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Noise-induced standing waves in oscillatory systems with time-delayed feedback
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In oscillatory reaction-diffusion systems, time-delay feedback can lead to the instability of uniform oscillations
with respect to formation of standing waves. Here, we investigate how the presence of additive, Gaussian
white noise can induce the appearance of standing waves. Combining analytical solutions of the model with
spatiotemporal simulations, we find that noise can promote standing waves in regimes where the deterministic

uniform oscillatory modes are stabilized. As the deterministic phase boundary is approached, the spatiotemporal
correlations become stronger, such that even small noise can induce standing waves in this parameter regime. With
larger noise strengths, standing waves could be induced at finite distances from the (deterministic) phase boundary.
The overall dynamics is defined through the interplay of noisy forcing with the inherent reaction-diffusion

dynamics.
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I. INTRODUCTION

Reaction-diffusion models define a paradigmatic class of
systems to study wave patterns in spatially extended media
far from thermal equilibrium [1]. Beyond their natural use
in chemical systems [2], they have been applied to general
pattern-forming dynamical systems [3], kinetic roughening
systems [4], biological systems [5], among others.

Here, we consider the case where the reaction-diffusion sys-
tem has undergone a smooth transition from a stationary state
to uniform oscillations, a scenario captured by the supercritical
Hopf bifurcation. The temporal and spatiotemporal behavior of
the system is then described by the complex Ginzburg-Landau
equation (CGLE) [3]. However, uniform oscillations are not
the only solution to that equation: among the most studied
traveling wave solutions are one-dimensional plane waves
and two-dimensional spiral waves. Furthermore, fascinating
aspects of such dynamics concern unstable oscillations often
leading to spatiotemporal chaos, like phase turbulence and
defect chaos [5-7]. The motivation of our work is to sup-
press spatiotemporal chaos in the CGLE and to replace it
with regular patterns in a stochastically forced setting. The
underlying method with which we achieve this is time-delay
feedback.

Control of chaotic states in pattern-forming systems is a
wide field of research that has already been reviewed in detail
(e.g., in Refs. [8,9]). In the context of the reaction-diffusion
systems, the introduction of forcing terms or global feedback
terms have been shown to be efficient ways to control
turbulence. To cite just one example, chemical turbulence
can be suppressed by global time-delayed feedback [10,11]
in the CO oxidation reaction on Pt(110). In principle, most
real physical feedbacks would need some time to influence the
system. Although there may be cases where the feedback is
fast enough compared to the intrinsic characteristic timescale
and hence can be regarded as instantaneous; in general, such
a feedback would act with a time delay 7. This sort of
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delay may appear under two heads, a spatially dependent
local feedback and a spatially independent global feedback.
In global feedback, a spatially averaged variable or a variable
without space dependence is fed back to the system dynamics.
In the context of the CGLE, global feedback with explicit
time delay was considered by Battogtokh and Mikhailov
[12] and then Beta and Mikhailov [13]. The latter used the
Pyragas feedback scheme, where the feedback signal is created
from the difference between the actual system state and a
time-delayed one [14]. Among other features, the authors
reported a parameter regime between spatiotemporal chaos
and uniform oscillations where standing wave patterns were
observed.

The presence of noise changes the dynamics of nonlinear,
spatially extended systems significantly, as noise cannot only
destabilize certain patterns, but it also can enhance and induce
others, as reviewed in Ref. [15]. Recently, the effect of noise
on systems subjected to time delay has attracted interest, like
in the context of noise-induced oscillations [16], correlation
times [17], stochastic bifurcation [18], coherence resonance
[19], stochastic switching [20], or autonomous learning [21].
These studies, though, primarily focus on systems without
spatial extension, whereas this article considers a reaction-
diffusion system and therefore enables us to study a spatially
extended wave pattern under the simultaneous influence of
time delay and noise. In the context of extended systems,
different features of spatial and temporal coherence due
to noise (but without time delay) close to pattern-forming
instabilities [22], in excitable systems [23], and for coupled
chaotic oscillators [24,25] have been considered. The effect
of noise on time-delay models has been studied, e.g., for a
network of excitable Hodgkin-Huxley elements [26].

This work builds on the foundation laid out in the
seminal work by DeDominicis and Martin [27,28]. Based
on a stochastically forced Burgers’ dynamics, later to be
followed by the paradigmatic Kardar-Parisi-Zhang model [29],
the results highlighted the importance of stochastic forcing
in second-order phase transitions [30]. Here we take this
approach one step further, by including a finite time delay in
a stochastically forced spatiotemporal dynamics that threads
together vital “missing links” in the causality analysis of
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a perturbed stochastic dynamics. The key construct here is
the segregation of the mean and fluctuating components of a
dynamical field, in line with the DeDominicis-Martin scheme
[27]. The methodology has recently been successfully used in
fluid and magnetohydrodynamic models as well [28,31,32].
In this approach, each vector field ¢ will be split into a mean
component ¢ and a stochastic random part §¢ representing the
(often) nonlinear flow close to the boundary layer as follows:
¢ = ¢o + 6¢. The component d¢ represents the fluctuation
dominated regime away from the line of symmetry. Such a
segregation of deterministic and stochastic components in the
model allows one to study the perturbed dynamics of §¢ around
the mean (symmetry) variable ¢y as a set of two coupled
equations, one in 6¢ and the other in ¢y.

The focal point here is the analysis of the above stochasti-
cally forced dynamical field 8¢ in the context of time delay.
In a series of works [13,33-35], time-delay feedback has
been used to suppress spatiotemporal chaos in the CGLE
without stochastic terms and different aspects have been
considered, like the interplay of local versus global feeback
terms [33], the stability of the uniform solutions [34], and
the standing-wave solution [35]. In this work, instead of
including local feedback terms, for the sake of simplicity
we use a stochastic generalization of the model with purely
global feedback, introduced in Ref. [13]. In the context of our
model, our interests are in understanding the following: (a)
how noise modifies the transition from a turbulent regime
via standing waves to a state of uniform oscillations, and
(b) whether standing waves themselves can be induced by
noise.

This paper is organized as follows: in Sec. II, we introduce
the model and describe briefly the relevant deterministic
solutions, uniform oscillations, and standing waves. In Sec. III,
we introduce noise terms and calculate the spatiotemporal
correlation functions. In Sec. IV, we show numeric simulations
to explore the onset of standing waves in the presence of noise.
A summary of results and future directions of research are
presented in Sec. V.

II. THE DETERMINISTIC MODEL AND
ITS MAIN SOLUTIONS

Reaction-diffusion systems can display various types of
oscillatory dynamics. However, close to a supercritical Hopf
bifurcation, all such systems are described by the complex
Ginzburg-Landau equation (CGLE) [3],

AA(x,1)

= (1 —iw)A — (1 +ix)|APA 4+ (1 +iB)AA,

ey

where A is the complex oscillation amplitude, @ the linear
frequency parameter, « the nonlinear frequency parameter,
the linear dispersion coefficient, and A stands for the Lapla-
cian operator. For 14 off <0 (the Benjamin-Feir-Newell
criterion), uniform oscillations A, = exp[—i(w + «)t] are
unstable and spatiotemporal chaos is observed. In analogy with
Ref. [27], the ¢ there serves the role of the spatiotemporal field
variable A(x,t).
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The CGLE for a one-dimensional medium with global time-
delayed feedback F has been introduced in Ref. [13] and is
defined by

aA;’;”) — (1 —i)A — (1 +ia)|APA
%A
+(1+i8)— + F, and (2a)
ax2
F = pe®[A@ — 1) — A(D)], (2b)

where A(t) = % fOL A(x,t)dx denotes the spatial average of
A(x,t) over a one-dimensional medium of length L. The pa-
rameter u describes the feedback strength and & characterizes
a phase shift between the feedback and the current dynamics
of the system.

The solution of the feedback-induced uniform oscillations
is given by Ay o(t) = poexp(—iS2t) [13], where the amplitude
and frequency are given by

Py = \/1 + p[cos(é + Q1) — cos&], (3a)

Q=w+a+ pla(cos(§ + Q1) —cosé)
—(sin(¢ 4+ Qt) — sin&)]. (3b)

In general, no explicit analytic solution for Egs. (3) can be
given. Nevertheless, the solutions can be found numerically
using root-finding algorithms. In order to understand the
suppression of spatiotemporal chaos, a linear stability analysis
for uniform oscillations was done [13]. At stable uniform
oscillations, control of chaos was consistently achieved.
Obviously, this depends not only on the CGLE parameters,
but also on the control parameters, in particular i and 7 (we
consider a fixed & throughout the article). In the limits where
the feedback strength or the time delay go to zero, the feedback
term also goes to zero. This makes the scheme ineffective, and
spatiotemporal chaos is recovered.

In order to analyze the stochastically forced CGLE model,
the stability boundaries of uniform oscillations in the param-
eter space need to be ascertained for the deterministic model
Eq. (2). These boundaries are given by the conditions A; = 0
and 9,A; # 0, where A; is the real part of the dominant
eigenvalue (the others must be negative) and p stands for
either w or 7. As shown in detail in Refs. [13,34], we can
specify the parameter sets for which the uniform periodic
solution becomes unstable with respect to standing waves
with wavelength 27 /k. (k. # 0), where k. is the critical
wave number as given by the linear stability analysis of the
uniform oscillations [13]. It varies between 0.7 and 0.9 for the
parameter set we are interested in; see Fig. 5(b) of Ref. [13].

In Fig. 1, a part of the p-7 parameter space is shown where
uniform oscillations are stable (above the solid curve), and
where standing waves are found numerically (diamonds). The
other symbols indicate parameter values used in later figures.

Simulations confirm that the onset of standing waves is
smooth, and that the standing wave is characterized by a
vanishing space-dependent part at threshold. In this model,
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FIG. 1. Main solutions in the parameter space spanned by t
and p. The solid line defines the stability boundary of uniform
oscillations in the deterministic system (above the curve). Below
that curve, the diamond symbols indicate simulations displaying
standing waves in the deterministic system (data from Fig. 8 of
Ref. [13] and own simulations). The circles denote the parameter
values chosen as defined in Fig. 2, while the left triangles indicate the
parameter values as used for Figs. 3(a) and 3(b); the right triangles
represent the parameter values as used for Figs. 3(c) and 3(d),
and the down triangle stands for the parameter value for Fig. 5.
The crosses represent the parameter values used in Fig. 6. Note
that with the exception of Figs. 2(b)-2(d), all simulations were
performed in the deterministically stable regime characterized by
uniform oscillations where standing waves do not exist. The other
parameters are: o« = —1.4, =2, 0w =27 — o, & = 7/2.

standing wave solutions are described by [35]
Asw = e [ Hy 4+ 2By cos(kx)e 7], 4)

where k is given by the eigenvalue problem studied in Ref. [13],
i.e., it corresponds either to k. (at onset of the standing wave
pattern, A; = 0) or kpn,x (away from onset, A; # 0), and Hy,
By, R0, and y are given by a set of nonlinear equations given
in Ref. [35]. This deterministic formulation will be later used
as we define the amplitude of noise-induced standing waves.

Spatiotemporal simulations are performed for a one-
dimensional system with size L = 256 and spatial resolu-
tion Ax = 0.32. For time integration, we use an explicit
Euler scheme with Ar = 0.002. The Laplacian operator is
discretized using a next-neighbor representation, as discussed
for the deterministic model used in Ref. [35] (and references
therein). We apply periodic boundary conditions and the
initial conditions consist of developed spatiotemporal chaos
as present in the absence of feedback. Usually, the system
settles to an asymptotic state before + = 200, while we let it
evolve until + = 500. Then, we start the simulations that are
shown in Figs. 1, 2, 5, and 6.

In Fig. 2, we give an overview of the most relevant patterns,
as observed in the simulations of the model defined in Eq. (2).
The upper panels show space-time diagrams of |A|, the lower
panels representing the solutions for the real part of the
amplitude. The latter illustrates the oscillations, while the
former reveal the amplitude of the oscillations and whether
they have a space dependence. According to the Benjamin-
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Feir-Newell criterion, the Ginzburg-Landau parameters « and
B are chosen to fulfill 1+ af < 0; i.e., in the absence of
feedback, the system converges to the regime of spatiotemporal
chaos. This is shown in space-time diagrams for |A| and
ReA [Fig. 2(d)], where ReA denotes the real part of A. But
in the presence of strong feedback (u = 0.5), the feedback
induces uniform oscillations [Fig. 2(a)]. For an appropriate
choice of the delay time 7, between the chaotic region and the
region of uniform oscillations, standing waves are observed.
As u decreases (for this 7, at . = 0.19848), small-amplitude
standing waves set in [Fig. 2(b)]. These standing waves are
spatial modulations of the underlying uniform oscillations.
For comparison with the stochastic model discussed below
(Sec. IV), we show in Fig. 2(c) the impact of small noise to the
standing waves [otherwise, same parameters as in Fig. 2(b)].
If the noise is small enough, the observed pattern is stable and
clearly recognizable, in spite of inevitable small fluctuations.

III. THE STOCHASTIC MODEL AND ITS
CORRELATION FUNCTIONS

While previous works [13,35] gave us an understanding
of standing waves in the deterministic system, the dynamics
of these waves in the presence of noise and in particular
their onset are unknown. In order to tackle this question, we
analyze the stochastic Langevin model, starting from Eqgs. (2).
This can be accomplished by studying the impact that the
spatiotemporal noise N(x,?) has on the system, in particular
when we approach the instability of uniform oscillations with
respect to perturbations with k %% 0. Model Egs. (2) therefore
becomes

9A . s
5, = (1 —i0A — (1 +ia)]APA

_ o 9%A
+(1+if)— + F + N(x.1), (5a)
0x

(N(x,t)N(x',t)) =2D8(x — x)8(t — 1), (5b)
where N(x,t) stands for a Gaussian, white noise with mag-
nitude D, and where F is given in Eq. (2b). In order to

calculate the correlation functions, we resort to a Fourier series
expansion of N(x,t) as follows:

N(x,t) = / Nio e~ dk dé. (6)

For A, we use the ansatz

A(x,t) = poexp(—if2t) + Ay exp(ikx) + A_ exp(—ikx),

)
where A represent the amplitudes of the linearly independent
solutions exp(+ikx), phenomenologically representing

oppositely directed waves from left to right or from right to
left. The wave vector k is determined from linear stability
analysis, details of which are available in Ref. [13]. Our interest
is in the spatiotemporal autocorrelations of the field A that
will allow us to compare and establish the contributions from
stochasticity-driven perturbations against the results obtained
in the previous non-noisy cases [13,33,34]. The necessary
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FIG. 2. Main spatiotemporal solutions for different feedback magnitudes and noise strengths: (a) uniform oscillations, (b) standing waves
without noise, (c) standing waves with small noise, (d) spatiotemporal chaos. Shown are space-time diagrams in gray scale for |A| (top panels)
and ReA (bottom panels) for a time interval of + = 25 in the asymptotic regime and system size L = 256. The delay time is t = 0.5 and the
values of u are u = 0.50 (a), u = 0.15 (b), u = 0.15 (¢), u = 0 (d). The noise magnitude is D = 0.05 in (c) and zero otherwise. Black (white)
denotes low (high) values of the respective quantity (rescaled for each simulation). For |A|, these values are (| A|min, |A|max) = (0.94, 1.13) (b),
(| Almin, |Almax) = (0.9, 1.15) (¢), (| Almin» |Almax) = (0.15, 1.2) (d). For (a), the amplitude is constant | A| = 1.085. The other parameters are as

described in the caption of Fig. 1.

quantities to calculate in this connection are, respectively, the
autocorrelation function Cy = (A(x,t) * A*(x,?)), the spatial

([A*(x,t +1) — A(x.0) =
The Dbrackets denote

correlation function C, =
2(Co — (A*(x,t + 1) * A(x,1))).

correlation  function  C, = ([A*(x +r.0) — A(x,n)") = ensemble averages. Straightforward algebra then leads us to
2(Co — (A*(x + r,1) % A(x,1))), and the temporal  the following results:
|
Co = 2D |pol’xt Re(pod 4" + pyd_*®) sin (£
k(,\2 23) 2
2l hot 5 o sin (o + )] 2 kY sin (K (82)
cos sin — )| —Ajcos| — | — Apsin| — a
I 1 2 ) 2 2 2 ) 1 ) 2 )
8D kx
C, = ——5——— [ Re(ppA* @ + ppa_*© eW[sin (-)
k(k 107 ( (PoA+ 0 ) 5
. kx\1 . [k
X M cos | Aot + + Apsin | Aot + 5|~ sin E(x +r)
) k
X { A1 cos At + E(x +r) |+ Aysin | At + E(x +7r)
kx k . (kx . [k
X A14COS — cos E(x +7r)|; + Arisin 5 )~ sin E(x +r) (8b)
_ i a0 1= caof1—e™ A
Cr =2{Co — 2D | |po|*xt + po*AY (1 —e")— pp*AC TS (I—-e"")
—)OOA #(0) i (1 _ e)\*t) + pOA *(O)ekt' - ikx (1 M‘) (8C)
* ikr - Cika ’

where A =X, 4+iXy and A" =X —iky, A being the
solutions of the quadratic equation A% — 2(1 — k%py?)A +
[1 + o+ 2Bwk? +4dawpy® + (1 + BHK* + 4ap po*k? +
30+ a»)pp*]1 =0 (see Ref. [13]) and py; and €

are given by Egs. (3). Note that A; denotes here

the real parts of the eigenvalues of the linear
stability analysis of uniform oscillations, as explained
above.
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FIG. 3. (a, b) Amplitudes of temporal (a) and spatial (b) correlation functions for T = 0.5 for three different values of y (see legend) and
D = 1. We observe that the closer p to the critical u, = 0.19848, the larger the magnitude of the correlation functions. For illustration, we
rescale (multiply) the temporal correlation functions with 1000 (u = 0.5) and 50 (i = 0.25) and the spatial correlation functions with 100
(u =0.5) and 50 (n = 0.25). (c, d) Amplitudes of temporal (c) and spatial (c) correlation functions for u = 0.42 for three different values
of 7 (see legend) and D = 1. We observe that the closer 7 to the critical r, = 0.94244, the larger the magnitude of the correlation functions.
For illustration, we rescale (multiply) the correlation functions with 10 (v = 0.8) and 5 (r = 0.9). All other parameters are as described in the

caption of Fig. 1.

In this context, spatial and temporal correlation functions
are of particular interest. In Figs. 3(a) and 3(b), we observe
the amplitude of the spatial (C,) and temporal (C;) correlation
functions for a fixed T as we approach the instability of uniform
oscillations and the simultaneous onset of standing waves (at
e = 0.19848). The influence of the noise can be expected to
be more prominent as we approach the instability and hence the
magnitude of the correlation functions should increase towards
the instability. This is exactly what is observed in Figs. 3(a)
and 3(b) for three different parameter values. To show different
evaluations of the correlation functions in the same figure, we
have rescaled the correlation functions (see figure captions).
Since the solution describes temporal oscillations, they are
also present in the temporal correlation functions [Fig. 3(a)].
We see that away from the instability (u = 0.5), the temporal
correlation function approaches a constant envelope value after
approximately 20 time units. On the other hand, the spatial
correlation function [Fig. 3(b)] does not show a decaying
property as the temporal one, and the periodicity corresponds
to the k value resulting from the linear stability analysis [13].

In Figs. 3(c) and 3(d), we show the correlation functions
(as functions of r and ¢’, respectively) for three values of t
while keeping u = 0.42 constant. Qualitatively, we observe
a similar behavior as in Figs. 3(a) and 3(b). As the delay
time t increases toward its critical value, the amplitude of the
correlation functions also increases.

In order to obtain a more complete picture of the spatial
and temporal correlations, in Fig. 4 we vary 7 in small steps
for a fixed i and vice versa. We have seen in Fig. 3 that
as we approach the stability boundary, the amplitude of the
correlation functions increases. For the temporal correlation
function, we average over the time interval [(30 — 277/ €2), 30],
and for the spatial correlation function, over the space interval
[(50 — 27/ k), 50], in order to ensure ergodicity over one full
period. As introduced above, k denotes the most unstable
wave number of the uniform oscillations, and 2 is their
frequency. Figure 4 shows that indeed the correlation functions
increase towards to the boundary where uniform oscillations
cease to be stable and standing waves set in the deterministic
system.
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FIG. 4. Amplitudes of temporal and spatial correlation functions for u = 0.42 as t is varied (a) and for T = 0.5 as u is varied (b). This
figure complements the data shown in Fig. 3. To quantify the oscillating amplitudes, we choose the average value of the amplitude in one
period within the asymptotic regime for large ' and r. As p is varied in (a), the amplitude of the correlation functions is low in the area of
deterministically stable oscillations, but increases toward the limits of the stability region. As 7 is varied in (b), we observe qualitatively similar
behavior: here the uniform oscillations lose stability as t is lowered. The other parameters are as described in the caption of Fig. 3.

IV. SPATIOTEMPORAL SIMULATIONS IN THE
PRESENCE OF NOISE AND FEEDBACK

The expressions given in Egs. (8b) and (8c) can be
interpreted as a linear superposition of two waves at the phase
points (k,x) and (k,x + r) for all time points, and with the
same amplitude, which is proportional to the noise strength
D. In other words, our model solution of the correlation
functions lead to noise-induced standing waves. In this section,

-t

we show simulations that corroborate this. The amplitude of
the Gaussian noise term scales as 1/+/ AxAt. This happens
because the two-point noise correlation is proportional to
8(x —x")8(t —t'). In the Euler discretization scheme, the
additive noise scales as /Ar.

First, we consider a parameter value for which the determin-
istic solution corresponds to uniform oscillations: delay time is
fixedto T = 0.5 as above, and the feedback to & = 0.25, which
is larger than the critical one, u, = 0.19848. In Fig. 5, we show

FIG. 5. Spatiotemporal simulations for different values of D and fixed feedback strength. In space-time plots, we show |A| (upper panels)
and ReA (lower panels) for D = 0.05 (a), D = 0.2 (b), and D = 0.5 (c¢). The feedback magnitude is p = 0.25, the delay time t = 0.5, and
the other parameters are as described in the caption of Fig. 1. For low D, we see that although |A| shows some intermittent spatially periodic
patches, their amplitude is actually quite small and the pattern actually is indistinguishable from uniform oscillations. For intermediate D,
intermittent spatially periodic patches are seen in the pattern, reminiscent of standing waves. For large D, the noise is too strong to induce
standing waves and the pattern corresponds to noisy uniform oscillations.
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t

FIG. 6. Spatiotemporal simulations for different values of p and fixed noise. In space-time plots, we show |A| (upper panels) and ReA
(lower panels) for u = 0.2 (a), u = 0.35 (b), and u = 0.5 (c). The noise strength is D = 0.05, the delay time t = 0.5, and the other parameters
are as described in the caption of Fig. 1. For low u, we observe clearly spatially periodic patterns that correspond to noise-induced standing
waves. For larger i (and hence further from the deterministic onset of standing waves), standing waves are weaker. For high u, the noise is not

enough to induce standing waves.

three simulations, for increasing noise strengths. For D = 0.05
[Fig. 5(a)] we see an oscillatory pattern in the lower panel
that is almost indistinguishable from uniform oscillations.
However, the upper panel reveals that there is actually a
spatial periodicity in | A| and that this periodicity is temporally
persistent over multiple oscillations. In the space-time plot,
this is seen as patches of horizontal stripes. This means that
we observe a noise-induced spatial pattern modulating the
uniform oscillations, i.e., the formation of a standing wave
pattern. This finding resembles spatial coherence [22], as we
will comment on below.

If the noise intensity is increased to D = 0.2 [Fig. 5(b)],
we see similar patches of horizontal stripes in the panel for
|A|. However, their amplitudes are larger and, therefore, this
time there is also a visible modulation of the oscillatory
pattern itself [lower panel of Fig. 5(b)]. Hence, this pattern
corresponds to noise-induced standing waves. It is important
to note that the wavelength of the pattern corresponds to
the wavelength predicted through the linear stability analysis
shown in Refs. [13,34]. This means the wave number k
corresponds to the wave number ky.x for which A; reaches
its maximum, while A;(kmax) < O. If the noise intensity is
increased further to D = 0.5 [Fig. 5(c)], patches of stripes
give rise to more irregular patches (upper panel). The lower
panel shows oscillations that are now visibly distorted by the
noise, but without any spatial periodicity.

We can now fix the noise intensity and explore the effect of
varying the feedback magnitude. In Fig. 6, using D = 0.05,
we display the results of spatiotemporal simulations for three
values of u that all correspond to the regime where no standing
waves are stable in the deterministic system. First, we fix
= 0.2 [Fig. 6(a)], a value that ensures closeness to the onset

of the standing wave regime. Not surprisingly, we therefore
see clear indication of standing waves in the panel for |A].
However, similar to what has been shown in Fig. 6(a), the
pattern amplitude is not large enough compared to the uniform
mode to be clearly seen in the oscillations (lower panel).
Increasing the feedback magnitude to u = 0.35 (b), we see
only weak evidence for patches of standing waves (upper
panel), and moving even further from the stability boundary
[ = 0.5 in Fig. 6(c)], standing waves cannot be induced by
weak noise.

To assess the onset of noise-induced standing waves in
more detail, we obtain from the simulations (Figs. 5 and
6) the amplitude of the standing waves. To be precise, we
show its spatial contribution 2 By [see Eq. (4)], which should
be compared to the uniform contribution Hy, of order unity.
Due to the noisy character of the simulations, the standing
waves occur only intermittently and it is difficult to obtain
their amplitude. In Fig. 7, we show how this amplitude varies
with D for fixed t and p [Fig. 7(a)] and with p for fixed t and
D [Fig. 7(b)].

As seen in Fig. 7(a), the amplitude increases monotonically
with D. The standing waves identified in the simulations are
in the intermediate parameter range: for small D, uniform
oscillations dominate, and for large D, the pattern becomes
very noisy on the background of uniform oscillations. In the
scenario shown in Fig. 7(b), we observe a monotonically
decreasing amplitude profile with increasing w that indicates
damping of the noise at large feedbacks. As we deviate more
and more from the stability boundary, a given noise D = 0.05
becomes more and more ineffective to induce standing waves.
Note that the first data point (u = 0.15) is already in the regime
of deterministically stable standing waves.
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FIG. 7. Amplitude of noise-induced standing waves. In (a), this amplitude is shown as a function of the noise strength D for a fixed set
of T = 0.5 and u = 0.25. As qualitatively seen in Fig. 5, for small D the amplitude is very small and not perceivable, for intermediate D the
amplitude is large and visible, while for large noise strengths, the overall pattern becomes too irregular to actually identify standing waves.
In panel (b), the amplitude of standing waves is shown as a function of the feedback strength p for a fixed set of T = 0.5 and noise strength
D = 0.05. The leftmost point (1 = 0.15) corresponds to deterministically stable standing waves with relatively large amplitude. Starting from
= 0.2, we enter the regime where standing waves do not exist as deterministic solutions, and we see that the amplitude diminishes as we
move away from the stability boundary of uniform oscillations. The other parameters are as described in the caption of Fig. 1.

V. CONCLUSION

In this article, we studied standing waves for a complex
Ginzburg-Landau equation (CGLE) in the presence of global
time-delay feedback and noise and studied their properties
analytically and numerically. The CGLE describes the
dynamics of a spatially extended system that undergoes a
supercritical Hopf bifurcation. The basic solution in this
system corresponds to uniform oscillations. We considered the
situation where this solution is Benjamin-Feir unstable in the
absence of feedback (1 + of < 0), leading to spatiotemporal
chaos. Then, uniform oscillations or standing waves can be
induced through the time-delay feedback. Standing waves
can be understood as instability of the uniform oscillations,
namely when the oscillations become unstable with respect to
perturbations with a certain wave number [shown in Fig. 2(b)].
These waves represent a transition state between uniform
oscillations and a chaotic state.

One main finding is that noise can induce standing waves in
the regime where uniform oscillations are stable (Figs. 5 and
6). The closer we are to the stability boundary that separates
uniform oscillations and standing waves, the less noise
intensity is needed to induce standing waves. If the system is
at a finite distance from that boundary, a comparatively larger
magnitude of the noise is needed to induce standing waves.
In the limit D — 0, no standing waves can be expected.
However, as D becomes large, rather than inducing standing
waves, irregular uniform oscillations are observed. Hence,
intermediate noise magnitudes are favorable for the induction
of standing waves. These results are similar in spirit with
findings of spatial or spatiotemporal coherence resonance
(see, e.g., Refs. [22—24]). In contrast to those works, however,
we consider a system where the stable noise-free state consists
of uniform oscillations and the stabilized noise-induced
pattern consists of standing waves. The wave number of
the induced standing waves agrees qualitatively with the
value of k for the most unstable mode, as obtained by the

stability analysis of uniform oscillations. This is a common
feature with pattern-forming systems like the one discussed
in Ref. [22] due to the appearance of an intrinsic length scale.

For the noisy CGLE and in the absence of feedback, stand-
ing waves have not been reported. So feedback is still essential
for finding standing waves. However, we emphasize that the
onset of standing waves can be controlled by noise. The CGLE
represents an oscillatory reaction-diffusion system where the
chaos is diffusion-induced, and hence there is a fundamental
difference to the oscillators in Refs. [24,25], which display a
chaotic dynamics without coupling and where phase synchro-
nization of oscillations (and no standing waves) are observed.

The correlation functions evaluated in the regime of
deterministically stable uniform oscillations (Fig. 3) show
oscillations that increase while approaching the deterministic
stability boundary, corroborating the idea of noise-induced
standing waves in this parameter regime. More generally,
we note that noise does not destroy the deterministic Hopf
bifurcation structure itself but only modulates the instability
leading to standing waves. We have verified this for the range
of parameter values studied, i.e., for small delays 7 < 1 and
moderate feedback magnitudes i < 1. Future work will target
different (wider) regimes.

We showed that small noise does not destabilize determin-
istically stable standing waves [Fig. 2(c)], but we have not
studied systematically what effect noise exerts on standing
waves where these are stable in the deterministic system and
on the chaotic solution itself. Future work may comprise a
study to characterize these dynamics and separate it from
spatiotemporal chaos that is found when the feedback strength
is decreased in the deterministic system.
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