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Freezing, accelerating, and slowing directed currents in real time
with superimposed driven lattices

Aritra K. Mukhopadhyay,1,* Benno Liebchen,2,† Thomas Wulf,1,‡ and Peter Schmelcher1,3,§

1Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
2SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom

3The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
(Received 19 January 2016; published 23 May 2016)

We provide a generic scheme offering real-time control of directed particle transport using superimposed
driven lattices. This scheme allows one to accelerate, slow, and freeze the transport on demand by switching one
of the lattices subsequently on and off. The underlying physical mechanism hinges on a systematic opening and
closing of channels between transporting and nontransporting phase space structures upon switching and exploits
cantori structures which generate memory effects in the population of these structures. Our results should allow
for real-time control of cold thermal atomic ensembles in optical lattices but might also be useful as a design
principle for targeted delivery of molecules or colloids in optical devices.
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I. INTRODUCTION

Temporally driven lattice potentials have attracted consid-
erable attention in recent years [1–8] as their experimental con-
trollability allows for an insightful approach into the complex
world of nonequilibrium physics. A phenomenon of particular
interest in these systems is the ratchet effect. Here, the breaking
of certain spatiotemporal symmetries of the system allows one
to convert unbiased fluctuations into directed particle motion
even in the absence of mean forces [9–12]. This can be seen
as a working principle of a motor operating on smallest scales
relevant to phenomena ranging from intracellular transport
problems [13] and cancer cell metastasis [14] to the transport
of colloidal particles [15,16] in optical lattices or vortices in
Josephson junction arrays [17]. Novel ratchet experiments
using atomic ensembles in ac-driven optical lattices [18,19]
allow for an admirable controllability both in the ultra-
cold quantum regime [1] and at microkelvin temperatures
where a classical dynamics approach successfully describes
experiments [3,20]. Naturally, in view of their widespread
applications, the controllability of directed particle currents
has been a focal point of research since the early days of ratchet
physics. Here, owing to the absence of an obvious force bias,
even the transport direction is sometimes difficult to predict
and numerous cases of “current reversals” have been reported
where the direction of the transport in the asymptotic time limit
could be reversed by changing a control parameter even though
the symmetries of the system remain unaffected [21–29]. A
limitation of most of these schemes is that only the asymptotic
transport direction can be controlled rather than allowing for
real-time control of the current which would be certainly
desirable in order to apply ratchets as nanomotors [6] and to
problems like targeted drug delivery [30]. A recent exception is
Ref. [22], which requires, however, dissipation and is restricted
to “flipping” the directed current at fixed strength.
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Here, we exemplify a generic route towards the real-time
control of directed currents. This allows us not only to dynam-
ically control both direction and strength of the transport, up
to unusually high efficiencies, but also to freeze the transport
velocity on demand. Using one nontransporting and symmetric
oscillating lattice as a “substrate” for particles (Fig. 1, top), we
subsequently switch a second oscillating lattice, called the
“carrier” lattice, on and off. In particular, switching the carrier
lattice on breaks the parity and time-reversal symmetries of
our setup and induces a directed particle current (Fig. 1,
middle) accelerating the transport in a direction which can
be controlled by the phase difference between the carrier and
the substrate lattice. Switching the carrier lattice off does not
lead to a decay of the transport towards zero but “freezes”
it at constant velocity (Fig. 1, bottom). This can be repeated
many times and allows one to design transport in real time. As
the underlying mechanism, we identify a systematic opening
and closing of cantorus structures, acting as barriers between
transporting and nontransporting phase space structures upon
switching. Thereby, the time scale on which the current can
be manipulated is set by the flux through the cantorus and
we show that manipulations are, in fact, possible for up
to ∼1×105 driving periods. Our scheme does not require
noise, but is robust to it, and is designed for straightforward
implementation with cold thermal atoms in superimposed
driven optical lattices where state of the art technologies allow
one to avoid interference terms between the two lattices. Here,
our scheme can be applied to guide atomic ensembles through
optical lattices on paths which can be designed in real time.
The underlying working principle should be of more general
relevance, for example, as a design principle for real-time
controlled targeted delivery of molecules or colloids in optical
lattices or, possibly, also on other vibrated substrates.

II. SETUP

We consider noninteracting classical particles of mass m

located at position x and having momentum p, described
by a single-particle Hamiltonian H (x,p,t) = p2

2m
+ V (x,t),

in a periodic potential V (x,t) = VS(x,t) + VC(x,t). Here, VS
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FIG. 1. Schematic diagram of the setup and real-time control of
directed transport. Top: Nontransporting state in the oscillating sub-
strate lattice. Middle: Directed transport after switching on the carrier
lattice. Bottom: Persistent transport after switching off the carrier
lattice. Red particles perform diffusive motion whereas the blue ones
are ballistic. The length and direction of the arrow indicate the speed
and direction of the particle, respectively.

represents the substrate lattice and VC the carrier lattice with

VS(x,t) = VS cos2{k[x + d cos(ωt)]}
VC(x,t) = VC cos2{k[x + 2d cos(2ωt + φ)] + δ}. (1)

Both lattices have identical wave number k, but the oscillation
amplitude d and frequency ω of the carrier lattice are twice
as large as those for the substrate, which leads to spatial
and temporal periodicities of L = 2π/k and T = 2π/ω

of H . Clearly, after averaging over time and space, this
system is force free and hence unbiased. Our Hamiltonian
may describe, for example, cold atoms in the classical
regime of microkelvin temperatures [3,20] exposed to two
counterpropagating laser beams of perpendicular polarization,
preventing the occurrence of interference terms in Eq. (1). The
lateral oscillation of both lattices can be achieved by phase
modulating both laser beams using standard techniques like
acousto-optical modulators and radio frequency generators
(see, e.g., Refs. [18,31]).

To identify the relevant control parameters we introduce
dimensionless variables x ′ = 2kx and t ′ = ωt . Using μ =
mω2

2VSk2 , ν = 2kd, and γV = VC

VS
, we get the equation of motion

μẍ = sin(x + ν cos t) + γV sin[x + 2ν cos(2t + φ) + δ],
(2)

where we omitted the primes on t ′ and x ′.

III. RATCHET TRANSPORT AND LATTICE SWITCHES

In order to explore the transport properties of our setup,
we propagate N = 2×104 particles up to ttot = 4×105T

by numerical integration of Eq. (2) using a Runge-Kutta
Dormand-Prince integrator [32]. The initial velocities of the
particles are chosen randomly within the low velocity regime
such that their initial kinetic energies are small compared to
the potential height of both the lattices. In this section, we
present the main results and we discuss the underlying physical
mechanisms in the following sections.

FIG. 2. Mean transport velocity v̄ of a particle ensemble as a
function of time for four different cases. Case I: in presence of only
substrate lattice (γV = 0). Case II: in presence of both substrate
and superimposed carrier lattice γV = 1. Case III: in presence of
both lattices but carrier lattice switched off at t = 0.11ttot (blue dot)
(γV = 1). Case IV: subsequent switches of the carrier lattice; blue
dots show times (t = 0.10ttot and t = 0.25ttot) where the carrier
lattice is switched off, and green dots when it is switched on
(t = 0.025ttot, t = 0.175ttot, and t = 0.30ttot). At the final switch (red
dot, t = 0.35ttot), we switched also the relative driving phase φ from
φ = π/2 to φ = −π/2. Remaining parameters: μ = 1.2665, ν = π ,
δ = π/2, and φ = π/2.

In the case of only the substrate lattice being present, we
do not observe directed transport (case I in Fig. 2). This
is to be expected, because the corresponding equation of
motion [Eq. (2) with γV = 0] is invariant under time reversal,
t → −t , thus preventing directed particle motion in unbiased
systems [11]. Applying the carrier lattice additionally [γV = 1
in Eq. (2)] and choosing appropriate “phase shifts” to the
substrate (φ �= 0,π and δ �= 0,π ) allows one to break both time
reversal and parity symmetry which leads indeed to directed
transport (case II in Fig. 2). This transport slowly accelerates
and finally saturates at v̄II � −1.25 which is comparable to
the spread of the velocity distribution of the particles. This
constitutes an unusually high efficiency for a Hamiltonian
ratchet, where the mean drift velocity is typically one or
two orders of magnitude less than the standard deviation of
the particle velocity distribution. We now consider the same
situation, but switch off the carrier lattice, instantaneously,
at t = 0.11ttot (blue dot; case III in Fig. 2). Interestingly,
after switching off the carrier lattice the transport persists.
Rather than decaying back towards zero, as one might expect
for a symmetric setup, it does not decay but is frozen at its
value at the time of the switch. That is, our atomic ensemble
travels with constant average speed through the symmetrically
oscillating lattice. Remarkably, this allows for an intriguingly
simple real-time control of the transport velocity: Once the
desired transport is achieved, one simply needs to switch off
the carrier lattice.

We now consider a similar case, but switch the carrier lattice
subsequently on and off (case IV in Fig. 2). Once the transport
has been frozen for a while we can accelerate it by switching
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on the carrier lattice again (second green dot on case IV curve).
Switching it off, for a second time (second blue dot), freezes
also this enhanced transport at a constant strength. Clearly, to
achieve a highly flexible real-time control of the transport it
would be desirable to be able to slow it down. This can in fact be
achieved by switching on the carrier lattice again, but this time
with a phase difference of φ = −π/2 to the substrate (red dot).
We see in Fig. 2 that this indeed slows the transport system-
atically down. Overall, we demonstrated a remarkably simple
protocol allowing one to enhance, freeze, or slow the transport
of atomic ensembles in two optical lattices on demand.

IV. DISCUSSIONS

A. Phase space analysis

It turns out that the physical mechanism underlying the
real-time control of directed currents we just demonstrated
crucially hinges on the mixed phase space structure of our two
lattice system. Hence, to understand it we perform a systematic
analysis of its microscopic composition and analyze its
dynamical occupation by the considered particle ensemble.
First, to understand the structure of the phase space itself, we
take “stroboscopic” snapshots of particles with different initial
conditions leading to Poincaré surfaces of sections (PSOS)
which provide a representative overview of the structure of
the complete three-dimensional (3D) phase space [33]. We
also exploit the spatial periodicity of our setup and project the
particle position back to the first unit cell x ∈ [0,L) of the
lattice. The PSOS of the substrate lattice (henceforth referred
to as P1) is symmetric about v = 0 [Fig. 3(a), black dots] and
contains a large central “chaotic sea” C1

C between v � ±1.6.
On top of the PSOS, we show the snapshot of the particle coor-
dinates, at a given time, used to determine v̄ in case I of Fig. 2
[green dots in Fig. 3(a)], illustrating the uniform symmetric
chaotic diffusion of particles through the lattice resulting in
no transport. The chaotic sea is bounded by the first invariant
spanning curves [FISCs; red lines in Fig. 3(a)], which prevents
acceleration of our low velocity initial conditions beyond |v| >

1.6. Contrarily, a particle with initial condition on one of the
regular invariant curves at |v| � 1.6 [black lines in Fig. 3(a)]
shows ballistic unidirectional motion through the lattice.

Let us now explore how the phase space structure changes
in the presence of the carrier lattice. Most prominently, the
two-lattice PSOS [black dots in Fig. 3(b)], henceforth referred
to as P2, is not mirror symmetric about the v = 0 axis. Besides
the chaotic sea C2

C at small velocities, it exhibits two additional
chaotic layers at higher velocities: the upper layer C2

U at
v � 2.2 and the lower layer C2

L at v � −2.2. The crucial point
now is that the choice of an appropriate value for γV allows
one to connect C2

C, asymmetrically, only with C2
L through a

“cantorus” structure [red dashed line in Fig. 3(b)], which is a
hierarchical chain of stable and unstable fixed points, while it
remains separated from C2

U by a regular invariant curve [red
solid line in Fig. 3(b)]. This allows particles to enter C2

L but
not C2

U. This can be easily seen from the fixed time snapshot
of the particle distribution onto P2 corresponding to case III
denoted by the green dots in Fig. 3(b). These particles in C2

L
still move irregularly but now only in one direction through
the lattice, which is the origin of the transport we observed
in Fig. 2. The fact that the transport velocity does not quickly

FIG. 3. The position (mod L) and velocity of all the N particles
(green) at (a) t = 0.04ttot in case I superposed on the PSOS P1
(black dots and lines) of the substrate lattice, (b) t = 0.42ttot in case
III superposed on the PSOS P2 (black dots) corresponding to both
the substrate and the carrier lattices, and (c) t = 0.95ttot in case IV
superposed on the PSOS P3 (black dots) corresponding to both lattices
but with φ = − π

2 . Red solid lines denote the position of the FISCs
whereas the red dashed lines indicate the location of the cantorus (see
text). Ci

U,C,L, i = 1,2,3, denotes the upper, central, and lower chaotic
layer of P1, P2, and P3, respectively. (d) A zoom into the typical
trajectory of a particle initiated at low velocity in the central chaotic
sea of the PSOS P2 in (b), showing the particle’s stickiness to the
cantorus.

converge to a constant velocity, but accelerates very slowly, on
time scales of 1×105 driving periods towards its asymptotic
value (case II in Fig. 2) is owed to the cantorus linking C2

C and
C2

L, which effectively acts as a semipermeable barrier to the
particles approaching it and slows down the uniform filling of
the accessible parts of the phase space.

B. Conversion between diffusive and ballistic motion

To understand how switching the carrier lattice subse-
quently on and off allows one to freeze, accelerate, and revert
the directed transport, we now analyze the impact of lattice
switches on the population of phase space structures [green
dots in Figs. 3(a)–3(c)].

In Fig. 2, case III, when we froze the directed transport
by switching off the carrier lattice, the phase space changed
suddenly from P2 to P1. The crucial observation is now that
particles located in C2

L and some regions of C2
C of P2 at the

instant of the lattice switch [green dots below v ∼ −1.6 in
Fig. 3(b)] are located in the regular domain of spanning curves
in P1 [see Fig. 3(a)] after the switch. As usual, particles which
are located on regular spanning curves after the switch [black
lines in Fig. 3(a)] are confined to these structures and travel
with almost constant velocity through the lattice. Hence, also
the ensemble averaged velocity, i.e., the directed transport,
remains approximately constant or “frozen,” which explains
our observation in Fig. 2, case III (the particles in the chaotic
sea C1

C of P1 do not contribute to the transport as P1 is
symmetric around v = 0). In conclusion, the instantaneous
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switch of the dynamical system has caused a conversion
from diffusive to regular motion for some particles, which is
reminiscent of the conversion processes between regular and
ballistic dynamics observed in driven superlattices [34,35].

It is now straightforward to see how switching the carrier
lattice for a second time (case IV in Fig. 2) accelerates the
transport again. This switch suddenly changes the underlying
phase space from P1 to P2 and connects, again, C2

C with C2
L.

Hence, since the particle density in C2
C is (still) higher than

the density in C2
L [Fig. 3(b)], particles continue penetrating

through the cantorus into C2
L which stops only for a uniform

particle distribution over the entire chaotic sea. Furthermore,
there is now a natural way to slow down the transport.
Choosing an inverse phase difference of φ = −π/2 (instead of
+π/2) mirrors P2 around v = 0 and the particles now slowly
redistribute from the central chaotic layer C3

C into the upper
chaotic layer C3

U as shown in the PSOS P3 [black dots in
Fig. 3(c)]. This creates a “counterweight” to the particles in
C3

L which slowly, but continuously, grows [for a snapshot see
green dots in Fig. 3(c)], which explains the observed decrease
of the directed transport.

How long can we proceed to accelerate, slow down, and
revert the transport? The time scale is set by the uniform filling
of the entire chaotic sea of P2. This limiting time scale depends
crucially on the flux through the cantorus which in turn can
be tuned by varying the relative strengths of both lattices, i.e.,
by changing γV . For γV = 1 (the value we used), at about
t ∼ 4×105T the entire chaotic sea of the two-lattice setup
(lower, central, and upper sea) is uniformly filled with particles.
At this point, no further modulation of the transport is possible
within our scheme.

V. EXPERIMENTAL REALIZATIONS

We believe that our dynamical control of directed currents
can be realized in experimental setups using cold atoms
in driven optical lattices where the periodic potential is
generated by counterpropagating laser beams of perpendicular
polarization [12,18,20,31]. The resulting lattice can be driven
by phase modulation using acousto-optical modulators and
radio frequency generators which also allow one to keep
both lattices in phase and to implement a driving amplitude
on length scales of the order of L [12,20]. Translating
our parameters to experimentally relevant quantities for
rubidium atoms, we obtain VS = VC ∼ 20Er , ω ∼ 10ωr ,
and the product dk ∼ π

2 , where Er and ωr are the recoil
energy and recoil frequency of the atom, respectively. These
experiments operate in the demonstrated classical regime of
microkelvin temperature [20]. Even for colder temperatures,
in the semiclassical regime, we expect tunneling through
cantori [5], which should not alter our control scheme in
general but only reduce the operational timescale. We note that
our scheme can be refreshed by employing Sisyphus cooling,
which can be used to localize our particle ensemble in the

central chaotic sea again. Notably in these experiments many
particle effects are not important, but one can in principle
tune parameters to probe the impact of weak interaction
effects [36]. This can have important consequences for the
transport [37], but it affects the particle distribution in phase
space only on long time scales [37] and should therefore
leave our scheme unaffected. In contrast to Brownian ratchets,
our mechanism does not depend on noise and we explicitly
checked that it is robust to noise of strengths in the regime
typical for cold atom ratchet experiments [38]. Stronger noise
would enhance the particle flux through the cantori and other
regular structures, significantly decreasing both the maximally
achievable transport velocity and the operational time scale
of our scheme. Also, the thermal broadening of the atomic
beam momentum distribution in this microkelvin temperature
regime is small compared to the width of the central chaotic
sea and thus would not contribute to the particle flux, hence
keeping the efficiency of our scheme unaffected.

Another possible realization is provided by using a su-
perconducting quantum interference device (SQUID) setup
with Josephson junctions as in Ref. [39] operating in the
underdamped classical regime of temperatures ∼1 K (in which
damping, noise, as well as quantum effects can be neglected
safely) with a time dependent biharmonic external flux. Since
this underdamped classical regime has already been realized
experimentally, we believe that realizing our scheme using
such setup is possible [40–43]. Finally, we note that our control
scheme is not restricted to two-lattice systems but could be
applied also to other Hamiltonian systems having mixed phase
spaces and offering chaotic layers which can be systematically
connected and disconnected.

VI. CONCLUSIONS

We provide a scheme offering the real-time control of
directed currents in superimposed driven lattices. It can be
straightforwardly implemented in ac-driven optical lattices
and allows one to design directed currents of cold thermal
atomic ensembles which can be consecutively accelerated,
slowed, and reverted on demand. The mechanism underlying
our scheme operates in phase space and depends only on large
scale structures like the presence of different chaotic layers
and cantori structures and should therefore be applicable more
generally, e.g., as a design principle for targeted delivery of
molecules or colloids in optical devices, or possibly on other
vibrating substrates.
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