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Defocusing complex short-pulse equation and its multi-dark-soliton solution
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In this paper, we propose a complex short-pulse equation of both focusing and defocusing types, which governs
the propagation of ultrashort pulses in nonlinear optical fibers. It can be viewed as an analog of the nonlinear
Schrödinger (NLS) equation in the ultrashort-pulse regime. Furthermore, we construct the multi-dark-soliton
solution for the defocusing complex short-pulse equation through the Darboux transformation and reciprocal
(hodograph) transformation. One- and two-dark-soliton solutions are given explicitly, whose properties and
dynamics are analyzed and illustrated.
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I. INTRODUCTION

It is well known that the nonlinear Schrödinger (NLS)
equation, which describes the evolution of slowly varying
wave packets in weakly nonlinear dispersive media under
quasimonochromatic assumption, has been very successful
in many applications such as nonlinear optics and water
waves [1–4]. However, as the width of optical pulses is of
the order of femtoseconds (10−15 s), the spectrum of these
ultrashort pulses is approximately of the order 1015 s−1, and
the monochromatic assumption to derive the NLS equation
is not valid anymore [5]. Description of ultrashort processes
requires a modification of standard slowly varying envelope
models. This is the motivation for the study of the short-pulse
equation, the complex short-pulse equation, and their coupled
models.

In 2004, Schäfer and Wayne derived a short-pulse (SP)
equation [6]

uxt = u + 1
6 (u3)xx, (1)

to describe the propagation of ultrashort optical pulses in
nonlinear media [7]. Here u = u(x,t) is a real-valued function,
representing the magnitude of the electric field; the subscripts t

and x denote partial differentiation. The SP equation has been
shown to be completely integrable [8–10], whose periodic and
soliton solutions of the SP equation were found in [11–15].

Similar to the NLS equation, it is known that the complex-
valued function has advantages in describing optical waves
which have both the amplitude and phase information [1].
Following this spirit, one of the authors recently proposed a
complex short-pulse (CSP) equation [16,17],

qxt + q + 1
2 (|q|2qx)x = 0. (2)

In contrast with no physical interpretation of the one-soliton
solution to the SP equation (1), the one-soliton solution of the
CSP equation (2) is an envelope soliton with a few optical
cycles.
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The CSP equation can be viewed as an analog of the NLS
equation in the ultrashort-pulse regime when the width of
optical pulse is of the order 10−15 s. The NLS equation has the
focusing and defocusing cases, which admits the bright- and
dark-type soliton solutions, respectively. As a matter of fact,
the dark soliton in optical fibers was predicted in 1973 [18], and
was observed experimentally in 1988 [19,20], a decade earlier
than the observation of the bright soliton [21,22]. Therefore it
is natural that the CSP equation can also have the focusing and
defocusing type, which may be proposed as

qxt + q + 1
2σ (|q|2qx)x = 0, (3)

where σ = 1 represents the focusing case, and σ = −1 stands
for the defocusing case. It turns out that this is indeed the case
as shown in the subsequent section. The same as the focusing
CSP equation discussed in [16,17], the defocusing CSP
equation can also occur in nonlinear optics when ultrashort
pulses propagate in a nonlinear media of defocusing type.

The remainder of the present paper is organized as follows.
In Sec. II, the CSP equation of both the focusing and
defocusing types is derived from the context of nonlinear
optics based on Maxwell’s equations. Then, based on the
reciprocal link between the defocusing CSP equation and the
complex coupled dispersionless (CCD) equation, the Darboux
transformation to the CCD equation is derived to give a
general solitonic formula to the defocusing CSP equation in
Sec. III. We continue to derive explicit formulas for one- and
multi-dark-soliton solutions to the defocusing CSP equation by
a limiting process in Sec. IV. The one- and two-dark-soliton
solution is analyzed in details, which can be classified into
smoothed, cusponed, and looped ones depending on the
parameters. The paper is concluded by some comments and
remarks in Sec. V.

II. DERIVATION OF THE FOCUSING AND DEFOCUSING
COMPLEX SHORT-PULSE EQUATION

The starting point to derive the CSP equation is the same
as the one for the NLS equation [2–4], which is the Maxwell’s
equations

∇ × E = −∂B
∂t

, ∇ × H = −∂D
∂t

, (4)
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where E and H are electric and magnetic field vectors, and D
and B are corresponding electric and magnetic flux densities.
The relations between D, B and E, H are called the constitutive
relations given by

D = εE, B = μH, (5)

where ε is the permittivity and μ is the permeability. In a
vacuum, c2 = 1/(ε0μ0) with c the velocity of light in vacuum.
In the frequency-dependent media,

D = ε � E, B = μ � H, D = E + P, (6)

where � means the convolution, and P is the electric induced
polarization. By eliminating B and D, the resulting wave
equation follows:

∇2E − 1

c2
Et t = μ0Pt t , (7)

which describes light propagation in optical fibers. If we
assume the local medium response and only the third-order
nonlinear effects governed by χ (3), the induced polarization
consists of linear and nonlinear parts, P(r,t) = PL(r,t) +
PNL(r,t), with the linear part

PL(r,t) = ε0

∫ ∞

−∞
χ (1)(t − t ′) · E(r,t ′) dt ′, (8)

and the nonlinear part

PNL(r,t) = ε0

∫ ∞

−∞
χ (3)(t − t1,t − t2,t − t3)

×E(r,t1)E(r,t2)E(r,t3) dt1dt2dt3. (9)

Here ε0 is the vacuum permittivity and χ (j ) is the j th-order
susceptibility. As discussed in [23], the nonlinear response
is due to the induced atomic dipole with a response time
of the order 1/�, where � = |ωik − ω0|. ωik represents the
transition frequency from the initial (usually ground) quantum
state i into some excited state k, and ω0 is the central carrier
frequency. Since the typical transition frequency from the
atomic ground state to the lowest excited state significantly
exceeds the usual carrier frequency, 1/� is typically less than
1 fs. Therefore, we can assume an instantaneous nonlinear
response in the femtosecond regime. Moreover, the nonlinear
effects are relatively small in silica fibers; PNL can be treated as
a small perturbation. Therefore, we first consider Eq. (7) with
PNL = 0. Furthermore, we restrict ourselves to the case that
the optical pulse maintains its polarization along the optical
fiber, and the transverse diffraction term can be neglected.
In this case, the electric field can be considered to be one
dimensional and expressed as

E = 1
2 e1[E(z,t) + c.c.], (10)

where e1 is a unit vector in the direction of the polarization,
E(z,t) is the complex-valued function, and c.c. stands for the
complex conjugate. Under this case, it is useful to transform
Eq. (7) into the frequency domain, which reads

Ẽzz(z,ω) + ε(ω)
ω2

c2
Ẽ(z,ω) = 0, (11)

where Ẽ(z,ω) is the Fourier transform of E(z,t) defined as

Ẽ(z,ω) =
∫ ∞

−∞
E(z,t)eiωt dt. (12)

The frequency-dependent dielectric constant occurring in
Eq. (12) is defined as

ε(ω) = 1 + χ̃ (1)(ω), (13)

where χ̃ (1)(ω) is the Fourier transform of χ (1)(t). Up to now,
the consideration is exactly the same as the one for deriving the
NLS equation. To derive the NLS equation, the optical field is
assumed to be quasimonochromatic, i.e., the pulse spectrum,
centered as ω0, is assumed to have a spectral width �ω such
that �ω/ω0 � 1. Under this assumption, the NLS equation
can be derived to govern the slowly varying envelope of the
optical wave packet in weakly nonlinear dispersive media.
However, when the width of the optical pulse is of the order
of femtoseconds (10−15 s), the monochromatic assumption to
derive the NLS equation is not valid anymore. We need to
construct a suitable fit to the frequency-dependent dielectric
constant ε(ω) in the desired spectral range. More specifically,
for the frequency-dependent dielectric constant ε(ω) = 1 +
χ̃ (1)(ω), we assume χ̃ (1) can be approximated by

χ̃ (1) = χ̃
(1)
0 ∓ χ̃

(1)
2 λ2, χ̃

(1)
2 > 0. (14)

As discussed subsequently, the negative sign represents the
focusing media with anomalous group velocity dispersion
(GVD), and the positive sign stands for the defocusing media
with normal GVD.

Next we proceed to the consideration of the nonlinear effect.
Assuming the nonlinear response is instantaneous so that
PNL is given by PNL(z,t) = ε0εNLE(z,t) [3], the nonlinear
contribution to the dielectric constant is defined as

εNL = 3
4χ (3)

xxxx |E(z,t)|2. (15)

Therefore, the Helmholtz equation can be modified as

Ẽzz(z,ω) + ε̃(ω)
ω2

c2
Ẽ(z,ω) = 0, (16)

where

ε̃(ω) = 1 + χ̃
(1)
0 ∓ χ̃

(1)
2 λ2 + εNL. (17)

In summary, Eq. (16) with Kerr cubic nonlinearity reads

Ẽzz + 1 + χ̃
(1)
0

c2
ω2Ẽ ∓ (2π )2χ̃

(1)
2 Ẽ + εNL

ω2

c2
Ẽ = 0. (18)

By applying the inverse Fourier transform to Eq. (18), the
nonlinear wave equation in physical domain is

Ezz − 1

c2
1

Ett = ± 1

c2
2

E + 3

4
χ (3)

xxxx(|E|2E)t t , (19)

where

c1 = c√
1 + χ̃

(1)
0

, c2 = 1

2π

√
χ̃

(1)
2

. (20)

Furthermore, by using the normalized independent vari-
ables z → c2z, t → c2/c1, and normalized field E →
(3c2

1χ
(3)
xxxx/4)−1/2E, we obtain the normalized wave equation

Ezz − Ett = ±E + (|E|2E)t t . (21)
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Next, we focus on only a right-moving wave packet and assume
a multiple scales ansatz

E(z,t) = εE0(τ,z1,z2, . . . ) + ε2E1(τ,z1,z2, . . . ) + · · · ,

(22)

where ε is a small parameter, τ and zn are the scaled variables
defined by

τ = t − x

ε
, zn = εnz. (23)

Substituting (22) with (23) into (19), we obtain the following
partial differential equation for E0 at the order O(ε):

−2
∂2E0

∂τ∂z1
= ±E0 + 2

∂

∂τ

(
|E0|2 ∂E0

∂τ

)
. (24)

Here the term E2
0E0,τ is ignored but it is validated subse-

quently. Finally a general complex short-pulse equation can
be obtained,

qxt ± q + 1
2 (|q|2qx)x = 0, (25)

by the scale transformations

x = 1√
2
τ, t = 1√

2
z1, q =

√
2E0. (26)

It is obvious that Eq. (25) with positive sign is the same as
Eq. (3), while Eq. (25) with negative sign is equivalent to
Eq. (3) by a conversion of time t → −t . Consequently, we
derive the CSP equation of both the focusing and defocusing
types. We should point out that there are typos in the scaling
transformations in [16].

To validate the approximation, we compare the solutions to
Maxwell equations with the ones to the CSP equation. As a
matter of fact, solitary wave solutions with a few cycles derived
directly from the Maxwell equations under the assumption
of the Kramers-Kronig relation holds have been investigated

in the literature [24–27]. Here we mainly refer to the results
in [25] and consider the normalized equation (21) with positive
sign. We assume an envelope solitary wave solution is of the
form

E(z,t) = A(ξ )eiφ(z,t), (27)

with ξ = z − vt , φ(z,t) = ω(t − vz) + F (ξ ). Inserting this
ansatz into Eq. (21), one obtains the set of equations

Azz − Att − A
(
φ2

z − φ2
t

)
−A − (

6AA2
t + 3A2Att − A3φ2

t

) = 0, (28)

2Azφz + Aφzz − (2Atφt + Aφtt ) − (6A2Atφt + A3φtt ) = 0,

(29)

[1 − v2A2/(1 − v2)]AFξξ + 2[1 − 3v2A2/(1 − v2)]AξFξ

+ 6vωA2Aξ/(1 − v2) = 0. (30)

By introducing normalized amplitude a = vA/
√

1 − v2, we
obtain

F (ξ ) = − ω

2v

∫ ξ

−∞

a2(3 − 2a2)

(1 − a2)
d ξ ′ (31)

by integrating Eq. (30) once. Further, inserting φt = ω − vFξ

and φz = −ωv + Fξ into Eq. (28), one obtains a second-order
differential equation

aξξ − 6aa2
ξ

1 − 3a2
− ω2a

1 − 3a2

(
δ2

v2
− a2(4(1 − a2)2 − a2)

4v2(1 − a2)3

)
= 0, (32)

where δ2 = v2/[ω2(1 − v2)] − v2. Integrating once and re-
quiring a,aξ → 0 at ξ → ±∞, one arrives at

aξ = ± ω
√

1 + δ2a

v(1 − 3a2)(1 − a2)

√√√√(
1 − 3

2
a2

)(
1 + 4δ2 + √

1 − 8δ2

4(1 + δ2)
− a2

)(
1 + 4δ2 − √

1 − 8δ2

4(1 + δ2)
− a2

)
. (33)

From (33), one can easily show that a localized solution exists
with amplitude

amax = 1

2

√
1 + 4δ2 + √

1 − 8δ2

1 + δ2
(34)

provided δ2 � 1/8.
As mentioned in [25], in the case of amax � 1 where the

slowly evolving wave field approximation (SEWA) is valid,
the solution to Eq. (33) can be written as

9

2
δ

√
δ2 − a2

2
− cosh−1

(√
2δ

a

)
= ±ω

v
δξ. (35)

Furthermore, when δ2 � 1/8 and the first term in Eq. (35) can
be neglected, we obtain the one-soliton solution to the NLS

equation,

aNLS =
√

2δsech(ωδξ/v). (36)

Multiplying Eq. (35) by 2 and taking cosh function, we arrive at
a localized solution to the higher order nonlinear Schrödinger
(HONLS) equation by taking into account dispersions beyond
group velocity dispersion (GVD),

aHONLS = 2
√

2δ

9δ2 +
√

81δ2 + 4 cosh(2ωδξ/v)
,

(37)

F = −3ω

2v

∫ ξ

−∞
a2d ξ ′.

In Fig. 1, we compare the solutions for Eqs. (21) and (25)
with positive sign [16,17,28], and the solution to the NLS
equation and the higher order NLS equations (37) and (35) for
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FIG. 1. Comparison of solitary solutions among Maxwell equa-
tions (solid blue line), focusing CSP equation (red dotted line), NLS
(magenta dashed line), and the higher order NLS equations (cyan
dash-dot line).

the parameters v = 1/2.25, ω = 1.0. Here, a classical Runge-
Kutta method is used to integrate Eq. (33). It can be observed
that solution of the Maxwell equations lies in between the ones
of the CSP equation and the higher order NLS equation.

For the defocusing case, through a similar procedure as the
focusing case, we can obtain the following equations:

[aξ (3a2 − 1)]ξ

+ ω2

4

a4[−a4 + 4(1 − a2)2] − 4C0v
3(a4 + v3C0)

v2(a2 − 1)3a3

− (v2 − 1)2ω2 − v2

v2(v2 − 1)
a = 0,

F (ξ ) =
∫ ξ

−∞

[
ω(2a6 − 3a4 − 2C0v

3)

2v(a2 − 1)2a2
− C2

]
dξ + C2ξ,

(38)

where C0 is an integration constant. Integrating (38) once, we
arrive at

aξ = ±
√

G(a,v,ω,C0,C1)

2v
√

(1 − v2)(3a2 − 1)(a2 − 1)a
,

where G(a,v,ω,C0,C1) is a tenth order polynomial with
respect to a (so we omit the explicit formula), and C1 is an
integration constant. In a special case, we can obtain the dark
soliton solution by choosing the parameters v = 0.44, ω =
0.479 991 533 9, C0 = −17.654 005 08. Similarly, the dark
soliton can be obtained by numerically solving (38) via the
classical Runge-Kutta method. The result is compared with
the one for the defocusing CSP equation in Fig. 2. As is seen,
a good agreement is achieved.

Notice that the CSP equation (3) can be rewritten by

(
√

1 + σ |qx |2)t + 1
2σ (|q|2

√
1 + σ |qx |2)x = 0,

so that we can define a reciprocal (hodograph) transformation

dy = ρ−1dx − 1
2σρ−1|q|2dt, ds = −dt, (39)

17 18 19 20 21 22
1

1.2

1.4

1.6

1.8

2

ξ

A
(ξ

)

Maxwell
CSP

FIG. 2. Comparison of dark solitons between Maxwell equations
(blue solid line) and the defocusing CSP equation (magenta dashed
line).

where ρ−1 =
√

1 + σ |qx |2. By doing so, the CSP equation (3)
is converted into the following coupled equation:

qys = ρq, (40)

ρs + 1
2σ (|q|2)y = 0. (41)

We remark here that Eqs. (40) and (41) with σ = 1 is
the complex coupled dispersionless (CCD) equation studied
in [29], while the case of σ = −1 is the case which, for some
reason, has not been studied in the literature.

III. DARBOUX TRANSFORMATION AND
MULTI-DARK-SOLITON SOLUTION TO THE

DEFOCUSING CSP EQUATION

In the present section, we aim at finding the multi-dark-
soliton solution of the defocusing CSP equation

qxt + q − 1
2 (|q|2qx)x = 0 (42)

via the Darboux transformation method. First, it is noted that
the CSP equation is invariant under the following scaling
transformations: q → cq, ∂x → 1

c
∂x , and ∂t → c∂t . Thus,

without loss of generosity, we can fix either the amplitude
or the wave number of q. Second, due to the fact that
the CSP equation belongs to the Wadati-Konno-Ichikawa
(WKI) hierarchy, it is not feasible to construct the Darboux
transformation (DT) from the spectral problem of the CSP
equation directly. Instead, we can develop the DT for the CCD
equation which is linked to the CSP equation by the hodograph
transformation (39).

In what follows, we present the Lax pair and the correspond-
ing DT of the CCD equations (40) and (41) with σ = −1. It can
be easily shown that the compatibility condition �ys = �sy of
the following linear problems:

�y = U (ρ,q; λ)�, (43)

�s = V (q; λ)�, (44)
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where

U (q,ρ; λ) = λ−1

[−iρ q̄y

qy iρ

]
,

V (q; λ) = i

4
λσ3 + i

2
Q, Q =

[
0 −q̄

q 0

]
,

with the overbar representing the complex conjugate and
σ3 being the third Pauli matrix, yields the defocusing CCD
equation

qys = ρq, (45)

ρs − 1
2 (|q|2)y = 0. (46)

Through the hodograph transformation

dx = ρdy + 1
2 |q|2ds, dt = −ds,

one can obtain the defocusing CSP equation (42). To obtain
the soliton equation, we give the following Darboux matrix for
the defocusing CSP equation (42) (we omitted the proof here;
the interested reader can refer to [28,30–32] for details):

T = I + λ̄1 − λ1

λ − λ̄1
P1, P1 = |y1〉〈y1|σ3

〈y1|σ3|y1〉 ,
(47)

〈y1| = |y1〉†, |y1〉 =
[
ψ1(y,s; λ1)
φ1(y,s; λ1)

]
,

where |y1〉 denotes the special solution for the system (43)
and (44) with λ = λ1, and we can convert system (43) and (44)
into a new system:

�[1]y = U (q[1],ρ[1]; λ)�[1], (48)

�[1]s = V (q[1]; λ)�[1]. (49)

The Bäcklund transformations between (q[1],ρ[1]) and (q,ρ)
are given through

q[1] = q + (λ̄1 − λ1)ψ̄1φ1

〈y1|σ3|y1〉 , (50)

ρ[1] = ρ − 2 lnys

( 〈y1|σ3|y1〉
λ̄1 − λ1

)
, (51)

|q[1]|2 = |q|2 − 4 lnss

( 〈y1|σ3|y1〉
λ̄1 − λ1

)
. (52)

Furthermore, we have the following N -fold Darboux matrix:
The N -fold Darboux matrix can be represented as

TN = I + YM−1D−1Y †σ3, (53)

where

Y = [|y1〉,|y2〉, . . . ,|yN 〉],

M =
( 〈yi |σ3|yj 〉

λ̄i − λj

)
1�i,j�N

,

D = diag(λ − λ̄1,λ − λ̄2, . . . ,λ − λ̄N ),

the vector |yi〉 represents the special solution for system (43)
and (44) with λ = λi , and the Bäcklund transformations for

q[N ] and ρ[N ] are

q[N ] = q + det(M̂)

det(M)
, (54)

ρ[N ] = ρ − 2 lnys [det(M)], (55)

|q[N ]|2 = |q|2 − 4 lnss [det(M)], (56)

where

M̂ =
[

M Y
†
1−Y2 0

]
,

and Yk represents the kth row of matrix Y . The proof can be
given similar to the one in [32], which is omitted here. Instead,
we merely comment that the following identities associated
with the matrix and determinant are used:

φM−1ψ† =
∣∣∣∣ M ψ†

−φ 0

∣∣∣∣/|M|,

1 + φM−1ψ† =
∣∣∣∣ M ψ†

−φ 1

∣∣∣∣/|M| = det(M + ψ†φ)

det(M)
.

Here M is a N × N matrix; φ, ψ are the N × 1 matrix. Based
on the above N -fold Darboux transformation for the CCD
system (40) and (41), we have the solitonic solution formula
for the defocusing CSP equation (42) in parametric form,

q[N ] = q + det(M̂)

det(M)
, (57)

x =
∫

ρdy + 1

2

∫
|q|2ds − 2 lns [det(M)], t = −s.

(58)

IV. ONE- AND MULTI-DARK SOLUTIONS TO THE
DEFOCUSING CSP EQUATION

In this section, we derive an explicit expression for the
one- and multi-dark-soliton solution to the defocusing CSP
equation through formulas (54)–(56) by a limit technique.

A. One-dark-soliton solution

We start with the seed solution

ρ[0] = −γ

2
, q[0] = β

2
eiθ , θ = y + γ

2
s, γ > 0. (59)

Introducing a gauge transformation with � = K�̂ with

K = diag
(
e(i/2)θ ,e−(i/2)θ),

we can solve the Lax pair equations (43) and (44) at λ = λ1,
finding the fundamental matrix solution as follows:

� = KL1M1,

where

L1 =
[

1 1
β

χ+
1 +γ

β

χ−
1 +γ

]
, M1 = diag(eω+

1 ,eω−
1 ),

with

ω±
1 = i

4
(χ±

1 − λ1)

(
s + 2

λ1
y

)
± a1,

χ±
1 = λ1 ±

√
(λ1 + γ )2 − β2.
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However, the soliton solution obtained above is usually
singular. In order to derive the one-dark-soliton solution
through the DT method, a limit process λ1 → λ̄1 is needed.
To this end, we first pick up one special solution,

|y1〉 = KL1M1

[
1

α1(λ̄1 − λ1)

]
;

further, for the sake of convenience, we set

λ1 = β cosh(ε + iϕ1) − γ, χ±
1 = βe±(ε+iϕ1) − γ,

α1 = − e−iϕ1

4β sin2 ϕ1
,

where ϕ1 ∈ (0,π ). By taking a limit ε → 0, we can obtain

〈y1|σ3|y1〉
2(λ̄1 − λ1)

= e2ω1 + 1

β(e−iϕ1 − eiϕ1 )
, (60)

where

ω1 = −β sin ϕ1

4

(
s + 2y

β cos ϕ1 − γ

)
+ a1.

Thus, the single dark soliton can be written as

q[1] = β

2

[
1 + e2(ω1−iϕ1)

1 + e2ω1

]
eiθ

= β

4
[(1 + e−2iϕ1 ) + (e−2iϕ1 − 1) tanh ω1]eiθ , (61)

x = −γ

2
y + β2

8
s + β sin ϕ1e

2ω1

1 + e2ω1
, t = −s, (62)

The nonsingularity condition for the single dark soliton is
ρ[1] �= 0 for all (x,t) ∈ R2. To analyze the property for the
one-soliton solution, we calculate out

ρ[1] = ∂x

∂y
= −

γ e4ω1 + (
2 + 2β2 sin2 ϕ1

β cos ϕ1−γ

)
e2ω1 + γ

2(1 + e2ω1 )2
, (63)

thus we can classify this one-dark-soliton solution as follows:
(i) Smooth soliton: when γ − β cos ϕ1 < 0, or γ −

β cos(ϕ1) > 0 and �1 > 0, where �1 = 2γ 2 − 2γβ cos ϕ1 −
β2 sin2 ϕ1, the single-dark-soliton solution is always smooth.
An example is illustrated in Fig. 3(a).

(ii) Cuspon soliton: when γ − β cos ϕ1 > 0 and �1 = 0
then ρ[1] attains zero at only one point, which leads to a
cusponed dark soliton as displayed in Fig. 3(b).

(iii) Loop soliton: when γ − β cos ϕ1 > 0, �1 < 0, then
ρ[1] attains two zeros, which leads to a looped dark soliton.

The velocity can be solved with the following relation:

x − vsp,1t − c1 = γ (β cos ϕ1 − γ )

β sin ϕ1
ω1 + β

2
sin ϕ1 tanh (ω1).

The velocity of the dark soliton is

vsp,1 = −2γ (β cos ϕ1 − γ ) + β2

8
,

and the initial center is

c1 = γ (γ − β cos ϕ1)

β sin(ϕ1)
a1 + β

2
sin ϕ1.

The trough of the dark soliton |q| is along the line

x − vsp,1t − c1 = 0,

and the depth of the trough is 1
2 |β(1 − cos ϕ1)|.

B. Multi-dark-soliton solution

Similar to the process of obtaining the single-dark-soliton
solution, starting with the same seed solution, and solving the
Lax pair equations (43) and (44) with (q = q[0],ρ = ρ[0]) at
λ = λi , we have

|yi〉 = KLiMi

[
1

αi(λ̄i − λi)

]
≡ K

[
φ̂i

βψ̂i

]
,

where

Li =
[

1 1
β

χ+
i +γ

β

χ−
i +γ

]
, Mi = diag(eω+

i ,eω−
i ),

with

ω±
i = i

4
(χ±

i − λi)

(
s + 2

λi

y

)
± ai,

χ±
i = λi ±

√
(λi + γ )2 − β2,

αis are appropriate complex parameters and ais are real
parameters. Based on the N -soliton solution (57) and (58)
to the defocusing CSP equation, it then follows that

q[N ] =β

2
[1 + Ŷ2M

−1Ŷ1
†
]eiθ = β

2

[
det(H )

det(M)

]
eiθ ,

x = − γ

2
y + β2

8
s − 2 lns[det(M)], t = −s,

(64)

where

M =
( 〈yi |σ3|yj 〉

2(λ̄i − λj )

)
1�i,j�N

, H = M + Y
†
1 Y2,

Ŷ1 = [
φ̂1,φ̂2, . . . ,φ̂N

]
, Ŷ2 = [

ψ̂1,ψ̂2, . . . ,ψ̂N

]
.

In general, the above N -soliton solution (64) is singular.
In order to derive the N -dark soliton solution through the
DT method, we need to take a limit process λi → λ̄i (i =
1,2, . . . ,N ) similar to the one in [32]. By a tedious procedure
which is omitted here, we finally have the N -dark-soliton
solution to the defocusing CSP equation (42) as follows:

q = β

2

det(H )

det(M)
ei[y+(γ /2)s], (65)

x = −γ

2
y + β2

8
s − 2 lns[det(M)], t = −s, (66)

where the entries of the matrices M and H are

mi,j = eωi+ωj + δi,j

β(e−iϕi − eiϕj )
, hi,j = e(ωi−iϕi )+(ωj −iϕj ) + δi,j

β(e−iϕi − eiϕj )
,

1 � i,j � N, (67)

δi,j is a Kronecker’s δ and

ωi = −β

4
sin ϕi

(
s + 2y

β cos ϕi − γ

)
+ ai, ϕi ∈ R. (68)
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FIG. 3. (a) Smooth dark soliton (t = 0: blue solid line; t = 120: red dashed line). Parameters β = 1, γ = 1, ϕ1 = 2π/3, a1 = 0. (b) Cuspon
dark soliton (t = 0: blue solid line; t = 50: red dashed line). Parameters β = 1, γ = √

2/2, ϕ1 = π/2, a1 = 0.

By taking N = 2 in (67), the determinants corresponding to
the two-dark-soliton solution can be calculated as

|M| = 1 + e2ω1 + e2ω2 + a12e
2(ω1+ω2), (69)

|H | = 1 + e2(ω1−iϕ1) + e2(ω2−iϕ2) + a12e
2(ω1+ω2−iϕ1−iϕ2),

(70)

where

a12 = sin2
(

ϕ2−ϕ1

2

)
sin2

(
ϕ2+ϕ1

2

) . (71)

The collision processes between smooth-smooth dark solitons
and smooth-cuspon dark solitons are illustrated in Figs. 4(a)
and 4(b), respectively. It is seen that the interactions between
dark solitons are elastic. Different from the interaction between

two smooth bright solitons, which could develop singularity,
the interaction between two smooth dark solitons never appears
as singularity. When a smoothed dark soliton interacts with a
cusponed dark soliton, the singularity of the cusponed dark
soliton could vanish as observed in Fig. 4(b).

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we derived the complex short-pulse equation
of both focusing and defocusing types from the context of
nonlinear optics and found the multi-dark-soliton solution of
the defocusing type. Comparing with the classical theory for
the SP equation, there are several advantages in using complex
representation. First, amplitude and phase are two fundamental
characteristics for a wave packet, the information of these
two factors is nicely combined into a single complex-valued
function. Second, the use of complex representation can allow
us to model the propagation of optical pulses in both the
focusing and defocusing nonlinear media. Such advantages

−50 0 50
0

0.1

0.2

0.3

0.4

0.5

x

|q
|

t=−120
t=  0
t=120

−15 −10 −5 0 5 10 150
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0.2

0.3

0.4

0.5

x

|q
|

t=−50
t=  0
t= 50

(a)|q| (b)|q|

FIG. 4. (a) Smooth-smooth dark soliton (t = −120: blue solid line; t = 0: magenta dash-dot line; t = 120: red dashed line). Parameters
β = 1, γ = 1, ϕ1 = 2π/3, ϕ2 = 5π/6, a1 = a2 = 0. (b) Smooth-cuspon dark soliton (t = −50: blue solid line; t = 0: green dash-dot line;
t = 50: red dashed line). Parameters β = 1, γ = √

2/2, ϕ1 = π/2, ϕ2 = 2π/3, a1 = a2 = 0; It is seen that the interaction of smooth dark
soliton and cuspon dark soliton is elastic.
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can be observed in many analytical results related to the NLS
equation and the CSP equation. Therefore, by using a complex
representation, we have shown that the focusing CSP equation
admits the bright soliton solution [16,17], the breather solution,
as well as the rogue wave solution [28], whereas, as shown
in the present paper, the defocusing CSP equation has the
multi-dark-soliton solution the same as the defocusing NLS
equation. It would be a very interesting topic to compare the
properties of ultrashort optical pulses experimentally with the
theoretical predictions for the CSP equation and the ones for
the NLS equations. This, of course, is beyond the scope of the
present paper.

The dynamics of the dark soliton has been a hot topic in
nonlinear optics. The history for the observation of the dark
soliton is even earlier than the bright soliton. In this work, we
proposed an integrable equation which admits the multi-dark-

soliton solution. Moreover, we provided the dynamics analysis
for the single-dark soliton and two-dark soliton in detail. The
results would further enrich our understanding of dark solitons
in the ultrashort-pulse model.
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