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Thermodynamics aspects of noise-induced phase synchronization
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In this article, we present an approach for the thermodynamics of phase oscillators induced by an internal
multiplicative noise. We analytically derive the free energy, entropy, internal energy, and specific heat. In this
framework, the formulation of the first law of thermodynamics requires the definition of a synchronization field
acting on the phase oscillators. By introducing the synchronization field, we have consistently obtained the
susceptibility and analyzed its behavior. This allows us to characterize distinct phases in the system, which we
have denoted as synchronized and parasynchronized phases, in analogy with magnetism. The system also shows
a rich complex behavior, exhibiting ideal gas characteristics for low temperatures and susceptibility anomalies
that are similar to those present in complex fluids such as water.
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I. INTRODUCTION

The synchronization of nonlinear oscillators is an important
cooperative phenomenon widely applied in different disci-
plines, ranging from physics to social sciences [1–11]. The
advent of the phase reduction method has allowed an advantage
in getting simpler equations for the study of limit cycle
oscillators [12,13], enabling a breakthrough in understanding
the application of the synchronization phenomenon. It is rec-
ognized nowadays that the principal cause of synchronization
in physical systems is due to the nonlinear coupling between
the oscillators. Nevertheless, synchronization can also occur
in decoupled oscillators through a phenomenon known as
noise-induced synchronization. Indeed this phenomenon is
found for a general class of limit cycle decoupled oscillators,
where the occurrence of negative Lyapunov exponents is
observed for sufficiently weak additive noise [14–17]. In
coupled oscillators, it was observed that the common additive
noise allows a reduction of the critical coupling, which leads
to synchronization [18,19].

In this scenario, a phenomenon rarely addressed in phase
oscillators is the internal noise-induced synchronization,
i.e., when synchronization is modulated by the state
of the oscillators due to the multiplicative noise. This
is a phenomenon that occurs in neural systems and is
known as intrinsic coherent resonance [20]. Additionally,
another field that is still open is the thermodynamics
to the noise-induced phase synchronization. Since these
oscillators are inherently non-Hamiltonian systems, their
approach occurs predominantly in the geometric point of
view, i.e., through bifurcation analysis, applying the center
manifold theory [21]. Indeed, only recently have emerged
approaches that effectively consider aspects of the statistical
thermodynamics of equilibrium and nonequilibrium [22] as
well as those within the stochastic thermodynamics [23].

In this article, we propose a way to construct the equilibrium
thermodynamics of phase synchronization for oscillators
governed by an internal multiplicative noise. This consists
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in extending the conventional Kuramoto-Sakaguchi model
[24] by including a phase-dependent multiplicative noise.
From this, we derive the Fokker-Planck dynamics, where we
show that the system sufficiently relaxes for thermodynamic
equilibrium. This allows us to exactly determine the stationary
phase density, order parameter, and temperature. From these
quantities, we formulate the first law of thermodynamics,
which connects the internal energy and entropy with the
concept of the synchronization field, which drives the syn-
chronization of the system. Using the Legendre transform, we
express the first law in terms of free energy. Thermodynamics
is then constructed from the free energy, where expressions
of entropy, internal energy, specific heat, and synchronization
field are analytically obtained.

In fact, one of the reasons for the difficulty in establishing
the full thermodynamics of phase oscillators is the absence in
the literature of a synchronization field formulation. This is
crucial to know the response of the system under the action
of the internal multiplicative noise. From the synchronization
field, we define susceptibility and analyze its behavior on the
system. For a non-null order parameter, the existence of two
phases is identified, which we call synchronized and parasyn-
chronized phases, in analogy to magnetism. Susceptibility also
shows us that the synchronized phase exhibits an anomalous re-
gion very similar to the region of anomalous behavior in water.

II. THE MODEL

We begin by introducing the Itô stochastic differential equa-
tion [25] for phase oscillators whose dynamics is governed by

θ̇i = ωi + fi({θ}) +
√

gi({θ})ξi(t), (1)

where θi and ωi are, respectively, the phase and the natural
frequency for i = 1,2, . . . ,N oscillators. The drift force
fi({θ}) and noise strength gi({θ}) are general functions of
phases {θ} = θ1,θ2, . . . ,θN , but they can take different values
for each i, and ξi is a Gaussian white noise that obeys the
following relation:

〈ξi(t)ξj (t ′)〉 = 2Dδij δ(t − t ′) with 〈ξi(t)〉 = 0, (2)
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where D is the diffusion constant. The simplest dynamic
equation for the phase oscillators was established by Kuramoto
[12], with gi({θ}) = 0 and drift force given by

fi({θ}) = K

N

N∑
j=1

sin(θj − θi), (3)

where K is the coupling strength. When K > 0, the interaction
is attractive. The signal of the force acting on ith oscillator is
opposite to the displacement of this oscillator with respect
to j th oscillator. For K < 0, the interaction is repulsive.
A simpler phase oscillator model with additive noise was
proposed by Sakaguchi [24], where gi({θ}) = 1.

A. Mean-field approach

We can usually define an order parameter r = r(t) and its
average phase ψ = ψ(t) for the system as

reiψ = 1

N

N∑
j=1

eiθj , (4)

where r measures the phase coherence, i.e., for r = 1, the
system is fully synchronized, whereas for r = 0, the system
is fully incoherent. A partially synchronized state is obtained
when 0 < r < 1.

Now note that from Eq. (4) we can express the drift force
fi({θ}) in terms of the mean-field parameters r and ψ . Hence
taking Eq. (4), we get r sin(ψ − θi) = 1

N

∑N
j=1 sin(θj − θi),

and Eq. (3) is redefined as

fi({θ}) = f (θi) = rK sin(ψ − θi). (5)

An important aspect of this mean-field approach is that
fi({θ}) = f (θi), i.e., f is only a function of phase θi . The
drift force shows that the phase θi is pulled toward the average
phase ψ of the whole ensemble, with a strength proportional
to the order parameter r .

We can equivalently express gi({θ}) = g(θi), assuming that
function gi({θ}) can also be written in terms of mean-field
quantities r and ψ . Now we adopt an identical natural
frequency ωi = ω, which allows the system to reach the
thermodynamic equilibrium [22,26]. On the rotating frame,
we can set ω = 0. It follows that Eq. (1) can be rewritten as

θ̇i = f (θi) +
√

g(θi)ξi(t), (6)

where now f (θi) and g(θi) are mean-field functions. Moreover,
note that the interactions of the oscillator θi with the other
oscillators of the system are no longer considered individually,
but in terms of the mean-field effects of the system acting on the
oscillator i. This allows us to omit the index i of the individual
oscillator θi = θ , and this means we can write Eq. (6) as

θ̇ = f (θ ) +
√

g(θ )ξ (t), (7)

where f (θ ) = rK sin(ψ − θ ) and g(θ ) are, respectively, the
mean-field drift force and noise strength. We will explicitly
obtain the function g(θ ) in the next section.

B. Noise strength function

Our objective is to study the thermodynamics of phase
oscillators starting from the general Itô phase equation to an

oscillator system with strong limit cycle attractor [19,27,28]
in which Eq. (7) is given by

θ̇ = DZ(θ )Z′(θ ) + Z(θ )ξ (t), (8)

where Z′(θ ) = ∂Z(θ )/∂θ and D is the diffusion constant such
that functions f (θ ) and g(θ ) result in

f (θ ) = DZ(θ )Z′(θ ) = rK sin(ψ − θ ), (9)√
g(θ )=Z(θ )=

√
1 + rσ cos(ψ − θ ) as −1 � σ � 1,

(10)

from which is found the relation σD = 2K , with D > 0.
Parameter σ is the noise coupling that determines the intensity
of

√
g(θ ), i.e., the global modulation of the multiplicative

noise. Therefore, we have that

g(θ ) = 1 + rσ cos(ψ − θ ). (11)

Note that for σ �= 0, the system’s noise intensity depends on
phase θ of the oscillators. For σ = 0 and g(θ ) = 1, we retrieve
the conventional Sakaguchi model with additive noise.

III. THERMODYNAMIC EQUILIBRIUM
AND PHASE DENSITY

In order to study the thermodynamics of the model, we write
in Itô prescription the corresponding Fokker-Planck equation
from Eq. (7) in the form

∂ρ

∂t
= D

∂2

∂θ2
[g(θ )ρ] − ∂

∂θ
[f (θ )ρ]. (12)

To demonstrate that the system precisely satisfies the
thermodynamic equilibrium condition, it is more convenient
to transform the Langevin equation with multiplicative noise
to an equation with additive noise and interpret the dynamics
of the system as diffusion under the action potential. In this
case, we can always do this for a one-dimensional system, as
given by Eq. (7) and time-independent functions f and g [29].
Thus, let us make this transformation in the Fokker-Planck
Eq. (12) using the change of variables

φ(θ ) = 1√
D

∫ θ

0

dθ ′
√

g(θ ′)
(13)

such that the new equation that governs the temporal evolution
of distribution P (φ,t) for new variables can be written as

∂P (φ,t)

∂t
= ∂2P

∂φ2
− ∂

∂φ
[F(φ)P ], (14)

where

F(φ) = 1√
D

[
f (θ )√
g(θ )

− D
∂

∂θ

√
g(θ )

]
θ=θ(φ)

. (15)

Therefore, the corresponding Langevin Eq. (14) is given by

φ̇ = F(φ) + ξ (t), (16)

where ξ is a Gaussian additive noise with zero average and unit
variance. As the diffusion term is now a constant, the condition
for Eq. (16) to obey the detailed balance is that drift term F(φ)
should satisfy the potential function condition. For obtaining
an analytical expression forF(φ), it is necessary to evaluate the
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integral Eq. (13) and reverse the resulting expression for θ (φ),
which appears in Eq. (15). However, we can determine whether
drift term F(φ) is conservative and infer if the system reaches
thermal equilibrium even without an explicit expression for
this function [30]. First, we note that if F(φ) is conservative,
the work in a closed path should be null:∮

F(φ) dφ = 0, (17)

where we can write the ansatz to F as

F(φ) = λ − ∂

∂φ
V (φ), (18)

such that the first term on the right side is a force of not
constant balance and the second term is a conservative force
derived from potential V (φ). To formally show that λ = 0, let
us write F(φ) as a Fourier series

F(φ) = 1

2
a0 +

∞∑
n=1

[
an cos

(
nφ

T

)
+ bn sin

(
nφ

T

)]
, (19)

where using Eq. (13)

T = φ(π ) − φ(0) = 1

2
√

D

∫ π

−π

dθ ′
√

g(θ ′)
(20)

is half the transformed range [−π,π ]. The coefficients an and
bn are commonly given by

an = 1

T

∫ T

−T
F(φ) cos

(
nφ

T

)
dφ,

bn = 1

T

∫ T

−T
F(φ) sin

(
nφ

T

)
dφ. (21)

Thus, comparing Eq. (18) with the Fourier series
given by Eq. (19), we see that λ = a0/2 so that
the question of determining whether F(φ) is con-
servative and whether the system reaches thermal
equilibrium is equivalent to finding the condition
a0 = 0. Then taking

a0 = 1

T

∫ T

−T
F(φ) dφ (22)

and applying the change of variables, we get

a0 = 1

T

∫ φ(T )

φ(−T )
F(φ(θ ))

dφ

dθ
dθ. (23)

Then by defining θ (±T ) = ±π and from F(φ) from Eq. (15),
we can write coefficient a0 as

a0 = 1

T D

∫ π

−π

[
f (θ )

g(θ )
− D

2

∂

∂θ
ln g(θ )

]
dθ. (24)

Note that the second term of the integrand vanishes due to
periodicity of g(θ ). The integral of the first term is explicitly
given by∫ π

−π

f (θ )

g(θ )
dθ =

∫ π

−π

rK sin(ψ − θ )

1 + rσ cos(ψ − θ )
dθ. (25)

Thus, by performing a simple integration, we find

a0 = K

T Dσ
[ln(1 + rσ cos(ψ − θ )]π−π = 0. (26)

Therefore, it demonstrates that on the system described by
Eq. (7) act conservative forces F(φ) = −dV/dφ, which relax
to a state of thermodynamic equilibrium at t → ∞. Note that
the stationary distribution density ρ(θ,∞) = ρs(θ ) satisfies
this requirement. Indeed, taking the Fokker-Planck Eq. (12) in
the continuous limit N → ∞, we have

∂ρ

∂t
= D

∂2

∂θ2
{[1 + rσ cos(ψ − θ )]ρ}

− ∂

∂θ
[rK sin(ψ − θ )ρ]. (27)

This equation has an exact analytical expression for the
stationary distribution ρs(θ ), given by

ρs(θ ) = N−1[z + sgn(σ )
√

z2 − 1 cos(ψ − θ )]ν, (28)

where sgn(σ ) is the sign function. The normalization constant
N and parameters z and ν are

N = 2πP 0
ν (z), (29)

z = (1 − σ 2r2)−1/2, (30)

ν = K

Dσ
− 1, (31)

where P 0
ν (z) is the associated Legendre function of zero

order. As discussed, stationary distribution ρs(θ ) obeys the
thermodynamic equilibrium condition. Distributions of power
law as ρs(θ ) have been currently found in many complex
systems [31] and can be regarded as a more general case of the
exponential behavior of the Boltzmann-Gibbs distributions.
These distributions can be characterized as both the stationary
states of nonequilibrium and thermodynamic equilibrium [32].
We demonstrate that ρs obeys the thermodynamic equilibrium,
i.e., it results in a null probability current density Js = 0 in the
configuration space. See this demonstration in Appendix A.

IV. ORDER PARAMETER AND TEMPERATURE

We can now obtain the general expression for order
parameter r , which results in

r =
∫ 2π

0
ei(θ−ψ)ρs(θ ) dθ = sgn (σ )

1 + ν

P 1
ν (z)

P 0
ν (z)

. (32)

This allows us to obtain critical coupling Kc of the oscillator
system. Hence, by taking Eq. (32) in the critical region
r ≈ νrσ/2 and using ν = Kc/Dσ − 1, it follows that critical
coupling Kc is

Kc = D(σ + 2). (33)

See Appendix B for more details. Indeed, Eq. (33) shows that
for σ = 0, we retrieve the classic Kc = 2D from the Kuramoto
model with additive noise. For σ < 0, noise coupling tends
to weaken the dispersive action on the oscillators, reducing
critical coupling Kc. On the other hand, it has an inverse effect
for σ > 0.

The effective temperature Teff of the system is now defined
as

Teff ≡ Kc

K
=

(σ

2
+ 1

)
T , (34)
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FIG. 1. Spectrum of order parameter r in space (Teff,σ ). The black
region above Teff = Teffc = 1 defines the region without order r = 0.
Note that the region Teffc < 1 contains the entire synchronized region
including that for which T > 1; we call this as a parasynchronized
phase.

where T = 2D
K

is the temperature for σ = 0, i.e., for the model
with additive noise. Therefore, for any σ , the critical effective
temperature is Teffc = 1. It is also useful to redefine parameter
ν as

ν = 2

T σ
− 1. (35)

Figure 1 shows the spectrum of order parameter r in
space (σ,Teff). It has been implemented numerically with
self-consistent calculation of Eq. (32), also using the results
of Appendix B. The black strip corresponds to the region
r = 0, while the white is the region with the maximum order
that corresponds to r ≈ 1. This clearly shows the asymmetry
between the regions with σ > 0 and σ < 0. Moreover, note
that negative values of σ favor synchronization of the oscillator
system. It is very instructive to observe that σ , as defined in
Eq. (34), induces the existence of a parasynchronized phase
in the system, i.e., it leads to the existence of order for T > 1
up to Teff < 1, which occurs for values of σ in the region
between the curves Teff = σ/2 + 1 and Teff = 1. Indeed, the
properties of the parasynchronized phase in the system will
become clearer in Fig. 2.

Figure 2 shows the behavior of r as a function of coupling σ

for the isotherms. For all curves, Teff < 1. We see that for fixed
temperature T , r is a decreasing function of σ . Here we observe
that the curve T = 1 separates the aforementioned internal
region referred to as a parasynchronized phase, established
for T > 1, from the synchronized phase with T � 1. The
parasynchronized phase exists only for σ < 0 and for all
those curves, Teff � 1 is verified. The asymmetry in the
synchronization behavior for the values of σ and −σ is clearly
shown, as discussed in relation to Fig. 1. It is also important
to note that there is a second-order phase transition induced
solely by the effects of the multiplicative noise.

Figure 3 shows the behavior of order parameter r as
a function of temperature T . From left to right, we have
σ = +0.5, 0, and −0.5. It shows the typical behavior where
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T = 0.7
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T = 1.3

FIG. 2. Order parameter r as a function of noise coupling σ for
isotherms T = 1, T > 1, and T < 1. The region T > 1 characterizes
the parasynchronized phase with σ < 0, and the region T � 1
corresponds to the synchronized phase.

the order parameter decreases with temperature. For σ = 0, the
middle curve corresponds to simple additive noise for which
T = Teff and consequently critical temperatures Tc and Teffc

are the same. The curves with non-null noise coupling present
asymmetry between σ = 0.5 (with Tc = 4/5) and σ = −0.5
(with Tc = 4/3), the latter presents order even for T > 1.
Note that from Eq. (34), the two curves respectively have
Teffc = (1 + 0.5/2)4/5 = 1 and Teffc = (1 − 0.5/2)4/3 = 1.
It also becomes clear that the concept of effective temperature
is useful to scale all these curves to a unique transition point
Teffc = 1.

Once we identify noise coupling σ as being responsible
for inducing a continuous phase transition in the oscillator
system, we can think about the existence of a thermodynamic
field associated to σ able to induce synchronization. Thus, by
considering the internal energy of the system as a function of
entropy and order parameter U = U (S,r), we can write the
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r
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FIG. 3. Order parameter r as a function of temperature T for
values of σ . Note that all curves display a typical mean-field behavior.
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following equation:

dU = T dS − Hs dr, (36)

where Hs is a new quantity, which we refer to as a synchro-
nization field associated with the action of the multiplicative
noise on the system. Note that the negative sign comes from
the fact that an increase in the order parameter, by maintaining
constant entropy, leads to a decrease in the internal energy of
the system, i.e., by increasing r , we should increase the order
of the system.

The Helmholtz free energy F = F (T ,r) is obtained by the
Legendre transform of the internal energy, which results in the
equation

dF = −SdT − Hs dr. (37)

This is the first law of thermodynamics for phase synchroniza-
tion with internal multiplicative noise. Thus, based on the free
energy, we can obtain entropy S and synchronization field Hs

in the following sections.

V. ENTROPY AND FREE ENERGY

We begin by determining entropy directly from Gibbs’
definition

S = −
∫

ρs(θ ) ln ρs(θ ) dθ

= lnN − νN−1
∫ 2π

0
[λ(z,θ )]ν ln[λ(z,θ )] dθ

= lnN − νN−1 lim
ϕ→0

∂

∂ϕ

∫ 2π

0
[λ(z,θ )]ν+ϕ dθ

= lnN − 2πνN−1 lim
ϕ→0

∂

∂ϕ
P 0

ν+ϕ(z)

=
(

1 − ν
∂

∂ν

)
ln

[
2πP 0

ν (z)
]
, (38)

where ρs is the stationary distribution Eq. (28). We as-
sume the Boltzmann constant kB = 1. Here λ(z,θ ) = z +
sgn(σ )

√
z2 − 1 cos(ψ − θ ) and P 0

ν (z) are the associated
Legendre functions of zero order. We use the normaliza-
tion condition N−1

∫ 2π

0 ρ(θ ) dθ = 1 as well as the relation

limϕ→0
∂
∂ϕ

P 0
ν+ϕ(z) = [ ∂

∂ϕ
P 0

ϕ (z)]
ϕ=ν

; see Ref. [33].

The free energy F of the system can be obtained from the
equilibrium statistical mechanics by the expression

F = −T lnZ = −T lnN = −T ln
[
2πP 0

ν (z)
]
, (39)

where partition function Z is equivalent to the normalization
constant N according to distribution Eq. (28). We can now
directly derive the entropy Eq. (38) of free energy F employing
Eq. (37) as

S = −
(

∂F

∂T

)
r

= ln
[
2πP 0

ν (z)
] + T

∂

∂T
ln

[
2πP 0

ν (z)
]
, (40)

where we can express the above equation in terms of
parameter ν. By taking the transformation in the derived
∂/∂T = ∂ν/∂T (∂/∂ν) and using Eq. (35), we have ∂ν/∂T =

-2

-1

0

1

2
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σ = 0.5

FIG. 4. Entropy as a function of temperature T for values of σ .
Note that all entropy reaches the maximum value at ln(2π ), which
is the full incoherent state. All entropy becomes S = −∞ at T = 0,
which is the full state synchronizing.

−(ν + 1)/T , which results in

S = ln
[
2πP 0

ν (z)
] − (ν + 1)

∂

∂ν
ln

[
2πP 0

ν (z)
]
. (41)

Hence, performing the change of variables ν ′ = −(ν +
1), the derivative with respect to ν changes as ∂/∂ν =
∂ν ′/∂ν(∂/∂ν ′) = −∂/∂ν ′ such that

S = ln
[
2πP 0

−ν ′−1(z)
] − ν ′ ∂

∂ν ′ ln
[
2πP 0

−ν ′−1(z)
]
. (42)

Using the property of Legendre functions P ±m
−ν−1(z) = P ±m

ν (z)
and changing ν ′ → ν, we find entropy expression

S =
(

1 − ν
∂

∂ν

)
ln

[
2πP 0

ν (z)
]
, (43)

which is identical to Eq. (38). In this sense, the free energy
Eq. (39) and entropy Eq. (43) denote the general thermody-
namic equilibrium properties of the system as well as affords
us the opportunity to study the thermodynamic properties of
synchronization for systems far beyond conventional order
parameter analysis.

From free energy and entropy, we can also derive the
internal energy of the system:

U = −T ν
∂

∂ν
ln

[
2πP 0

ν (z)
]
, (44)

where we have used the thermodynamic equation F = U −
T S.

Figure 4 shows the behavior of entropy Eq. (43) as a
function of temperature T . In the critical effective temperature
Teffc = (σ/2 + 1)T = 1, all entropy will reach the maximum
value at

Smax = ln (2π ), (45)

which corresponds to the value of the fully desynchronized
state. It is important to note that for negative σ , there is a
reduction in the value of critical coupling when compared to
the coupling of the simple model with additive noise Kc =
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2D, implying that the system is more easily driven toward
synchronization.

A. Limits of entropy

The physical limits of Eq. (43) can now be analyzed. First,
we consider the weak noise coupling condition σ ≈ 0, which
implies ν → ∞. In this case, entropy is given by

S = 1

2
ln

[
4π2 cosh−1(z)√

z2 − 1

]
+ ln[I0(ε)] − ε

I1(ε)

I0(ε)
, (46)

where we use [34]

P 0
ν (z) ≈

[
cosh−1(z)√

z2 − 1

]1/2

I0[ν cosh−1(z)] as ν → ∞, (47)

in which In(x) is the modified Bessel function of first kind of
order n and defined as

In(x) = 1

2π

∫ 2π

0
ex cos(θ) cos(nθ ) dθ. (48)

Here for the asymptotic limit ν → ∞, the parameters in
Eq. (46) are given by

ε ≡ ν cosh−1(z), (49)

z = (1 − σ 2r(ε)2)−1/2, (50)

r(ε) = lim
ν→∞ r = I1(ε)

I0(ε)
. (51)

The condition σ = 0 is a particular case of Eq. (46), which is
just the entropy for the Kuramoto model with additive noise

S = ln [2πI0(k)] − k
I1(k)

I0(k)
, (52)

with

k = lim
σ→0

ε = 2r(k)

T
, (53)

r(k) = lim
σ→0

r(ε) = I1(k)

I0(k)
. (54)

The condition T ≈ 0 implies ν → ∞, which is also a
particular case of Eq. (46). Thus, taking T = 0 in Eq. (46),
we obtain

S(T = 0) = lim
ε→∞ S → −∞. (55)

Note that T = 0 implies ε → ∞, where we have used I0(ε) ∼
eε/

√
2πε in Eq. (46). At this limit, entropy assumes the same

behavior as the entropy of a classical ideal gas at T = 0. We
also see that for T = 0, the phases of all oscillators have the
same value and consequently the phase density of the system
is equivalent to a Dirac delta function. Indeed, this result is
expected since the oscillator system treated here is described
in classical phase space.

VI. SPECIFIC HEAT

Having obtained free energy and analyzed entropy function
in the above section, we can study specific heat of the system

by keeping fixed noise coupling σ . This requires determining

Cσ = T

(
∂S

∂T

)
σ

= T

[(
∂S

∂ν

)
z

∂ν

∂T
+

(
∂S

∂z

)
ν

∂z

∂T

]

= T

[(
∂S

∂ν

)
z

+ 1[
1 − (

∂z
∂z

)
ν

](
∂z

∂ν

)
z

(
∂S

∂z

)
ν

]
∂ν

∂T
.

(56)

Here we assume kB = 1. Note that z is a transcendental
function, z → z(ν,z). Then we can rewrite ∂z/∂T as

∂z

∂T
=

(
∂z

∂ν

)
z

∂ν

∂T
+

(
∂z

∂z

)
ν

∂z

∂T
= 1[

1 − (
∂z
∂z

)
ν

](
∂z

∂ν

)
z

∂ν

∂T
.

(57)
The partial derivatives are(

∂S

∂ν

)
z

= sgn(σ )√
z2 − 1

[
r − ν(ν + 1)

∂r

∂ν

]
, (58)

(
∂S

∂z

)
ν

= −ν
∂2

∂ν2
ln

[
2πP 0

ν (z)
]
, (59)

(
∂z

∂z

)
ν

= −ς (z)
∂r

∂z
, (60)

(
∂z

∂ν

)
z

= −ς (z)
∂r

∂ν
, (61)

where we have used the Eqs. (32), (43), and

z = cosh

{
tanh−1

[
sgn (σ )

1 + ν

P 1
ν (z)

P 0
ν (z)

]}
,

(62)
ς (z) = zσQ1

0(rσ ) sinh
[
Q0

0(rσ )
]
,

in which Q0
0(x) and Q1

0(x) are the associated Legendre
functions of the second kind [41]. Hence, specific heat is given
by

Cσ = sgn(σ )ν(ν + 1)ς (z)√
z2 − 1

(
1 + ς (z) ∂r

∂z

)
[
r
∂r

∂ν
− ν(ν + 1)

(
∂r

∂ν

)2
]

+ ν(ν + 1)
∂2

∂ν2
ln

[
2πP 0

ν (z)
]
. (63)

Figure 5 shows specific heat Eq. (63) as a function of
temperature T for values of σ . We see that all curves start
at Cσ (T → 0) = 1

2 in precise accordance with our analytic
result; see Eq. (68). We observe that specific heat grows
continuously until it reaches a maximum value at the critical
effective temperature Teffc = (σ/2 + 1)T = 1. The increase in
entropy required to reduce synchronization results in Cσ (T >

0) > Cσ (0). As expected, note that for T > Teffc, the system
achieves a totally desynchronized state, and specific heat
is therefore reduced to zero. Note also that thermodynamic
stability Cσ > 0 is immediately satisfied for all σ .
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FIG. 5. Specific heat Cσ (T ) as a function of temperature T for
values of σ . All curves start at Cσ = 1

2 for T = 0 and grow until
they reach the maximum value at Teffc = 1. For T > Teffc, Cσ = 0, as
expected.

A. Limits of specific heat

From entropy Eq. (46), we derive specific heat for σ ≈ 0,
which is given by

Cσ = σε

2

[
2ε

σz2
− 1

cosh−1(z)
+ z√

z2 − 1

]
�(ε)

1 − νσ�(ε)
,

(64)
where

�(ε) = 1

σ

∂

∂ε
cosh−1[z(ε)]. (65)

In particular for σ = 0, Eq. (64) yields

Cσ=0 = lim
σ→0

Cσ = k2�(k)

1 − 2
T
�(k)

, (66)

where we have

�(k) = lim
σ→0

�(ε) = ∂r(k)

∂k
. (67)

We call attention to the fact that Eq. (66) is the specific heat for
the model with only additive noise. Finally, the specific heat
for T = 0 is obtained from Eq. (64), which results in

Cσ (T = 0) = lim
ε→∞ Cσ = 1

2 . (68)

This is precisely what we obtain for the numerical calculations;
see Fig. 5. Note that this is the same value for specific heat at
constant volume Cv for a classical ideal gas.

VII. SYNCHRONIZATION FIELD AND SUSCEPTIBILITY

We can now define the synchronization field Hs from
thermodynamics Eq. (37) as

Hs = −
(

∂F

∂r

)
T

, (69)

in which free energy F is given by Eq. (39). In Eq. (69) an
increase in order parameter r results in a decrease in free energy
F , where ∂F/∂r < 0, and in this condition, we have Hs > 0.

Note that the synchronization field should not be simply under-
stood as a conventional external field acting on the oscillator
system. This is analogous to pressure behavior in classical
thermodynamic systems p = −(∂F/∂V )T , in which volume
V is analogous to order parameter r . Nevertheless, we call
attention to the complexity of this oscillator system, where for
low temperature T → 0, entropy behaves as S(T ) → ln(T ) →
−∞ and specific heat as Cσ → 1/2, which bears more simi-
larity to a classical gas, while for higher temperatures is found
a similarity with the magnetic system and complex liquids.

To better understand these properties, we first need to
determine the full expression for Hs requiring that z =
(1 − σ 2r2)−1/2, so the derivative with respect to r transforms
as ∂/∂r = z3σ 2r(∂/∂z). Thus, using Eq. (69), we obtain the
expression for the synchronization field as

Hs = T z3σ 2r
∂

∂z
ln

[
2πP 0

ν (z)
] = T (1 + ν)z3σ 2r2 sgn(σ )√

z2 − 1
.

(70)
Here we use Eq. (32) and the relationship P 1

ν (z) =
(z2 − 1)1/2dP 0

ν (z)/dz.
It is now important to establish the dependence of field Hs

on parameter σ , i.e., how field Hs is associated with the noise
effect of the system. To accomplish this, we need to decompose
Hs as

Hs = H0 + Hσ , (71)

where we define the internal synchronization field H0 as

H0 = Hs(σ = 0,r,T ). (72)

This corresponds to part of field Hs , which does not depend
explicitly on σ , i.e, it is intrinsically associated with the
Gaussian white noise behavior. Thus, the expression of H0 is
obtained by taking the limit σ → 0 in Eq. (70), which results in

H0 = lim
σ→0

Hs = 2r = 2
I1(2r/T )

I0(2r/T )
, (73)

which takes in account only the effect of additive noise on the
system.

We define the external synchronization field Hσ as

Hσ = Hs(σ,r,T ) − H0. (74)

This corresponds to part of field Hs , which explicitly depends
on σ . Indeed, for σ �= 0, the synchronization state of the system
is a function of the phase of each oscillator, as established by
the multiplicative noise. It means field Hσ can be interpreted
as a thermodynamic field that is directly associated to the
phase-dependence effect of the noise on synchronization.

Here we can make an interesting analogy between the
conventional Ising model in magnetism and the decomposition
of synchronization field Hs , as established by the Eq. (71). The
mean field as usually defined for an Ising system is an effective
field given by Heff = c0m + H ′, where c0 is a constant, m

denotes magnetization, and H ′ is a typical external field that
does not depend on the internal parameters. Note that we have
defined here a synchronization field Hs = 2r + Hσ that plays
the role of an effective field for which the internal field H0 = 2r

is analogous to the c0m while the external field Hσ is similar to
H ′. Nevertheless, the external field Hσ is far from being a con-
stant, it is a function that depends intrinsically on r , T , and σ .
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FIG. 6. Order parameter r as a function of external field Hσ for
several isotherms T . All curves saturate at r = 1, analogous to a
magnetic system. The curve T = 1 separates the synchronized phase
T � 1 from the parasynchronized phase T > 1.

A. Susceptibility

The susceptibility can now be obtained from the external
field Hσ , Eq. (74), in accordance with the thermodynamic
definition

χ−1 =
(

∂Hσ

∂r

)
T

, (75)

where this now allows us firsthand a better understanding for
the response of the oscillator system in relation to the external
field behavior, i.e., the response of the system related to the
action of multiplicative noise.

Figure 6 shows the isotherms of order parameter r as a
function of external field Hσ [Eq. (74)]. It is remarkable that all
curves saturate at r = 1 to large values of Hσ , analogous to the
behavior of magnetization. This concurs with the fact that Hσ

plays the role of an external field, as expected. We can observe
that conjugate variables (r,Hσ ) have a maximum value for σ =
−1 and decrease toward (0,0) for σ = 1, i.e., Teff = 1, which
is the final point of the curve. The isotherm T = 1 delimits the
synchronized phase T � 1 from the parasynchronized phase
T > 1. Note that the parasynchronized phase exists only for
Hσ > 0 and its susceptibility is always finite and positive,
except for T = 1 where it diverges as Hσ → 0 due to the
critical behavior of the system.

In the synchronized phase, for T = 0.7, as σ increases, Hσ

decreases and r decreases, reaching a non-null value at the
first zero of Hσ (r) = 0, which corresponds to spontaneous
synchronization, i.e., synchronization in a null field. This
behavior is very similar to what happens in magnetization. As
σ continues to increase, r decreases and Teff increases toward
Teff = 1 for which r = Hσ = 0.

The synchronized phase for Hσ � 0 exhibits an anomalous
behavior since it allows a region with χ < 0 and a divergence
of χ . This is because field Hσ is not a trivial function of r

and σ . It exhibits two zeros, one trivial for r = 0 and a second
for r = r̂ , where between the two zeros, we have a minimum
( ∂Hσ

∂r
)|r=r∗ = 0. Consequently, for 0 < r < r∗, susceptibility is

negative. Indeed, a similar situation occurs in complex liquids

0

 0.4

 0.8

 1.2

 1.6
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 2.4
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FIG. 7. Inverse of susceptibility χ−1 as a function of external field
Hσ for fixed isotherms T . Curves T = 1.3 and T = 1 correspond
to the parasynchronized phase. Curve T = 0.7 corresponds to the
synchronized phase. Note that for critical temperature T = 1 and
null field Hσ → 0, χ = (Tc − T )−1 diverges, as expected.

such as water where density decreases with temperature in the
region 0 ◦C � T � 4 ◦C.

For a liquid, consider the mathematical identity(
∂p

∂V

)
T

(
∂T

∂p

)
V

(
∂V

∂T

)
p

= −1, (76)

where p is the pressure and V is the volume. Since the
isothermal compressibility

κT = − 1

V

(
∂V

∂p

)
T

(77)

is always positive, κT > 0, then in the critical region(
∂V

∂T

)
p

< 0 implies

(
∂T

∂p

)
V

< 0, (78)

which satisfies Eq. (76). Mathematically, this is easily un-
derstood because p(V,T ) is not a linear function of V ;
consequently, it has extremes with null derivatives. The
physical mechanism is more complicated but well studied in
the literature [35,36].

For our system, consider a similar identity(
∂Hσ

∂r

)
T

(
∂T

∂Hσ

)
r

(
∂r

∂T

)
Hσ

= −1. (79)

Since ( ∂T
∂Hσ

)
r

is always positive, negative susceptibility χ =
( ∂r
∂Hσ

)
T

< 0 in the anomalous region implies ( ∂r
∂T

)
Hσ

> 0. This
is very similar to the liquid anomaly.

Figure 7 shows the inverse of susceptibility χ−1 as function
of field Hσ . The temperatures are T = 1.3 and T = 1 for the
parasynchronized phase and T = 0.7 for the synchronized
phase. As Hσ → 0, the susceptibility χ tends to a finite value,
except for the curve T = 1 where it diverges, as expected.

VIII. CONCLUSIONS

In this article, we presented the full thermodynamics of
phase synchronization for a system governed by an internal
multiplicative noise. Our starting point is the first law of
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thermodynamics where we determine the free energy, entropy,
internal energy, specific heat, and a synchronization field for
the phase oscillator system. From entropy and specific heat,
we show that for low temperatures, the synchronized state
behaves in very similar fashion to the state of an ideal gas. The
synchronization field can be decomposed as Hs = 2r + Hσ ,
which plays the role of an effective field for which we define
an internal field H0 = 2r and external field Hσ . The internal
field H0 corresponds to the bare Gaussian white noise effect
on the system, while the external field Hσ is associated with
the phase-dependence effect on the oscillator system, i.e.,
related to the multiplicative noise action on synchronization.
We should remark that susceptibility, defined from the syn-
chronization field, relates to the response of the system due to
the multiplicative noise action. From susceptibility, we show
that the synchronized phase exhibits anomalous behavior that
is analogous to complex liquids such as water. This is a topic
that deserves further study in a forthcoming article.

Altogether this system displays a rich behavior featuring
characteristics of the magnetic system, classical ideal gas,
and anomalies of complex liquids. Interesting systems such
as genetic networks [37] and neural systems [38] may also
constitute rich fields for the application of concepts such as
those we have developed. In particular, we can highlight a po-
tential application in emerging studies of neuronal avalanches
on the basis of the Ising model [11], where thermodynamic
quantities such as susceptibility and specific heat have been
used to describe the physical behavior of these systems. In fact,
this phenomenon can be also extensively studied using the ther-
modynamics of phase oscillators, as presented in this article.
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APPENDIX A: NULL CURRENT FROM
STATIONARY DENSITY

We can now demonstrate that the stationary phase distribu-
tion ρs (28) results in a null current J = 0, satisfying the ther-
modynamic equilibrium criterion [39]. We can apply the er-
godic analysis for mean frequency � of the oscillator system as

� = lim
t→∞ t−1

∫ t

0
θ̇ dt. (A1)

This expression can be calculated by replacing the time
average with the ensemble average frequency, i.e. � = 〈θ̇〉.
Using the Langevin equation (7), this results in

� = 〈θ̇〉 = 〈rK sin(ψ − θ )〉

=
∫ 2π

0
rK sin(ψ − θ )ρs(θ ) dθ,

where 〈√1+rσ cos(ψ−θ )ξ (t)〉= 〈√1+rσ cos(ψ−θ )〉
〈ξ (t)〉 = 0 (there is no correlation between θ and ξ ). We can
now write the Fokker-Planck equation in terms of current
density J as

∂ρ

∂t
= −∂J (θ,t)

∂θ
. (A2)

Hence, comparing (A2) with (27), we get

J (θ,t) = rK sin(ψ − θ )ρ(θ,t)

−D
∂

∂θ
{[1 + rσ cos(ψ − θ )]ρ(θ,t)}.

Note that the condition for the stationary solution is
t → ∞ on (A2), where ρ(θ,∞) = ρs(θ ) corresponds
to J (θ,∞) = Js = constant. Now using periodic boundary
condition ρs(θ + 2π ) = ρs(θ ), the expression for � is given by

� =
∫ 2π

0
Js dθ + D

∫ 2π

0

∂

∂θ
{[1 + rσ cos(ψ − θ )]ρs} dθ.

= 2πJs + D{[1 + rσ cos(ψ − 2π )]ρs(2π )

−[1 + rσ cos(ψ)]ρs(0)} = 2πJs.

Therefore, we can express Js as

Js = (K − Dσ )r sin(ψ − θ )ρs

−D

{
[1 + rσ cos(ψ − θ )]

∂ρs

∂θ

}
.

Taking the derivative ∂ρs/∂θ from Eq. (28)

∂ρs

∂θ
= νσr sin(ψ − θ )ρs(θ )

1 + rσ cos(ψ − θ )
. (A3)

Finally, we can write

Js = [K − Dσ (1 + ν)]r sin(ψ − θ )ρs. (A4)

However, we know that ν = K/Dσ − 1, which immediately
implies Js = 0. Then the stationary phase density ρs directly
results in a null current Js in the system, which is the condition
for the thermodynamic equilibrium.

APPENDIX B: ORDER PARAMETER

To calculate the order parameter, we use the Legendre
functions defined in Gradshteyn [40] (8.711.2), given by

P m
ν (z) = (ν + 1)(ν + 2) · · · (ν + m)

π

×
∫ π

0
[z +

√
z2 − 1 cos ϕ]ν cos mϕ dϕ (B1)

= (−1)mν(ν − 1) · · · (ν − m + 1)

π

×
∫ π

0

cos mϕ dϕ

[z + √
z2 − 1 cos ϕ]ν+1

. (B2)

To calculate the critical coupling Kc, we take the Legendre
functions in asymptotic forms [41]

P 1
ν (z) ∼ �(ν + 2)√

2�(ν)
(z − 1)1/2 and P 0

ν (z) ∼ 1 (B3)
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for z ≈ 1 [see Eq. (29)], where �(x) is the Gamma function. Then taking the expansion of z as r ≈ 0 and inserting it in the
asymptotic limit of Eq. (32), we obtain

r = ν sgn(σ )√
2

(
r2σ 2

2

)1/2

= νrσ

2
. (B4)

[1] S. Strogatz, SYNC: The Emerging Science of Spontaneous Order
(Hyperion, New York, 2003).

[2] L. Longa, E. M. F. Curado, and F. A. Oliveira, Phys. Rev. E 54,
R2201(R) (1996).

[3] M. Ciesla, S. P. Dias, L. Longa, and F. A. Oliveira, Phys. Rev. E
63, 065202 (2001).

[4] R. Morgado, M. Ciesla, L. Longa, and F. A. Oliveira, Europhys.
Lett. 79, 10002 (2007).

[5] J. A. Acebron, L. L. Bonilla, C. J. Perez Vicente, F. Ritort, R.
Spigler, Rev. Mod. Phys. 77, 137 (2005).

[6] H. Hong, H. Park, and L. H. Tang, Phys. Rev. E 76, 066104
(2007).
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