in Fig. 3(a), which shows the neuronal positions
versus their firing times. As a reminder, activity propagation
is initiated here by inducing a large enough region to spike at
t = 0 through the application of a sufficiently high external
current to all neurons in that region. The size of the initial
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FIG. 3. (a) Space vs firing times. Different initial conditions
will determine if the transients evolve toward stable or transient
propagation. When the speed (tangent) is less than c1, propagation
fails as expected (red line, failure when tangent becomes vertical).
When the tangent is greater than c2 (blue line), the traveling wave
slows down and evolves asymptotically toward the constant speed
traveling wave indicated by slope c2. When the tangent is greater
than c1 but less than c2 (green line), the traveling wave speeds up
and evolves asymptotically toward a fast-stable solution at c2. Results
from numerical simulations, not shown here, are in perfect agreement
with color lines shown in this graph. (b) Speed vs space. In agreement
with results from part (a), propagation failure is achieved in a finite
amount of space, while stability at c2 is reached asymptotically.
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area, which needs to exceed a threshold value, allows us
to control the initial phase of the traveling wave, as larger
areas will provide more excitation to the neurons close to the
initiation region, and it will consequently result in a greater
initial speed for the activity propagation. In order to have
stable constant wave propagation, solutions are assumed to
be real, thus (B − τ1+τ2

τ1τ2
)2 − 4

τ1τ2
> 0. Not surprisingly, when

we examine the evolution of speed as a function of space
[Fig. 3(b)], we notice again the existence of three distinct
regimes: propagation failure for c < c1, acceleration toward
c2 if c > c1, and deceleration toward c2 if c > c2.

A. Coupling between speed and acceleration
leads to wave stability

Most surprisingly, Eq. (11) reveals that the relationship
between the acceleration and the instantaneous speed is
independent of how the wave was initiated. More precisely,
any two instances of activity propagation that achieve the same
speed will follow the same future dynamics despite the fact that
the prior firing maps are different. This is not a trivial result,
since in principle each spike in the network exerts an influence
on the rest of the network, therefore the naive intuition would
be that different initial conditions would result in dissimilar
activity propagation dynamics, even for the cases of speed
matching at a common point in the network.

We can see from Fig. 1(a) that the two roots of the quadratic
equation correspond to the constant low-speed unstable and
high-speed stable traveling wave solutions. This provides a
global stability explanation for why any transient propagation
will evolve toward a constant speed solution with speed c2,
provided that the initial speed of the propagation is larger than
c1, or fail otherwise. When c < c1 acceleration stays negative
and increases in amplitude as the wave slows down toward
propagation failure at c = 0. When c1 < c < c2 acceleration
stays positive but decreases in magnitude as the wave speeds up
toward the constant speed solution with c = c2. When c > c2

acceleration stays negative but decreases in amplitude as the
wave slows down toward the constant speed solution with
c = c2. All these trends are true regardless of the exact value
of initial speed c, therefore these results go beyond standard
proofs of stability for traveling waves, which are usually done
using perturbation theory [30,46], meaning that the results hold
only for small perturbation around the stable constant speed
traveling wave. In contrast, our stability argument holds for
random shuffling of firing times or perturbations of arbitrary
large amplitude in voltage, and as such are more general in
nature than the ones resulting from the perturbation theory.

B. Analytical solutions and natural time scales
for activity propagation

We now take advantage of this remarkable result from
Eq. (11) to determine analytical expressions for t(x),c(t),x(t),
and x(c). Integrating Eq. (11) after separating variables c and
t , we obtain

t(c) = σ

c2 − c1
ln

(
c − c1

c − c2
k

)
, (14)
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FIG. 4. Dependence of natural time scale τ0 on other network
parameters. (a) τ0 vs gsyn. As the excitability of the network (gsyn)
increases, it takes less time to achieve stability (at c = 0 or at c = c2).
Here τ0 = 0.12/gsyn, where gsyn > gcritical = 55.9 mV. (b) τ0 vs τ1.
As the integration time τ1 increases it takes more time to reach the
stable states. When τ1 becomes really small we obtain τ0 = 0.4386τ1.
(c) τ0 vs τ2. Finally, when synaptic excitation lasts longer (at higher
values of τ2), stable states are also reached faster. When τ2 becomes
really large we obtain τ0 = 1.7544.

where k = (c0 − c2)/(c0 − c1) and c0 is the initial propagation
speed at t = 0. Inverting c(t) in Eq. (14) and using the
definition τ0 = σ/(c2 − c1) we obtain

c(t) = c2e
t/τ0 − c1k

et/τ0 − k
. (15)

Integrating both equations of (15) after separating variables x

and t yields

x(t) = σ ln

(
et/τ0 − k

et0/τ0 − k

)
+ c1(t − t0), (16)

where t0, which in general is different from 0, is the firing
time of neuron located at position x = 0. In order to determine
the speed of propagation as a function of the spatial position,
we integrate Eq. (11), after separating variables x and c, also
using a(x) = dc/dt = dc/dx dx/dt = c dc/dx:

x(c) = τ0

[
c1 ln

(
c − c1

c0 − c1

)
− c2 ln

(
c − c2

c0 − c2

)]
. (17)

Again, theoretical results are in excellent agreement with
numerical simulations for speed versus space plots [Fig. 3(b)],
where all transients can be thought to be located at an initial
point along the speed versus space curve. From Eqs. (15)–(16)
it is clear that stability depends on the natural time scale τ0:

τ0 = τ1√(
1 + τ1

τ2
− gsyn

2Vt

)2 − 4 τ1
τ2

. (18)

Based on this formula, it is easy to infer how τ0 depends
on these network constants. If gsyn → ∞, τ0 = O(g−1

syn), with
constant slope 2Vtτ1 [Fig. 4(a)]. As τ1 decreases toward zero,
we obtain limτ1→0 τ0 = 0 [Fig. 4(b)]. Furthermore, as the
synaptic decay constant τ2 increases toward large values, we
obtain limτ2→∞ τ0 = 2Vt/gsynτ1 [Fig. 4(c)].
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FIG. 5. (a) Spatial scales for achieving stable states. We examine
the distance needed to achieve stability depends on the initial speed
c0. For propagation failure, this is defined as the distance traveled until
speed becomes 0 (red line). For the asymptotically stable states, this
is defined as the distance needed to reach c = αc2, where α = 0.99 if
c0 < c2 (green line), and α = 1.01 if c0 > c2 (blue line). (b) Temporal
scales for achieving stable state. Similar graphs are shown for the
time needed to achieve stable states. In the limit where c0 → ∞
(black dotted line) stability is achieved in a finite amount of time
(t = 9.1 ms).

C. Reaching steady states

We now use the explicit dependence between x,t and c to
determine how quickly dynamics reach the stable regimes of
activity propagation, namely, propagation failure at c = 0 or
constant speed propagation at c = c2. More precisely, we want
to determine where does the propagation stops and the amount
of time it takes to achieve propagation failure. Similarly, when
the initial speed is above c1, we seek to determine the distance
and time that will be needed for the propagation to reach
stability, defined as reaching a value which is close to c2,
namely, α c2, α ≈ 1. If the initial value for propagation speed
is less than c2 we take α < 1, otherwise we choose α > 1. The
dependence of these distances as a function of the initial speed
c0 is shown in Fig. 5(a), while the times to reach stability are
shown in Fig. 5(b).

Using Eq. (17), we obtain the following analytical result
about the amount of space needed to reach asymptotic stable
state:

x(c = αc2) = τ0 ln

[
(αc2 − c1)c1

(αc2 − c2)c2

][
(c0 − c2)c2

(c0 − c1)c1

]
. (19)

This reveals that when initial speed is very large, the amount
of traveling space required to evolve towards stability also
becomes very large, since limc0→∞ x(c = αc2) = ∞. Along
similar lines, using Eq. (14), we can compute the amount of
time needed to reach stability as follows:

t(c = αc2) = τ0 ln

(
αc2 − c1

αc2 − c2

c0 − c2

c0 − c1

)
. (20)

In contrast with the amount of space needed to reach the
stable state, when c0 is very large, only a finite time is
needed in order to reach stability, since limc0→∞ t(c = αc2) =
τ0 ln[(αc2 − c1)/(αc2 − c2)[, where α > 1.

In addition, we determine that upon reaching c = 0, the
acceleration of the wave reaches a minimum value that does
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FIG. 6. Dependence of traveling-wave acceleration on parame-
ters. (a) Acceleration vs gsyn. The maximum value for acceleration
(blue line) increases with excitability while surprisingly the minimum
value (red line, achieved at c = 0 when propagation fails) does
not depend on gsyn. (b) Acceleration vs synaptic footprint σ . Both
maximum and minimum acceleration are linear in σ . (c) Acceleration
vs integration time τ1. As the neural integration time becomes very
large, both maximum and minimum acceleration decay toward zero
values. (d) Acceleration vs decay of excitability parameter τ2. In
contrast, only the minimum acceleration decays to zero as τ2 becomes
large, as maximum acceleration saturates to a nonzero fixed value.

not depend on the excitability of the tissue g, that is, amin(g) =
−σ/(τ1τ2). We note here that this is not a global minimum,
since at the other end of the spectrum, as speed becomes very
large the acceleration goes to minus infinity. Finally, we note
that the maximum positive acceleration, obtained at speed
(c1 + c2)/2, is determined by the following equation:

amax(gsyn) = σ

[(
B − τ1 + τ2

τ1τ2

)2

− 4

τ1τ2

]/
4. (21)

The dependence of amax and amin as a function of parameters
gsyn, σ , τ1, and τ2 is shown in Fig. 6.

D. Application: Propagation changes in the
presence of a connectivity gap

We consider now a small section of nonexcitable gap region
that can be thought to be the result of local dead tissue. We
are interested to determine the conditions that lead to activity
propagation failure for a wave with an instantaneous speed
c > c1 that at t = t0 reaches a nonexcitable gap of length L

located at position x0. Due to the choice of the exponential
kernel for the synaptic connectivity, the voltage of the first
neuron past the nonexcitable gap, located at x1 = x0 + L is

V (x0 + L,t) = gsyn

∫ x0

−∞
e− L

σ e− x0−y

σ A[t − t(y)] dy. (22)

At t = t0 we obtain from Eq. (22)

V (x0 + L,t0) = gsyn(K2 − K1)e− L
σ = VT e− L

σ , (23)

where the variables K1 and K2 depend on the pre-gap speed c

as defined in Eqs. (5)–(6). The time dependence of the voltage
of neuron at position x1 becomes

V (x1,t) = gsyn
(
K2e

− t−t0
τ2 − K1e

− t−t0
τ1

)
e− L

σ . (24)
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FIG. 7. Activity propagation changes induced by a nonexcitable
region of length L. (a) Speed after gap vs length of gap. Not
surprisingly, larger nonexcitable regions decrease the speed of the
traveling waves past the gap, and they could even lead to propagation
failure at c = 0. We plot this relationship for four initial conditions:
c = 0.0386, c = 0.0773, c = 0.15, and c = 0.3. (b) Speed after gap
vs speed before gap. Slow traveling waves are more affected by a
constant length gap and may even fail, while fast ones only show a
moderate loss in speed as they propagate further away. The red dotted
line is the y = x, corresponding to zero speed loss, and it is included
here for comparison with the other contour lines. Obviously, with the
increase of gap length, the change rate of speed before and after gap
increases. Length of the gaps considered here range from L = 0.05
to 0.35 mm, with eight uniformly spaced values considered here. (c)
Minimum length of gap that causes propagation failure as a function
of the speed before gap. We determine that propagation eventually
fails when speed becomes less than c1. Taking into account the speed
before gap, the graph determines the minimum length of gap needed
to reach propagation failure.

The neuron at position x1 needs an additional time interval
�t = �t(L) in order to integrate the excitable current received
so far and reach the threshold VT :

V (x0 + L,t0 + �t) = gsyn
(
K2e

− �t
τ2 − K1e

− �t
τ1

)
e− L

σ (25)

= VT .

In general, Eq. (25) does not have an analytical solution, but
numerical solutions however can be easily obtained. Following
the procedure outlined in Eqs. (5)–(6), we obtain a first order
equation in the speed of propagation after passing the gap,
cgap:

K2

(
1

σ
+ 1

cgapτ2

)
e
− �t

τ2 = K1

(
1

σ
+ 1

cgapτ1

)
e
− �t

τ1 . (26)

The solution for cgap = cgap(c,L) then becomes

cgap(c,L) = σ

K1(c)
τ1

e
− �t(L)

τ1 − K2(c)
τ2

e
− �t(L)

τ2

K2(c)e− �t(L)
τ2 − K1(c)e− �t(L)

τ1

. (27)

The failure condition after passing the gap is simply
cgap(c,L) < c1. Numerical results for these conditions are
illustrated, for fixed c in Fig. 7(a) and for fixed L in Fig. 7(b).
In addition, we compute the minimum amount of nonexcitable
gap that would prevent any further propagation of activity for
waves that reach the gap with speed c, as shown in Fig. 7(c).
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FIG. 8. Voltage value at the edge of a forced constant speed
traveling wave in a network with a polynomial time exponential
coupling function. A more general coupling function (28) is applied to
the system with parameters a = 1,b = 1,τ1 = 4 × 10−3 s,τ2 = 3.0 ×
10−2 s,σ=2.88 × 10−4 m,gsyn=9.85 × 10−2 V, VT =1.5 × 10−2 V.
Two speed solutions exist when voltage reaches threshold (VT =
1.5 × 10−2 V).

IV. APPLICATIONS TO MORE GENERAL
CONNECTIVITY FUNCTION

The analytical results obtained so far depend on the specific
choice of an exponential form for the connectivity function.
However, our approach can be extended to more general
classes of functions. We now consider a more complicated
spatial connectivity function, a first order polynomial times
the exponential function:

J (x,y) = J1 + J2 = a|x − y|e −|x−y|
σ

2σ (aσ + b)
+ b e

−|x−y|
σ

2σ (aσ + b)
. (28)

A consistency equation for a wave that comes from −∞
with speed c can be obtained by using t∗(x) = x/c. Without
loss of generality, at t = 0 the wave will pass through x = 0.
Therefore, we obtain V (0,0) = VT , and we express it as

VT = gsyn

∫ 0

−∞

a|y| + b

2σ (aσ + b)
e

−|y|
σ

e
−|y|
cτ2 − e

−|y|
cτ1

1 − τ1
τ2

dy. (29)

We can then express the membrane voltage as a function of
speed:

V (c) = gsyn

2σ (aσ + b)
(
1 − τ1

τ2

)
⎡
⎣ aσ(

1
σ

+ 1
cτ2

)2

− aσ(
1
σ

+ 1
cτ1

)2 + b
1
σ

+ 1
cτ2

− b
1
σ

+ 1
cτ1

⎤
⎦. (30)

Equation V (c) = VT can be written as a fourth order
polynomial equation. We choose similar parameters to the
exponential case in order to obtain a stable traveling wave
with exact the same fast-stable speed (Fig. 8). It is easy to
see when speed goes to either 0 or ∞ the membrane potential
V(c) becomes 0. This guarantees that for large enough global
network excitability gsyn there will be at least two traveling
waves solutions.

We now follow the same procedure for the exponential case,
namely generate enough derivatives of the original equation
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FIG. 9. Successive derivatives of firing times. Numerical simu-
lations (blue) are in excellent agreement with the the dynamics of
ODE system, as illustrated by the first four derivatives of firing map
[Eqs. (2)–(4), (31)–(32), red lines]: (a) t ′, (b) t ′′, (c) t ′′′, and (d) t ′′′′.
Similar to the previous cases considered, an initial region is induced
to spike to the left of x > 0 region in order to provide the initial
activity propagation. This is used to extract the initial conditions for
the ODE system, such as the initial speed, 1/t ′(0) as well as the next
two derivatives, t ′′(0) and t ′′′(0).

in order to solve all convolution terms as function of the time
derivatives t ′,t ′′ and higher order terms. We use these terms in
order to obtain an equation that contains only these derivatives,
that is, t (n) = f (t ′,t ′′, . . . ,t (n−1)). Because the system of three
Eqs. (2)–(4) contains four unknowns, Ji ⊗ Aj ({i,j} ∈ {1,2}),
only two computation of an extra derivative is needed, since
due to the specific form of the connectivity kernel no new kind
of functions will be created as a result of taking the derivatives
of the spatial function J . These unknowns can be computed
as function of t ′,t ′′, and t ′′′ using three Eqs. (2)–(4) along with
an extra derivative of Eq. (4):

(J ⊗ A)′′′ = J ′′′ ⊗ A + 3t ′J ′′ ⊗ A′ + 3(t ′)2J ′ ⊗ A′′

+ t ′′′J ⊗ A′ + (t ′)3J ⊗ A′′′ + 3t ′′J ′ ⊗ A′

+ t ′t ′′J ⊗ A′′ + 2t ′J ′
0A

′
0

+ 2t ′′J0A
′
0 + (t ′)2J0A

′′
0 = 0. (31)

One additional equation, namely the derivative of Eq. (31),
will connect the fourth-order derivative of the firing map t(x)
with the lower order derivatives of t . This yields an ordinary
differential equation similar to the case analyzed earlier:

J ′′′′ ⊗ A + 4(t ′)3J ′ ⊗ A′′′ + 4t ′′′J ′ ⊗ A′ + 4t ′J ′′′ ⊗ A′

+ 6t ′′J ′′ ⊗ A′ + 6(t ′)2J ′′ ⊗ A′′ + 3(t ′′)2J ⊗ A′′

+ (t ′)4J ⊗ A′′′′ + t ′′′′ · J ⊗ A′ + 4t ′t ′′′J ⊗ A′′

+ 6(t ′)2t ′′J ⊗ A′′′ + 12t ′t ′′J ′ ⊗ A′′

+ 5t ′′J ′
0A

′
0 + 2t ′′′J0A

′
0 + 3t ′t ′′J0A

′′
0 + 3t ′J ′′

0 A′
0

+ 3(t ′)2J ′
0A

′′
0 + (t ′)3J0A

′′′
0 + t ′t ′′J0A

′
0 = 0. (32)

We verified that network dynamics are in agreement with
this ODE system, using numerical simulations to compute
values for the first three derivatives of t as initial conditions
and making use of the explicit solution t ′′′′ = f (t ′,t ′′,t ′′′) from
Eq. (32), as illustrated in Fig. 9. Although the transition toward
constant speed waves is now much more complicated and

analytical solutions do not likely exist for this case, again
local dynamics determine the evolution of the wave. More
precisely, two waves that have the same values for the first three
derivatives of t at a spatial location x0 will follow identical
trajectories for x > x0.

This approach works for any synaptic connectivity function
J who is a product of a polynomial in x and the exponential
function, since no new functions will be generated through
higher order derivatives of function J . Here the number of
equations needed to transform the evolution equation into an
ODE is 2n + 3, where n is the degree of the polynomial,
with 2n + 2 derivatives of original Eq. (2) needed. In fact,
this approach works for any function J that generates a finite
set of functions through the process of taking derivatives.
For example, combinations of polynomials, sine and cosine
functions times the exponential, would also generate a finite set
of functions through derivative steps. One function that cannot
be used is the Gaussian function J (x) = e(−x2/(2σ 2))/

√
2πσ ,

since at each step of the procedure the computation of higher
order derivatives keeps generating new functions such as
xe−x2/(2σ 2), x2e−x2/(2σ 2) and higher order polynomials times
the original Gaussian function. As a result, it is not possible to
solve and express the convolution unknowns as functions of
derivatives of t . Nevertheless, the more advantageous property
of continuous first order derivative that the Gaussian function
has over the exponential kernel, can be offset by properly
chosen set of functions such as (1 + |x|)e−|x|. Therefore,
somehow surprisingly, activity propagation depends on local
quantities only for longer range kernels such as products of
polynomial and exponential functions, but not for Gaussian
and other similar, more localized, types of functions. In effect,
the more localized kernels ensure that the local details of
the firing map are essential for further propagation, while the
longer range kernels analyzed here ensure that a neighborhood
of neurons close to firing is less susceptible of the details of
the excitation that brought them close to the threshold.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In conclusion, we have established that for the neural net-
work models with exponential synaptic connectivity functions,
the instantaneous acceleration depends only on a quadratic
function of the instantaneous speed of the propagation. This
is a compelling and surprising result since in principle each
neural spike influences the rest of the network and would
seemingly be needed to be accounted when solving for the
exact network dynamics. To our knowledge, this is the first
such result of its kind, since other related models do not have
analytical solutions for activity propagation.

The quadratic dependence on speed provides a clear
explanation of why this type of neural network can sustain
two types of traveling waves, a slow-unstable wave as well as
a fast-stable wave, while ruling out other possible solutions.
Furthermore, this approach provides a global explanation of
the traveling wave stability. When the propagation dips below
the slow-unstable speed c1, a negative acceleration will further
reduce the speed until the propagation fails. In contrast, the
propagation speeds up or down toward the fast-stable traveling
wave c2, depending on if the initial velocity is below or above
c2, respectively. It is not possible to achieve this level of insight
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into the stability of traveling waves from other models since
proofs of their stability rely on perturbation theory.

Another fundamental result of our model is that evolution
toward propagation failure or constant speed traveling wave
is determined by a natural global time scale. This parameter
depends only on the neuron integration time τ1, the time
constant for the decay of the excitation τ2, and on the ratio
between the global excitation constant gsyn and the voltage
threshold Vt . This provides an easy way of quantifying how
fast dynamics of neural spikes evolve toward the stable states
of either propagation failure or constant speed traveling wave.

Finally, these analytical results can then be directly used to
derive conditions for propagation failure in presence of a gap.
Not surprisingly, a small to moderate gap reduces the speed
of the propagation by an amount that is small enough to allow
recovery toward the fast-stable traveling wave. In contrast a
large gap would either block propagation altogether or would
result in a wave that jumps the gap but has a speed that is below
the slow-unstable solution and it will eventually fail.

These results can be extended for more general kernels,
provided that the derivatives of the spatial and temporal kernels
generate a finite set of functions. Under these assumptions,
the evolution equations for the propagation of activity in the
neural network can be converted to a system of ordinary
differential equations, with dynamics depending on the local
conditions derived from a finite number of derivatives of the
firing map t(x). It is fascinating that despite the long-range
connections considered in these models, evolution of these
waves follows local rules for their dynamics. It is also quite
unexpected that this is the case for longer range kernel such
as exponential functions, but not for the more compact kernels
such as Gaussian functions, since naively it would seem that
the longer the range the more likely a neuron spike would
influence the dynamics of the whole network.

In addition to improving our insight into the mechanism
of these traveling waves, this approach has the potential
to significantly improve the simulation time for large-scale
networks. Instead of maintaining the state of all neurons in the
working memory during simulations, one needs to simulate
only a system of ordinary differential equations for the position
of the traveling wavefront, resulting in substantial reduction
of the simulation time.

Our approach can be extended for multiple-spike activity
propagation. More precisely, one can obtain an infinite system
of equations that contains first and second derivatives for
all traveling wavefronts. Some of the effects induced by
the multispike features are intuitive: the first wavefront now
receives additional excitation due to the upcoming waves,

excitation which depends on the separation between waves and
is influenced by the relative speed by which they travel locally.
Other effects are more complicated. For example, the reset
condition will induce a coupling between an exponentially
decaying function of the last interspike interval for each wave,
except the wavefront, and the first and second order derivatives
of firing times of all other evolving waves, This drastically
complicates the structure of the system of evolution equations.
Furthermore, this system of equations for the infinite number
of wavefronts has to be solved simultaneously, which renders
the search for analytical solutions a daunting task. Finally,
increasing the complexity of the neuron model, for example,
by considering biophysical models, is also extremely likely to
prevent one from obtaining analytical results for the complete
dynamics of the network, as these models have additional
variables with complicated dynamics.

Future research will focus on the study of the traveling
waves for more complex models of the neurons or in the
presence of inhomogeneities, where the dynamics described
here are subject to modulations induced by nonhomogenous
kernels. For example, we considered weak, ε-order, periodic
modulation of the connectivity. We have obtained preliminary
results that indicate that while coupling between acceleration
and speed remains similar, these additional ε-order terms
modulate this interaction, leading to periodic modulation in
the speed of the wavefront. More precisely, the wave speed
oscillates above and below the fast stable solution from the
homogenous case. Additional efforts will be aimed at obtaining
analytical solutions for this type of equation. Finally, it would
be interesting to see how other approaches, for example
WKB methods that examine the evolution of a front based
on a hyperbolic rescaling [47,48], relate to our approach and
results. Additional question of interest are: how would these
results translate for two-dimensional networks? What are the
implications of considering populations of both excitatory and
inhibitory neurons?
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