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We present the symplectic geometry spectrum regression (SGSR) technique as well as a regularized method
based on SGSR for prediction of nonlinear time series. The main tool of analysis is the symplectic geometry
spectrum analysis, which decomposes a time series into the sum of a small number of independent and
interpretable components. The key to successful regularization is to damp higher order symplectic geometry
spectrum components. The effectiveness of SGSR and its superiority over local approximation using ordinary least
squares are demonstrated through prediction of two noisy synthetic chaotic time series (Lorenz and Rössler series),
and then tested for prediction of three real-world data sets (Mississippi River flow data and electromyographic
and mechanomyographic signal recorded from human body).
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I. INTRODUCTION

During the past several decades, the theory of chaos has
moved to center stage in many areas such as physics, ecol-
ogy, hydrology, sociology, economics, finance, atmospheric
sciences, and life sciences. A broad range of chaotic processes
that one can observe in the above diverse areas of natural and
human spheres inspires a great interest to develop chaotic mod-
els and, particularly, to predict the future evolution of a system
from its past measurements. As a consequence, the ability of
chaos theory–based models to achieve accurate predictions of
time series has been an important area of research in recent
decades. In this regard, the local approximation (LA) method
proposed by Farmer and Sidorowich [1] is very popular among
the local prediction methods. The idea behind such a method
is to recognize that any manifold in a high-dimensional space
is locally linear. In this method, after embedding a time series
in a state space using delay coordinates, a local approximation
based on ordinary least squares (OLS) is applied to learn the
induced nonlinear mapping [1]. This method allows us to make
a short-term prediction of the future behavior of a time series,
using information based on past values.

According to Occam’s razor, the local approximation
method is simple but effective. The coefficients of the local
linear model are typically estimated using ordinary least
squares. Apart from potential linearization errors, the approach
also suffers from the high variance of the predictions under
noisy conditions [2]. These issues can significantly degrade the
predictive accuracy of real systems, as such systems inevitably
contain some amount of noise. Kugiumtzis et al. [2] showed
that the regularization technique, originally derived to solve
ill-posed regression problems, could give better predictions
than OLS on noisy chaotic time series. In order to avoid the
negative effects of noise, they considered four regularization
techniques: principal component regression (PCR), partial
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least squares (PLS), ridge regression (RR), and truncated total
least squares (TTLS). The first three regularization methods
were found to provide improved prediction performance
compared to OLS for synthetic noise–corrupted data from
typical nonlinear systems. Similar results were also found for
real-world data from the R-R intervals of ECG signals and
sunspot data. Jade et al. [3] extended the PCR technique to
kernel principal component regression (KPCR), which first
maps the input data into high-dimensional space through
some nonlinear function in prediction. Results obtained for the
Lorenz and Mackey-Glass equations and laser data in the Sante
Fe Institute prediction contest demonstrated that the KPCR,
when combined with a model parameters selection method,
can improve the prediction of the unseen test data, especially
those with sharp singularities. However, it is well known that
the kernel methods often suffer from a heavy computational
burden.

All of these regularization techniques are essentially
considered in Euclidean space and based on singular value
decomposition (SVD) and principal component analysis
(PCA). However, classical eigenvalue or subspace methods,
such as PCA and SVD, can only deal with flat Euclidean
structures and, thus, fail to discover the curved or nonlinear
structures of the input data. Although there are various
nonlinear extensions of PCA, such methods often suffer
from difficulties in designing cost functions or tuning too
many free parameters. Moreover, most of these methods
are computationally expensive, thus severely limiting their
application to high-dimensional data sets. In this paper, we
present a symplectic geometry spectrum regression (SGSR)
regularization technique based on symplectic geometry theory
[4].

Symplectic geometry and its associated eigenvalue methods
have several unique characteristics for overcoming some
important limitations inherent in traditional approaches for
complex data analysis, such as those based on Euclidean geom-
etry. The symplectic transform is structure preserving, which
means eigenvalues can be approximated more accurately [5].
Compared with SVD, symplectic matrix factorizations exhibit
small norm and condition numbers, which is desirable for
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improving the numerical stability and noise performance in
data analysis and image processing [6,7]. In addition, the
symplectic transform identifies nonlinear relations in a set of
data points, while preserving global submanifold geometrical
properties of the data [8]. Several studies have shown that
symplectic geometry spectrum–based methods are superior to
SVD-based techniques in the detection of chaos [9], estimation
of the embedding dimension of a nonlinear dynamic system
[10], and in the reduction of noise in nonlinear systems
[11,12]. The SGSR approach proposed in this study creates the
components by modeling the relationship between input and
output variables while maintaining most of the information
in the input data. The effectiveness of this approach is
evaluated by predicting two noisy synthetic chaotic time
series (Lorenz and Rössler series) and three real-world time
series (Mississippi River flow data and electromyographic and
mechanomyographic signal recorded from the human body).
The results are also compared with those obtained using OLS.

II. METHODS

A. Local linear prediction model

Consider a univariate time series x1,x2, . . . ,xn, where n

is the number of samples, generated from a D-dimensional
chaotic attractor. A phase space of the attractor can be
reconstructed by using delay coordinates defined as

Xi = {xi,xi+τ , . . . ,xi+(d−1)τ }T , (1)

where d is the embedding dimension of the reconstructed
phase space, τ is the delay time, and T denotes the vector
transpose. The original time series can thus be mapped into a
multidimensional state space, as

X =

⎡
⎢⎢⎢⎣

XT
1

XT
2
...

XT
m

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

x1 x1+τ · · · x1+(d−1)τ

x2 x2+τ · · · x2+(d−1)τ
...

... · · · ...
xm xm+τ · · · xm+(d−1)τ

⎤
⎥⎥⎦, (2)

where m = n − (d − 1)τ is the number of points in the d-
dimensional attractor.

The above reconstruction allows predictions of the time
series, through a local approximation that relates the present
and future states of the system. The first step in the local linear
prediction method is to find the nearest neighbor points of
the current phase point Xm in the reconstructed phase space.
Because of the assumption of deterministic behavior, it is
reasonably expected that the evolution of the selected vector is
correlated with the evolution of the neighboring vectors, which
could provide predictions of the future value of Xm through
an appropriate local model. Given the embedding vector, we
calculate the Euclidean norm between the point Xm and all
the remaining points Xi(i = 1,2, . . . ,m − 1). The closeness
is evaluated and q nearest neighbors Xk

m are selected, where
k = 1,2, . . . ,q and q > d in most cases.

The prediction of xn+1 involves finding an estimator of the
regression function so that x̂n+1 = f̂ (Xm). An autoregressive
model is often applied to obtain the local map function f̂ in
the local linear prediction model. The prediction value is thus
a linear superposition of the d elements in the delay vector

Xm, which can be represented as

x̂n+1 = GZm = g0 +
d∑

j=1

gjxm+(j−1)τ , (3)

where G = [g0,g1, . . . ,gd ] is a coefficient vector that needs to
be determined, and

Zm = [1,Xm]T = [1,xm,xm+τ , . . . ,xm+(d−1)τ ]T . (4)

The local prediction method relies on the fact that a set
of nearest neighbors evolves similarly in the reconstructed
chaotic attractor. Thus, such models have to learn neighbor-
hood relations from the data and map them forward in time.
For phase point Xm that is similar to its q nearest neighbors
Xk

m currently, the future point Xm+1 will be close to the future
point set Xk

m+1. The coefficient vector G can be identified from
the current phase point Xm and its neighborhood Xk

m:

GXc = Xf , (5)

where Xf = [x1
m+(d−1)τ+1,x

2
m+(d−1)τ+1, . . . ,x

q

m+(d−1)τ+1]T is
the next series value of the nearest points Xk

m (k = 1,2, . . . ,q),
and

Xc =

⎡
⎢⎢⎢⎣

1 1 · · · 1
x1

m x2
m · · · x

q
m

...
...

. . .
...

x1
m+(d−1)τ x2

m+(d−1)τ · · · x
q

m+(d−1)τ

⎤
⎥⎥⎥⎦. (6)

This linear regression problem is solvable in the ordinary
least square sense and leads to G = Xf XT

c (XcXT
c )−1. Then,

the prediction x̂n+1 can be obtained from Eq. (3). The multistep
prediction consists of repeating the above one-step predictions
up to the desired horizon. To evaluate the prediction accuracy,
central tendency estimates of forecast error, such as the
normalized mean squared error (NMSE), are often adopted,
while the receiver operating characteristic (ROC) is also used
in exceptional conditions, such as in the prediction of extreme
events [13,14]. In essence, better prediction is dependent on
the optimal trade-off between, for example, bias and variance
and consists of finding filter factors such that the mean square
error is minimized [2].

B. Symplectic geometry spectrum regression (SGSR)

A Hamiltonian matrix M ∈ R2n×2n has the form

M =
(

A L
Q −AT

)
, L = LT , Q = QT , (7)

where A, L, and Q are real n × n matrices.
A ubiquitous matrix when dealing with Hamiltonian eigen-

value problems is the skew-symmetric matrix,

J =
(

0 I
−I 0

)
, (8)

where I denotes the n × n identity matrix.
By straightforward algebraic manipulation one can show

that a Hamiltonian matrix M is equivalently defined by the
property

MJ = (MJ)T . (9)
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However, if matrix N ∈ R2n×2n satisfies

(NJ)T = −NJ, (10)

then it is called skew-Hamiltonian. Therefore, for a Hamilto-
nian matrix M, M2 = N is skew-Hamiltonian.

Any matrix S ∈ R2n×2n satisfying

ST JS = SJST = J (11)

is called symplectic, and since

(S−1HS)J = S−1HJS−T = S−1JT HT S−T = [(S−1HS)J]T ,

(12)
the Hamiltonian structure is preserved in symplectic similarity
transformations. For a symplectic matrix S, there is S = QR,
where Q is a symplectic unitary matrix and R is an upper
triangle matrix.

Similar to PCR, symplectic geometry spectrum regression
starts from the reconstructed trajectory matrix. This matrix
is transformed into a symmetric matrix and then a Hamil-
tonian matrix in symplectic space. The Hamiltonian matrix
is subjected to a symplectic QR decomposition to obtain
its eigenvalues and eigenvectors. Each of these eigenvectors
can be inversely transformed into a reconstructed embedding
vector. For the trajectory matrix in Eq. (2), a d × d autocorre-
lation matrix is given by A = XT X. Then, we can construct a
Hamiltonian matrix, as follows:

M =
[

A 0
0 −AT

]
. (13)

For this Hamiltonian matrix M, its eigenvalues can be
evaluated by symplectic QR decomposition and the primary
2d-dimensional space can be transformed into d dimensions
[6,12,15]. After the real Hamiltonian matrix M is squared to
form M2 = N, a symplectic orthogonal matrix P is constructed
such that

PT NP =
[

B R
0 BT

]
, (14)

where B is the upper Hessenberg matrix. Various methods
can be used to construct the symplectic orthogonal matrix P.
Given a Householder matrix Q, it can easily be shown that
the matrix H = [Q0;0Q] is also a Householder matrix and
that, furthermore, H is symplectic and unitary [9]. In order
to simplify the computation, we can construct matrix Q by
Schmidt orthogonalization, using H to replace P to obtain the
upper Hessenberg matrix B:

HMHT =
[

Q 0
0 Q

][
A 0
0 −AT

][
Q 0
0 Q

]T

=
[

QAQT 0
0 −QAT QT

]
=

[
B 0
0 −BT

]
. (15)

The sympletic QR algorithm is used to compute the
eigenvalues σ (B) = {σ1,σ2, . . . ,σd} [9,10]. If A is real and
symmetric, then eigenvalues of A are equal to those of B, and
the eigenvalues λ(X) of X can be obtained from the positive
square roots of σ (B) as

λ(X)j = √
σ j , j = 1,2, . . . ,d, (16)

with eigenvalues in descending order,

σ1 > σ2 > , . . . , > σp � σp+1 � , . . . , � σd. (17)

The σj are the symplectic singular values, constituting the
symplectic geometry spectra of A with relevant symplectic
orthonormal bases. The corresponding matrix Q denotes the
symplectic eigenvectors of A. Those σj with low values are
often related to the noise component in the data. Similar
to the SVD-based regularized regression estimation, those
smallest symplectic eigenvalues result in larger variance in
the prediction. If we use only the first p eigenvectors to
form the symplectic principal eigenvalue matrix while discard-
ing the remaining eigenvectors from p + 1 in the prediction,
then the regression is called a symplectic geometry spectrum
regression. The underlying qualitative assumption behind this
method is that the projections of Xf onto the last d-p columns
of Q are below the noise level and, therefore, give little or no
information about the true neighbors of the next point.

C. Local prediction based on SGSR

In the case of noisy time series, even increasing the number
of observations cannot ensure an effective application of the
OLS algorithm because the probability that false neighbors
appear and true neighbors get expelled is high, thus resulting
in large variance [2]. This problem can be overcome with the
use of SGSR. The specific steps in the prediction of noisy
series using SGSR can be summarized as follows:

(1) Given a scalar time series x1,x2, . . . ,xn, select the
embedding dimension d and the delay time τ to construct
the trajectory matrix Xm×d ;

(2) Build the real d × d symmetric matrix A;
(3) Calculate the symplectic principal components of A

by symplectic QR decomposition, and form the Householder
transform matrix Q;

(4) Determine the regularization parameter p by finding a
threshold value that represents the noise variance.

(5) Construct the corresponding symplectic principal
eigenvalue matrix W according to the regularization parameter
p, i.e., W = Q(:,1 : p);

(6) Form the transformed coefficients matrix S = WT X =
QT (:,1 : p)X;

(7) Form the new trajectory matrix Y = WS =∑p

i=1 W (:,i)S;
(8) Search for the q nearest neighbors Xk

m of the phase
point Xm in the new trajectory matrix Y;

(9) Fit Eq. (5) to get the prediction coefficient vector G

and calculate the prediction value x̂n+1 by Eq. (3);
(10) For the new target point, repeat the above steps until

the desired prediction horizon.

III. RESULTS

A. Application to synthetic chaotic data

The SGSR and the conventional OLS prediction methods
are first employed to predict two noisy synthetic time series:
the Lorenz and Rössler series [16,17]. The equations of the
Lorenz and Rössler systems, numerical integration method
and steps involved, and the appropriate embedding parameters
were detailed in previous papers [18,19]. In this study, a total of
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FIG. 1. Prediction with SGSR regularization technique and OLS
for data generated from the Lorenz system corrupted with 2% (a) and
5% (b) NLs.

3000 data points are used for analysis, with the first 2000 points
used for training the model and the remaining 1000 points for
testing. The prediction quality is evaluated in terms of the
normalized mean squared error. For the noise-free Lorenz and
Rössler time series, the predictions obtained from SGSR and
OLS are very similar, indicating both methods perform equally
well when the data are noise free.

We now focus on evaluating the NMSEs for the SGSR
method on the Lorenz and Rössler series with superimposed
noise. Noise is superimposed onto the time series through
the addition of independent and identically distributed (i.i.d.)
Gaussian white noise with various noise levels (NLs). For
the Lorenz series, noise levels of 2% and 5% are considered,
while 5% and 10% noise levels are considered for the Rössler
series. For both series, predictions are made for lead time (or
prediction horizon) from 1 to 20. As the number of neighbors
plays an important role in predictions, we consider several
different numbers of neighbors as well, from d + 1 to d + 10.

Figure 1 shows the NMSEs obtained using SGSR and OLS
methods for the Lorenz series for all lead times, when the
number of neighbors is d + 1. For both 2% and 5% NL, the
NMSEs increase with increasing lead time for both SGSR and
OLS methods. Since the predicted values are typically iterated
to obtain future values in multistep prediction, any prediction
error at a given time will propagate and accumulate in later
predictions. For the 2% NL, the prediction errors of SGSR and
OLS are similar when the lead time is below 10. However,
when the lead time is greater than 11, the NMSEs of SGSR are
lower than OLS for regularization parameter p = 9, 10, and 11,
and SGSR consistently outperforms OLS for lead time beyond
15. For the case of 5% NL, the NMSEs of SGSR are lower than
OLS for all the lead times considered. Further, for longer lead
time, SGSR is significantly superior to OLS, indicating the
superiority of SGSR for multistep prediction of noisy Lorenz
series. It is clear, therefore, that SGSR is particularly more
suitable and effective than OLS for prediction of series with
high noise levels.

Step
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E
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SGSR p=8

(b)

(a)

FIG. 2. Prediction with SGSR regularization technique and OLS
for data generated from the Rössler system corrupted with 5% (a) and
10% (b) NLs.

Figure 2 shows the NMSEs obtained using SGSR and OLS
methods for the Rössler series for all the lead times, when the
number of neighbors is d + 1. Similar to the case of Lorenz
series, the prediction error of the SGSR method for Rössler
series is lower than OLS in 5% NL. For the case of 10% NL,
the NMSEs of SGSR are significantly lower than those of OLS,
and particularly so at longer lead times. This example further
validates the usefulness of SGSR and its superiority over OLS
for multistep prediction of time series heavily contaminated
with noise, especially for much longer lead times.

With investigation of the effect of regularization parameter
p done above, the effect of the number of neighbors is now
examined. Here we test the effect of nearest neighbors on the
prediction performance for the SGSR. We vary the number
of nearest neighbors from d + 1 to d + 10. Figure 3 shows
the NMSEs for the Lorenz series with 2% and 5% NLs for
p = 9 and 11, respectively, where the optimal regularization
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15 16 17 18 19 20 21 22 23 24
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(b)

FIG. 3. The effect of nearest neighbors for 20-step prediction of
Lorenz series with 2% (a) and 5% (b) NLs.
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FIG. 4. The effect of nearest neighbors for 20-step prediction of
Rössler series with 5% (a) and 10% (b) NLs.

parameter p is chosen as the natural cutoff level in the
symplectic geometry spectrum of Eq. (17). Figure 4 shows the
results for the Rössler series with 5% and 10% NLs. The results
indicate that the NMSEs of both SGSR and OLS decrease with
increasing number of neighbors, but the decrease for OLS is
far more pronounced when compared with that for SGSR.
However, SGSR still has lower NMSEs for each time series
and noise level, as well as number of nearest neighbors.

B. Application to real-world data

To test the applicability of SGSR for prediction of
real-world data, we consider three data sets: Mississippi
River flow data (representing hydrologic time series) and
the electromyographic (EMG) and mechanomyographical
(MMG) signals collected from human skeletal muscle
(representing biomedical time series).

1. Mississippi River flow

Prediction of flows in rivers is crucial for planning and
management of our water resources and environment. Large
river basins, in particular, play key roles in the socioeconomic
development at regional scales and beyond. The Mississippi
River basin is one of the world’s major river systems in size,
habitat diversity, and biological productivity, thus meeting the
water demands and improving and sustaining the socioeco-
nomic development of millions of people in the United States
and Canada. Therefore, modeling and prediction of flows in the
Mississippi River have been of enormous interest. During the
past decade or so, a number of studies have also investigated
the chaotic behavior of flow and sediment dynamics in the
Mississippi River and their prediction [20–22]. It is important
to note, however, that river flow data are often contaminated
by noise, both measurement and dynamic, which can influence
the outcomes of chaos identification and prediction of such
data. Therefore, it is worthwhile to apply the SGSR method
for prediction of river flow data and test its effectiveness.

In this study, we analyze the flow data from the Mississippi
River basin to test the effectiveness of the SGSR method
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FIG. 5. Mississippi River flow over year 2016 and its 30-step
prediction values by SGSR and OLS: direct time series plot (a) and
receiver operating characteristic curves (b).

for prediction purposes and its superiority over the OLS
method. We consider daily flow data observed at the St. Louis
gaging station, Missouri (US Geological Survey station no.
07010000). Studying the flow at the daily scale is particularly
important for assessment of high flows (and floods) and to
undertake emergency measures. We use flow data observed
during 2001–2005 for training the SGSR and OLS models
and make predictions for 2006.

Figure 5, for instance, shows the prediction results obtained
using SGSR and OLS for the Mississippi River flow for a
lead time of 30 (days), through direct time series comparisons
[Fig. 5(a)] and ROC curves [Fig. 5(b)]. In this case, the number
of nearest neighbors is 9 and the optimal optimization parame-
ter is 2. As can be seen, the predicted flows from both methods
match reasonably well with the observed values, but the SGSR
method (with an NMSE value of 0.033) consistently outper-
forms the OLS method (NMSE = 0.052), as it captures both
the major changes and the minor variations in flow dynamics
more accurately. Moreover, the area under the ROC curve
(AUC) for SGSR is larger than that for OLS, which confirms
the higher accuracy of SGSR for Mississippi River flow data
prediction when compared to that from OLS. Figure 6 presents
a summary of prediction NMSEs for both methods with lead
time from 1 to 30 days. As seen, the NMSEs increase with the
increasing lead time for both methods, as normally expected.
However, the error for SGSR is significantly lower than that for
OLS for all the prediction horizons, indicating the consistently
better performance of the former over the latter for any pre-
dictability horizon. The results, for both methods, indicate that
the errors are not strictly increasing with increasing lead time
but are slightly fluctuating at certain lead times. This may be
due to the limited number of nearest neighbors selected in mul-
tistep prediction. However, additional evidence is needed to
confirm this. We will investigate this aspect in a future study.

2. Electromyographic (EMG) and mechanomyographical
(MMG) signals

EMG and MMG signals, recordings of electrical and
mechanical activities detectable on the body surface during
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FIG. 6. The Mississippi River flow prediction NMSEs with lead
time from 1 to 30 days for SGSR and OLS.

muscle contraction, have been broadly used to control different
human-machine interfaces (HMIs) [23]. However, muscle
fatigue often happens with sustained contraction, which can
degrade the robustness and accuracy of HMIs. A real-time
signal prediction scheme is, thus, essential in these systems in
order to compensate for the effect of muscle fatigue. However,
EMG or MMG signals are contaminated with noise due to the
limb movement artifact, cross talk, and measurement system
and environmental noises. Therefore, the SGSR method seems
to be a suitable tool for their predictions.

In this study, we apply the current and preceding 2000
EMG and MMG data points as a training sample to perform
real-time prediction at a lead time of 32. The EMG and MMG
data are sampled at a rate of 1000 Hz. A detailed description of
the experimental protocol and recording procedures for both
signals can be found in Xie et al. [23,24]. The reason for
considering the lead time of 32 is that the minimal length
of a moving window satisfying real-time control in EMG- or
MMG-based HMI is 32 in most cases [23]. Figures 7 and 8
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FIG. 7. A 500-point EMG segment and its 32-step prediction by
SGSR and OLS: direct time series plot (a) and scatter plot (b).
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FIG. 8. A 500-point MMG segment and its 32-step prediction by
SGSR and OLS: direct time series plot (a) and scatter plot (b).

show the actual and predicted values through both the time
series and scatter plots using SGSR and OLS on a 500-point
EMG and MMG segment, respectively. The NMSEs for EMG
are 0.07 using SGSR and 0.132 using OLS, while those for
MMG are 0.032 using SGSR and 0.076 using OLS. The results
for the EMG and MMG time signals further indicate the
superiority of SGSR over OLS for short-term prediction of
noisy time series. MMG is a low-frequency biosignal with
a relatively narrow main frequency band from 5 to 50 Hz,
while EMG has a wide frequency band from 10 to 300 Hz.
MMG’s major noise source is low-frequency movement
artifact, while EMG signals are mostly contaminated by both
movement artifact and high-frequency noise. Many previous
studies have indicated that both signals are deterministic and
even chaotic [19,25]. This example further demonstrates the
effectiveness of the symplectic geometry method for prediction
of real-world signals with different physical and physiological
characteristics.

IV. DISCUSSION AND CONCLUSIONS

We have presented a time series regression method based
on symplectic geometry theory, and used it to predict both
simulated and experimentally recorded noisy time series. The
performance of the method on two benchmark problems in
hydrology and medicine shows its superiority over the existing
OLS method. Similar to PCR, the idea of SGSR is to achieve
a trade-off between the prediction bias and variance. For the
Mississippi River flow, though SGSR performs better than
OLS, we find that the prediction error of SGSR is relatively
large. This is because SGSR is also sensitive to outliers in the
data (e.g. sharp peaks) that produce large errors in the sense
of minimizing the squared error.

In previous studies, Xie et al. [11,12] developed the
symplectic geometry spectrum analysis (SGSA) framework
which decomposes a time series into its constituent com-
ponents. The SGSA method consists of four steps, i.e.,
embedding, symplectic QR decomposition, grouping, and
diagonal averaging [12]. Similar to principal component
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analysis, independent component analysis, and empirical
mode decomposition, SGSA can be used as a denoising method
when discarding those noise components [12]. Xie et al.
[11,12] also extended the SGSA for time series decomposition
to a hybrid prediction method, in which SGSA denoises the
original time series, and the local approximation technique
based on ordinary least squares is conducted to predict the de-
noised data. The prediction method involved in such a method
can be summarized in seven steps: embedding; symplectic QR

decomposition; grouping; diagonal averaging; denoising; new
embedding; local approximation. The time complexity of this
hybrid prediction method is O(n3). However, the SGSR mode
presented in this paper can be summarized in just four steps:
embedding; symplectic QR decomposition; regularization;
local approximation. The algorithm presented in this study
has significantly low time complexity [O(n2)], especially
with four steps from “grouping” to “new embedding” in
SGSA-based prediction replaced by “regularization” in SGSR.

In order to further compare the prediction performance of two
symplectic geometry–based methods, we applied the hybrid
SGSA prediction approach to the same Mississippi River
flow, EMG, and MMG data sets. The NMSEs for the river
flow, EMG, and MMG data were 0.038, 0.072, and 0.033,
respectively. Compared with results in Sec. III, the SGSR
model has slightly lower or similar prediction NMSEs over the
SGSA-based prediction method. However, the former is much
more efficient than the latter due to the lower computational
complexity. This is certainly a great advantage, especially
when one is dealing with large data sets.

In this paper, the focal comparison between the SGSR
and OLS methods is minimization of the squared error.
This merits further research into robust symplectic geometry
spectrum regression. Such an approach could be developed by
combining the SGSR with a robust outlier detection method,
thus improving the prediction performance for noisy time
series with outliers.
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