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We propose a method for the detection and localization of different types of coexisting oscillatory regimes that
alternate with each other leading to multistate intermittency. Our approach is based on consideration of wavelet
spectrum energies. The proposed technique is tested in an erbium-doped fiber laser with four coexisting periodic
orbits, where external noise induces intermittent switches between the coexisting states. Statistical characteristics
of multistate intermittency, such as the mean duration of the phases for every oscillation type, are examined with
the help of the developed method. We demonstrate strong advantages of the proposed technique over previously
used amplitude methods.
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I. INTRODUCTION

The irregular alternation of two different regimes in time,
while all system parameters are fixed, has been observed
and studied intensively in many dynamical systems, from
electrical circuits [1] and lasers [2] to immensely complex
living objects [3–7]. Such behavior was first studied by Pomeau
and Manneville [8] in the Lorenz model with alternation of
apparently periodic and chaotic regimes, and it was called
“intermittency.” Later, the same term was used to describe
irregular alternation between two different forms of chaotic
motion, so-called crisis-induced intermittency [9]. Accord-
ing to the mechanisms resulting in intermittent dynamics
and statistic properties of two different types of behavior
(traditionally called laminar and turbulent phases), various
types of intermittency are distinguished, such as type I–
III intermittency [10,11], eyelet intermittency [12–16], ring
intermittency [17], and on-off intermittency [18–22]. Each
of these types of intermittency is characterized by its own
dependence of the mean laminar phase length on the criticality
parameter and by the type of laminar phase length distribution
observed for fixed parameter values.

Recently, the notion of intermittency was extended to mul-
tistable systems (multistate intermittency) manifested as the
alternation between coexisting periodic or chaotic behaviors
regardless of the form of motion [23,24]. In bistable and
multistable dynamical systems, irregular switches between
coexisting states can be induced by noise resulting in so-
called noise-induced intermittency or noise-induced attractor
hopping [25–28]. The switch between two states (two-state
intermittency) was studied by Lai and Grebogi [29] and later
demonstrated in laser experiments [30]. In the literature, both
notions, namely attractor hopping and multistate intermittency,
are used to refer to this kind of behavior [27,31]. Although

the name may be a subject of discussion, in our opinion the
term “multistate intermittency” more accurately reflects the
intermittent character of this kind of dynamics in systems with
coexisting attractors.

In conjunction with conventional types of intermittency,
more sophisticated types were observed. Parameter fluc-
tuations and external noise may significantly change the
characteristic properties of intermittent behavior [32–34].
Remarkably, the difference may be so great that under certain
circumstances the same type of intermittency can be classi-
fied into two completely different dynamical regimes [35].
Furthermore, two or more different intermittency types may
alternate with each other, resulting in the emergence of a
very complex behavior known as intermittency of intermit-
tencies [36]. Obviously, all these sophisticated types of inter-
mittent behavior create additional difficulties in classification
and characterization of an observed type of intermittency. The
most unrevealed problem seems to arise when we deal with a
system with multiple (three or more) coexisting attractors in
which additional noise induces intermittent switches between
different dynamical regimes. In this case, researchers face the
problem associated not only with regularities in the residence
time distributions, but also with separation of time intervals
belonging to particular dynamical regimes.

Typically, when only two different dynamical regimes are
involved in intermittent dynamics, they are usually distin-
guished in time series using an amplitude criterion. When
a typical value of the variable characterizing the system state
in one regime (say, regime A) exceeds considerably the value
of the corresponding variable of another alternating regime
(say, regime B), the difference can be used to distinguish
time intervals associated with distinct coexisting regimes. In
this case, the threshold value � is introduced in such a way that
when the dynamical variable x is below this threshold (x < �)
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the system is in regime A, whereas above the threshold
(x > �) it is in regime B. Although direct application of this
approach yields acceptable results in only a limited number
of systems, additional transformation of the system variables
makes the amplitude criterion practically a universal tool
suitable for a broad range of dynamical systems. Different
variations of the amplitude criterion were applied successfully
to examine intermittent lag synchronization [21,22,37], inter-
mittent generalized synchronization [38], intermittent phase
synchronization [39], etc.

In certain cases, specific operations are required before
the application of the amplitude criterion. Since the alter-
nating oscillatory regimes may be characterized by different
dominant frequencies, the amplitude criterion can be used to
analyze time series of highly complex systems, such as the
brain, together with consideration of the system behavior in a
certain preliminary defined time-scale range. To examine the
dynamical variable x(t) in the time-scale range s ∈ [sl,sh], the
integral energy of the wavelet spectrum associated with this
range can be calculated as

w(t) =
∫ sh

sl

|W (s,t)|2 ds, (1)

where W (s,t) is the complex wavelet surface defined with the
help of the continuous wavelet transform

W (s,t0) = 1√
s

∫ +∞

−∞
x(t)ψ∗

(
t − t0

s

)
dt (2)

with the complex Morlet mother wavelet

ψ(η) = 1
4
√

π
exp(j�0η) exp

(−η2

2

)
. (3)

The symbol “∗” in Eq. (2) denotes complex conjugation.
The parameter value �0 = 2π is typically used to provide
the relation s ≈ 1/f between the time scale s, where the
examination is carried out, and the corresponding frequency f

of the Fourier transformation [40]. After the calculation of the
time dependence of the wavelet spectrum energy Eq. (1) in the
considered time-scale range [sl,sh], the amplitude criterion
w(t) > �s can be used again to separate the time intervals
associated with the alternating regimes. This technique has
been used successfully to study intermittency in brain dy-
namics, where different types of intermittent behavior take
place, e.g., those involving spike-wave discharges manifested
themselves as electroencephalographic hallmarks of absence
epilepsy, sleep spindles, 5–9 Hz oscillations, and background
activity [40]. Remarkably, the described approach based on the
continuous wavelet transform and the amplitude criterion aims
to detect and localize certain patterns of oscillatory dynamics,
going far beyond the problem of studying intermittency, and it
may also be used separately in advanced brain research.

The efficient technique developed for detection and lo-
calization of coexisting regimes in intermittent time series
is, in fact, a solid basis promoting considerable success in
understanding the core mechanisms and main regularities
of the intermittency phenomenon. The basic regularities of
more complicated kinds of intermittency, when three or more
dynamical regimes are involved, are far from clear. The task

of identifying time intervals corresponding to each regime in
such complicated time series remains an unsolved problem.

In the present work, as an example and without loss of
generality, we consider an erbium-doped fiber laser (EDFL),
which is known [2,28] to exhibit the coexistence of multiple
attractors, where noise can induce multistate intermittency
consisting in irregular alternations between four different
periodic regimes, each with its own characteristic amplitude
and frequency [23,28]. To analyze this complex type of
intermittent behavior, we propose the method of time-interval
localization corresponding to particular dynamical regimes.
Using the developed method, we reveal the main features of
this noise-induced multistate intermittency.

The rest of the paper is organized as follows. In Sec. II, we
describe the theoretical model of the EDFL. The core idea,
namely the algorithm of the method implementation, and the
results of its application are given in Sec. III. In the same
section, we compare the efficiency of the proposed method
with that of the amplitude method that has previously been
used [23,28] to study the intermittent behavior in the same
laser. The results of careful consideration of the noise-induced
multistate intermittency in the EDFL are discussed in Sec. IV.
Finally, comments and remarks are given in Sec. V.

II. MODEL OF THE ERBIUM-DOPED FIBER LASER

The dynamics of the EDFL is described by the following
rate-equation model [2]:

dx

dt
= 2L

Tr

x{rwα0[N (ξ1 − ξ2) − 1] − αth} + Psp,

(4)
dy

dt
= −σ12rwx

πr2
0

(yξ1 − 1) − x

τ
+ Ppump,

where x is the intracavity laser power, y = 1
n0L

∫ L

0 N2(z)dz is
the averaged (over the active fiber length L) population of the
upper lasing level, N2 is the upper-level population at the z

coordinate, n0 is the refractive index of a “cold” erbium-doped
fiber core, and ξ1 and ξ2 are parameters defined by the
relationship between cross sections of ground-state absorption
(σ12), return stimulated transition (σ21), and excited-state
absorption (σ23). Tr is the photon intracavity round-trip time,
α0 is the small-signal absorption of the erbium fiber at the
laser wavelength, αth accounts for the intracavity losses on the
threshold, τ is the lifetime of erbium ions in the excited state,
r0 is the fiber core radius, w0 is the radius of the fundamental
fiber mode, and rw is the factor that conveys the match between
the laser fundamental mode and erbium-doped core volumes
inside the active fiber. The spontaneous emission into the
fundamental laser mode is derived as

Psp = y
10−3

τTr

(
λg

w0

)2
r2

0 α0L

4π2σ12
, (5)

where λg is the laser wavelength. The pump power is expressed
as

Ppump = Pp

1 − exp[−α0βL(1 − y)]

N0πr2
0 L

, (6)

where Pp is the pump power at the fiber entrance and β is a
dimensionless coefficient. We explore the following parameter
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values: L = 0.88 m, Tr = 8.7 ns, rw = 0.308, α0 = 40 m−1,
ξ1 = 2, ξ2 = 0.4, αth = 3.92 × 10−2, σ12 = 2.3 × 10−17 m2,
r0 = 2.7 × 10−6 m, τ = 10−2 s, λg = 1.65 × 10−6 m, w0 =
3.5 × 10−6 m, β = 0.5, and N0 = 5.4 × 1025 m−3, which
correspond to the real experimental conditions that will be
described in the following section.

Under harmonic modulation md sin(2πfdt) applied to the
diode pump current as

Pp = p[1 − md sin(2πfdt)] (7)

within a certain range of driving amplitude md ∈ (0.95,1.0]
and driving frequency fd , the EDFL Eq. (4) exhibits the
coexistence of up to four periodic orbits Ai (i = 1,3,4,5) with
frequencies fi = fd/i corresponding to the periods 1, 3, 4,
and 5. In Eq. (7), p is the pump power.

When both harmonic and random modulations are added to
the pump current as [23]

Pp = p[1 − md sin(2πfdt) + ηG(ζ,fn)], (8)

the phase-space trajectory alternatively visits different attract-
ing domains of the phase space leading to multistate inter-
mittency, i.e., the laser switches between different periodic
regimes, as seen in the time series in Figs. 1(a) and 3(a).
In Eq. (8), η is the noise amplitude and G(ζ,fn) is the
zero-mean noise function of a random number ζ ∈ [−1,1]
and noise low-pass cutoff frequency fn (white noise is filtered
with a fifth-order discrete low-pass Butterworth filter in
LABVIEW 8.5). The parameters of stochastic modulation, fn

and η, determine the number of coexisting states and the
preference for each of the periodic orbits involved in multistate
intermittency. In this work, we fix the driving frequency to
fd = 80 kHz and set the amplitude of harmonic modulation
to md = 0.95. In our previous paper [23], we studied the
dependence of the probability to detect different regimes on
the noise bandwidth and found that the most diverse dynamics
occurs when noise is filtered at fn = 30 kHz. Therefore, in the
present work we use exactly the same value of fn.

III. METHOD FOR REGIME DETECTION

The method for detection and localization of different
dynamical regimes alternating with each other is based on the
continuous wavelet transform Eq. (2) with the Morlet mother
wavelet function Eq. (3). Since each of the coexisting limit
cycles of period-i (i = 1,3,4,5) is characterized by its own
frequency fi , the maximum energy |W (s,t0)|2 of the wavelet
spectrum W (s,t0) is observed in the time scale si ≈ 1/fi

corresponding to the dynamical regime realized at the moment
of time t0.

The core idea of the proposed method is illustrated in Fig. 1,
where the fragment of the time series [Fig. 1(a)] generated by
the EDFL model Eq. (4) with the noise intensity value η = 0.23
is analyzed. For the given values of the control parameters,
only two dynamical regimes with the main frequencies f1 and
f3 alternate with each other.

The wavelet surface |W (s,t)| shown in Fig. 1(b) illustrates
the process of sudden switches between the coexisting oscilla-
tory regimes that can be easily monitored with the help of the
tracking of the wavelet spectrum energy in certain time scales
si corresponding to the main frequencies fi of the alternating
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FIG. 1. Dynamics of EDFL demonstrating noise-induced mul-
tistate intermittency. For noise intensity η = 0.23, two differ-
ent dynamical regimes (namely, period-1 and period-3) alternate:
(a) time series of x(t), (b) wavelet surface |W (s,t)|, and
(c) dependence of wavelet spectrum energies w1,3(t) on time t . The
Roman numerals show the regimes with different oscillation periods.
The threshold �3 used for the amplitude criterion is shown by the
dot-dashed line in (a). The characteristic time scales for these regimes,
s1,3 ± �s, are marked by the dashed lines in (b).

regimes. In other words, the level of the wavelet energy in the
corresponding time scale may be used as a regime marker. To
detect which type of dynamical regime takes place at time t0,
one has to compare the wavelet spectrum energies |W (si,t0)|2
for each regime. The wavelet surface |W (s,t)| [Fig. 1(b)]
corresponding to the considered fragment of the time series
and the time series itself [Fig. 1(a)] makes evident the time
intervals where the dynamical regimes with frequencies f1

and f3 take place.
Although the continuous wavelet transform is known to

neutralize the effect of noise at the main frequencies [40],
allowing us to use this method for filtering noisy signals,
the main frequencies of the alternating dynamical regimes
of the EDFL in the presence of external noise still fluctuate
[Fig. 1(b)], and therefore the consideration of the integral
wavelet spectrum energy within rather narrow time-scale
intervals si − �s � s � si + �s [by analogy with Eq. (1)],

wi(t) = 1

2�s

∫ si+�s

si−�s

|W (s,t)|2
s

ds, (9)
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seems to be more appropriate. The factor 1/s allows a direct
comparison of the energies of the competitive regimes, because
for the same amplitude of the harmonic signal A sin(2πt/s)
the wavelet spectrum energy is known to increase quadratically
as the time scale s grows [40]. The dynamical regime, which
takes place at a certain moment of time t0, is detected with the
help of the largest wavelet spectrum energy wi(t0).

The approach described above is used to separate the
coexisting dynamical regimes shown in Fig. 1(c). One can see
that within the time intervals corresponding to the existence
of the dynamical regime with the driving frequency f1 =
fd = 80 kHz, the wavelet spectrum energy w1(t) prevails over
w3(t) and vice versa [Fig. 1(c)]. Note also that the value of
w1(t) changes over time insufficiently, i.e., its value remains
practically the same even within time intervals when the regime
with the characteristic frequency f3 takes place. This aspect is
explained by the fact that the driving frequency fd always
exists regardless of the dynamical regime released in the
system. Therefore, the modulation frequency fd superimposes
on the system dynamics and becomes reflected into the wavelet
spectrum [41]. Since the amplitude of the modulation is
constant, the value of w1(t) obtained for the time-scale range
corresponding to the frequency f1 changes insufficiently [see
Fig. 1(c)]. The moments of time when the wavelet energies
w1(t) and w3(t) coincide are supposed to correspond to
switches between the competitive regimes. More precisely,
these switches are not instantaneous, however we neglect their
duration because they are too short in comparison with the
duration of the alternating regimes.

As we already mentioned in the Introduction, multistate
intermittency in the EDFL with four coexisting states was pre-
viously studied using the amplitude method [23,28], however
the technique of wavelet spectrum energies was not used. Let
us demonstrate how it works. To separate coexisting period-1,
period-3, period-4, and period-5 regimes, three threshold
values, �3 = 2, �4 = 6, and �5 = 12, are chosen empirically.
When the oscillation amplitude does not exceed the threshold
value for the period 3 (�3), the basic period-1 oscillation
regime with the main frequency f1 is supposed to take place.
The oscillations with the amplitudes being within the range
[�3,�4] are considered to belong to the period-3 dynamical
regime characterized by the main frequency f3 = 30 kHz.
Similarly, when the amplitude of the oscillations occurs within
the interval [�4,�5], the observed regime is interpreted as
period-4 with the main frequency f4. Finally, the oscillations
with the amplitudes exceeding the highest threshold value �5

are supposed to belong to the period-5 regime with the main
frequency f5.

Next, we will show that the amplitude method can only be
used for qualitative estimations, but not for precise quantitative
analysis. To illustrate this statement, we compare the results
obtained using the amplitude method with the results obtained
using the proposed approach. For this purpose, we plot in
Fig. 1(a) the corresponding threshold �3 by the dot-dashed
line. One can see that even if only two oscillatory regimes
are involved in intermittency, i.e., even if we deal with the
simplest manifestation of the multistate intermittency (two-
state intermittency), the amplitude method yields a very rough
estimation. Indeed, as clearly seen from the time series in
Fig. 1(a), within the time interval 22.2 � t � 22.4 ms, the

amplitude criterion testifies to the presence of the dynamical
regime with the frequency f1, while the oscillations with
the main frequency f3 take place [compare the time series
in Fig. 1(a) and the wavelet surface in Fig. 1(b)] because
inside this interval of length T = 0.2 ms six oscillation periods
(N ≈ 6) are observed, and therefore the computed oscillation
frequency and time scale are f = N/T ≈ 30.0 kHz = f3 and
s ≈ 3.3 × 10−2 ms, respectively. Exactly the same situation
occurs for other time intervals where the period-3 regime
takes place. The mean residence times 〈l1〉 and 〈l3〉 for the
regimes with the main frequencies f1 and f3 obtained with
the help of the proposed method are 〈l1〉 = 0.108 ms and
〈l3〉 = 0.793 ms, which is in good agreement with Fig. 1. On
the contrary, the mean residence times 〈l̂1〉 = 6.410 ms and
〈l̂3〉 = 0.003 ms found by means of the amplitude method
completely contradict the observed dynamics. This allows
us to conclude that the method based on the comparison of
the wavelet spectrum energies wi(t) [Fig. 1(c)] yields correct
results where the amplitude method fails.

Taking into account the above aspect and using the proposed
method of the regime detection accordingly, we analyze the
time series corresponding to the intermittent switches between
several dynamical regimes (Figs. 2 and 3). Such intermittent
dynamics is observed in the EDFL for the control parameters
η = 0.47 and 0.97.

One can see from the time series x(t) shown in Figs. 2(a)
and 3(a) that within the considered time intervals, three
different dynamical regimes (period-1, -2, and -4 in Fig. 2
and period-3, -4, and -5 in Fig. 3) alternate with each other.
An increase in the noise intensity results in a modification
of the oscillation shape because the pulses become very
sharp. The abrupt oscillation fronts generate a rapid (but
very short) growth of the wavelet energy |W (s,t0)|2 in a
broad range of time scales, especially on the short ones
[Fig. 3(b)]. As a consequence, the considered wavelet spectrum
energy within the narrow time-scale interval corresponding
to the small time scale, w1(t), starts showing surges in the
amplitude coinciding with the oscillation fronts [compare
Figs. 3(b) and 3(c)]. Importantly, although during these spikes
the wavelet energy w1(t) can exceed the analogous values
wi(t) corresponding to other regimes (e.g., time interval
5.36 � t � 5.70 ms in Fig. 3), these events are fulminant and
do not contain the period-1 dynamical regime with frequency
f1. Therefore, to avoid the false detection of switches between
different regimes, one has to exclude from consideration short
time intervals whose length is about one or two oscillation
periods.

Again, as in the case of two coexisting regimes shown
in Fig. 1, we can conclude that the proposed method based
on the comparison of the wavelet spectrum energies wi(t)
yields correct results and surpasses the amplitude method
used in earlier works. Thus, the proposed method, which
is aimed at detecting and localizing different dynamical
regimes alternating with each other in a complex nonlinear
system, may be considered as a powerful tool to examine
multistate intermittent behavior. In particular, this approach
is applied to the noisy EDFL. The amplitude method used
before is, in turn, less accurate and can only be used for
qualitative estimations, while it is unfit for precise quantitative
measurements.
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FIG. 2. Illustration of the efficiency of the proposed method for
noise intensity η = 0.47 when three dynamical regimes, period-1,
period-3, and period-4 with frequencies f1, f3, and f4, alternate with
each other. (a) Fragment of analyzed time series x(t), (b) wavelet
surface W (s,t), and (c) dependence of wavelet spectrum energies
w1,3,4(t) on time t . The thresholds �3 and �4 used for the amplitude
criterion are shown by the dashed lines.

IV. MULTISTATE INTERMITTENCY

Since the proposed approach allows the localization of
precise time intervals associated with a particular state in
multistate intermittency, it makes possible a careful study of
the statistical characteristics of such intricate behavior. The
EDFL dynamics and main features of intermittency are known
to be determined by the noise intensity, therefore it is important
to consider the system behavior in a wide range of noise
intensities.

To characterize the domination of a particular dynamical
regime in the time series at a fixed value of the noise
intensity, we calculate the dependence of the probability for
the emergence of a certain dynamical regime Pi (i = 1,3,4,5)
on the noise intensity η (Fig. 4) defined as

Pi = lim
L→+∞

Li/L, (10)

where Li is the sum of lengths of all the time intervals
corresponding to the ith dynamical regime in the examined
time series with length L = L1 + L3 + L4 + L5. In our study,
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FIG. 3. Illustration of the efficiency of the proposed method for
noise intensity η = 0.97 when three dynamical regimes, period-3,
period-4, and period-5 with frequencies f3, f4, and f5, alternate with
each other. (a) Fragment of analyzed time series x(t), (b) wavelet
surface W (s,t), and (c) dependence of wavelet spectrum energies
w3,4,5(t) on time t . The thresholds �3, �4, and �5 used for the
amplitude criterion are shown by the dashed lines.
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FIG. 4. Probability to detect dynamical regime Pi (i = 1,3,4,5)
vs noise intensity η.
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FIG. 5. Probability to detect dynamical regime Pi (i = 1,3,4,5)
as a function of time-series length L for every regime obtained for
noise intensity η = 0.97.

we use the time series with length L = 1.68 s for each value
of the noise intensity η.

Obviously, for the time series obtained both experimentally
and numerically, the values of Pi can only be found for the
finite-length time series, whereas in Eq. (10) the length of
the time series, L, tends to infinity, i.e., the probability to
detect the ith dynamical regime is defined for the infinite time
series. As a consequence, in the experimental observations
and numerical simulations, the probability to detect the ith
dynamical regime, Pi , is always defined with a certain accuracy
δi , and therefore one needs to control the length of the time
series, L, to be sure that the obtained results are correct.
Figure 5 shows the dependencies of the probability values for
different dynamical regimes obtained for the noise intensity
η = 0.97 on the time-series length L. One can see that for
the small lengths (L < 0.5), a change in L results in notable
changes in the probability Pi , whereas for the larger lengths the
probability remains practically constant. For the time-series
length L = L0 = 1.68 s used in the present study and the
noise intensity η = 0.97, the relative error δi is less than
1%, and therefore the time-series length L0 allows for a
quantitative characterization of the system dynamics with
very high accuracy. Similar estimations of the relative error
values are obtained for other noise intensities η as well as for
other quantities used in our work to characterize multistate
intermittency (see Figs. 6 and 7).

The probability of detecting the dynamical regime with the
main frequency fi shown in Fig. 4 depends crucially on the
noise intensity η; the character of this dependence is different
for each regime. For small values of the noise intensity η,
the most typical regime is characterized by the frequency f1

(its probability is more than 90%). The second dynamical
regime, which can also be observed for small noise intensity
(although its probability is low), is the period-3 regime, while
the probability for the regimes with the main frequencies f4
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FIG. 6. Mean residence time 〈l〉 vs noise intensity η for every
detected regime.

and f5 is equal to zero. As the noise intensity η increases, the
probability to detect the period-1 regime rapidly decreases,
while the analogous probability for the period-3 regime grows
(Fig. 4). Starting from the middle level of the noise intensity,
the other two dynamical regimes with the main frequencies
f4 and f5 spring up in the time series with a relatively
small probability to be observed. Nevertheless, the higher the
noise intensity η, the larger is the probability for the period-4
regime, whereas the probability to detect the regime with the
main frequency f5 remains small. Remarkably, the period-1
regime being dominant for small noise intensities is practically
destroyed by stronger noise, and the probability P1 tends to be
close to zero for η > 0.7.

Another important characteristic of the intermittent behav-
ior is the dependence of the mean residence time on the control
parameter (in our case, on the noise intensity η). Figure 6
shows the dependencies of the mean residence time on the
noise intensity for all coexisting dynamical regimes observed
in the EDFL. Since the mean residence time correlates with
the probability for the detection of a dynamical regime, the
curves shown in Fig. 6 are similar to the probability functions
in Fig. 4. The short residence times of all regimes observed
for large values of η are explained by the frequent switches
between modes, caused by the large noise intensity.

One of the most important and informative characteristics
of the intermittent behavior for a fixed control parameter is
the residence time distribution. Therefore, here we calculate
the probability distribution of the duration of every dynamical
regime for three different values of the noise intensity, namely
η = 0.23, 0.47, and 0.97, shown in Figs. 1–3. As the noise
intensity η increases, the probability distributions for the
residence times corresponding to the regimes with frequencies
fi (i = 1,3,4,5) change significantly (Fig. 7). Moreover, with
a further increase in the noise intensity, the number of time
intervals corresponding to the same dynamical regime (say,
period-3) is also changed considerably. This can be clearly
seen by comparing the distributions for the period-1 regime
for η = 0.23 and 0.97 in Figs. 7(a) and 7(c).
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FIG. 7. Probability distributions for lengths of period-1, period-3, period-4, and period-5 dynamical regimes with main frequencies f1, f3,
f4, and f5, respectively, obtained for noise intensity (a) η = 0.23, (b) η = 0.47, and (c) η = 0.97.

V. CONCLUSION

In the present work, we have developed a technique to
analyze multistate intermittency. As a prototypical multistable
system, we have considered an erbium-doped fiber laser in
which noise induces random switches between coexisting
periodic orbits. The testing of this method proved to be highly
effective for the localization of time intervals corresponding
to different dynamical regimes. Using this approach, we
have analyzed the main features of noise-induced multistate
intermittency in the EDFL. One of the interesting and intricate
findings is the sufficient rearrangement of the coexisting
regimes observed when the noise intensity varies. In fact,
relatively strong noise destroys the most stable dynamical
regime and at the same time brings to life completely different
states, atypical of the noiseless laser.

It should be noted that the proposed technique requires
prior knowledge about coexisting oscillatory regimes. In
the considered case of the EDFL, the coexisting dynamical
regimes are known from both theoretical and experimental
studies of the noiseless EDFL. The notion of frequencies of the
coexisting regimes allows the selection of time-scale intervals
si − �s � s � si + �s in an optimal way to calculate the
wavelet spectrum energy ωi(t). Obviously, in many real
experimental situations, noise cannot be switched off and
therefore internal perturbations (random or chaotic) may
mask the coexisting regimes and their main frequencies.
This masking can prevent both proper detection of the
coexisting regimes and a determination of the maximal
meaningful frequency, which should be known a priori in order

to eliminate fast artifacts, as described in Sec. IV. The colored
noise in the system can also cause problems in the detection
and separation of coexisting regimes, because some peaks in
the noisy Fourier spectrum may be interpreted erroneously
as being associated with deterministic components. At the
same time, external noise (e.g., detection noise) is not expected
practically to have any detrimental effect on the performance of
the proposed technique, due to the properties of the continuous
wavelet transform [40], except for noise of sufficiently large
intensity or color noise, which frequency-matches the main
frequency of one of the coexisting regimes. In any case,
before application of the proposed approach to the analysis
of multistate intermittency, the system dynamics should be
examined carefully in order to reveal all of the coexisting
regimes and corresponding time-scale ranges.

Finally, we believe that the proposed technique based
on wavelet spectrum energies will be helpful in analyzing
multistate intermittency in other complex dynamical systems
with coexisting oscillatory regimes.
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