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Nonequilibrium and nonlinear defect states in microcavity-polariton condensates
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The nonequilibrium and nonlinear defect modes (NNDMs), localized by a defect in a nonequilibrium
microcavity-polariton condensate (MPC), are studied. There are three analytic solutions of NNDMs in a point
defect: the bright NNDM, a bound state with two dark solitons for an attractive potential, and a gray soliton
bound by a defect for a repulsive potential. We find that the stable NNDMs in a nonequilibrium MPC are the
bright NNDM and gray soliton bound by a defect. The bright NNDM, which has the hyperbolic cotangent
form, is a bright localized state existing in a uniform MPC. The bright NNDM is a unique state occurring in a
nonequilibrium MPC that has pump-dissipation and repulsive-nonlinearity characters. No such state can exist in
an equilibrium system with repulsive nonlinearity.
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I. INTRODUCTION

Since the experimental realization of Bose-Einstein con-
densations (BECs) [1–3], there have been many theoretical
and experimental researches devoted to nonlinear matter-wave
properties of ultracold bosonic gases [4–7]. In recent years,
the microcavity-polariton condensates (MPCs) created in
semiconductor microcavities [8] have emerged as an attractive
counterpart to the atomic BECs, owing to their intrinsically
nonlinear and out-of-equilibrium nature determined by the
balance between nonlinear interaction, trapping potential,
pump, and dissipation [9]. The nucleation of polaritonic waves
in the wake of a defect has been experimentally observed
[10–12] despite a recent warning claiming that more evidence
should be proposed to identify the soliton waves [13,14]. Here
the repulsive polariton-polariton interactions are identified as
the source of nonlinearity, which is essential for the formation
of such solitary waves.

When both nonlinearity and disorder are present simultane-
ously, it is expected that competition between the self-action
of nonlinearity and the localization induced by disorder will
lead to complicated and nontrivial physical states, called
nonlinear defect modes (NDMs). The interaction of NDMs
with impurities has attracted much attention in nonlinear wave
theories [15]. In these contexts, the interaction of a bright
soliton with impurities has been extensively studied [16–20].
Bogdan et al. [17] have shown that a bright soliton state
localized at a point defect in an equilibrium BEC is stable
when the interaction between particles and the defect potential
is repulsive and attractive, respectively. Similar conclusions
were also made by analyzing localized modes supported by the
generalized nonlinear Schrödinger equation with a nonlinear
impurity [18,20]. These studies considered only bright solitons
at a point defect and did not discuss the possible existence
of dark NDMs. The interaction of a dark soliton with a
localized impurity was first theoretically investigated [21] and
then studied in atomic BECs [22]. After that, a variety of
relevant scenarios, such as the interaction of a dark soliton
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with potential steps and barriers [23,24] or with a finite-size
obstacle [24,25], were also studied. All possible NDMs of
the mean field of a BEC in a pointlike impurity were given in
closed analytic form [26]. There are three kinds of NDMs [26]:
(1) dark soliton bound by a repulsive impurity, (2) a pair of
dark solitons bound by an attractive impurity, and (iii) a bright
NDM with hyperbolic cotangent function solution deformed
by an attractive impurity. Seaman et al. only described these
modes and did not show under what circumstances these
modes could exist. The study of self-trapping of impurities
in BECs showed that the density of the BEC could increase
remarkably around attractive impurities. The increased density
will strongly enhance inelastic collisions between atoms in the
BEC and result in a loss of BEC atoms [27].

Although nonlinearity and disorder lead to the existence
of NDMs in equilibrium BECs, the study of NDMs in
nonequilibrium MPCs is still an open area of research.
Nonlinearity, nonequilibrium, and disorder can occur simul-
taneously in MPCs and create richer physical phenomena.
The nonequilibrium character of MPCs is due to the MPCs
being continuously pumped by a laser to compensate the
polariton decay. As a result of interplay between nonlinearity
and nonequilibrium, the incoherently pumped MPC can form
vortices [28] or a vortex lattice [29] spontaneously. Differently
from our preceding works focused on the finite-size pumped
polaritons in a harmonic trap [30,31], we investigated the
instability of a dark soliton theoretically in a homogeneous
system [32]. The system is unable to support a hyperbolic-
tangent dark solitons in a clean MPC [33,34]. However, under
a proper repulsive disorder, the solitons could become stable.

In this paper, the overall one-dimensional NNDMs in MPCs
under a disorder are explored by finding the solutions of the
complex Gross-Pitaevskii equation coupled to the reservoir
polaritons. This mean-field model for nonequilibrium MPCs
is a generic model of considering effects from pumping,
dissipation, defect potential, relaxation, and interactions. First,
we introduce a pointlike defect into the system and find the
closed analytic forms of NNDMs. We only show the sym-
metric wavefunctions of the system, namely, the hyperbolic-
cotangent mode, bound state with two dark solitons, and gray
soliton bound by a defect. Second, the numerical solutions of
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the cGPE with a finite-size defect are studied in order to check
the finite-size effect of a defect and confirm their dependence
on the sign (attractive or repulsive) of the defect. Finally,
the stability and collective-excitation spectra of NNDMs are
investigated. We find that both the dark and bright solitons
are stable, depending on the sign of the defect. The existence
of bright solitons, which arise spontaneously due to the
driven-dissipative nature of MPCs, to our knowledge has never
been predicted and observed before.

II. THEORETICAL BACKGROUND

In order to study nonequilibrium MPCs, we treat the
polaritons at high momenta as a reservoir whose state is
determined by the reservoir density, nR(r,t). Then we employ
the generalized cGPE [35], governing the condensed polaritons
that couple to the reservoir polaritons, to describe the dynamics
of the condensate. The wave function �(r,t) of the condensate
and the reservoir density nR(r,t) satisfy the coupled differential
equations written as

i�
∂�

∂t
= − �

2

2m

d2�

dx2
+ i

2
�[R(nR) − γ ]� + Ṽ (x)ψ

+ g|�|2� + 2g̃nR�, (1)

∂nR

∂t
= P − γRnR − R(nR)|�|2, (2)

where γR and γ are the decay rates of reservoir and condensate
polaritons; g is the strength of polariton-polariton interaction
and g̃ is the coupling constant between the reservoir and
condensate polaritons. Ṽ (x) represents the external potential,
and R(nR), a function of nR , is the amplification rate that
describes the replenishment of the condensate state from
the reservoir state by stimulated scattering. The system is
uniformly pumped with a pump power P , which will excite
the reservoir polaritons.

In the steady state, the reservoir density is nR(x,t) =
n0

R , and the wave function can be described by �(x,t) =
�0(r)e−iμt/� with chemical potential μ and Planck’s constant
�. For P < Pth (below condensate threshold), there is no
condensate density (�0 = 0), and the reservoir density is
proportional to the pumping power, i.e., n0

R = P/γR . At the
threshold, the reservoir density nth

R = Pth/γR is fixed by the
balance between the amplification rate R[nR(x,t)] and decay
rate γ of the condensate, i.e., R(nth

R ) = γ . When P > Pth,
the condensate appears and the density away from the defect
region, defined as nc = |�0|2, grows as nc = (Pth/γ )α, where
α = (P/Pth) − 1 is called the pump parameter being the
relative pumping intensity above the condensate threshold.
In the mean time, the stationary reservoir density, which
is determined by the net gain being zero, is equal to the
reservoir density at the threshold pump power, n0

R = nth
R .

Then the chemical potential of the system is μ = gnc +
2g̃n0

R . Throughout this paper we shall take g̃ = 2g under
the Hartree-Fock approximation. We also choose the length,
time, and energy scales in units of η, 1/ω0, and �ω0,
respectively, where η =

√
�2γ σ/2mgPth, �ω0 = �

2/2mη2, m
is the polariton mass, and σ = 1/[1 − (4γ /γR)]. Rescaling
the wave function �(x,t) → √

ncψ(x,t) and reservoir density

nR(x,t) → nth
R n(x,t), the cGPE of ψ(x,t) and the rate equation

of n(x,t) are given as

i
∂ψ

∂t
= −d2ψ

dx2
+ i

2
[R̃(n) − γ̃ ]ψ + V (x)ψ

+ασ |ψ |2ψ + (σ − 1)nψ, (3)

∂n

∂t
= γ̃R(α + 1 − n) − 4R̃(n)

ασ

σ − 1
|ψ |2, (4)

where R̃(n) = R(nR)/ω0, γ̃ = γ /ω0, γ̃R = γR/ω0, and
V (x) = Ṽ (x)/�ω0.

III. NNDMS IN A DELTA-POTENTIAL DISORDER

The solutions of Eqs. (3) and (4) with V (x) �= 0 are very
different from the uniform MPC. We can find analytic solutions
of NNDMs if we take V (x) = V0δ(x), which is a pointlike
potential positioned at x = 0. The steady state of the system
under a uniform pumping can be obtained by substituting
ψ(x,t) = ψ0(r)e−iμ̃t/� and n(x,t) = n0 into Eqs. (3) and (4),
where μ̃ = μ/�ω0 is the dimensionless chemical potential
of the system. For a delta-potential defect, the amplification
rate R̃(n) is uniform over the entire system except at x = 0.
Therefore, the change of the amplification rate is small for a
pointlike defect. We then assume that the amplification rate has
no spatial dependence with R̃(n) = γ̃ in the steady state. This
is, in particular, a good approximation when the decay rate of
condensate polaritons is small. Equation (3) is then reduced
to the standard Gross-Pitaevskii equation for an equilibrium
condensate, and we can obtain the stationary reservoir density
n0 = (α + 1 − α|ψ0|2) from Eq. (4). In such a steady state,
there are no constant fluxes that connect the regions of loss and
gain. Therefore, the densities of reservoir and the condensate
polaritons can be locked together to a single time-independent
nonlinear equation:

μ̃ψ0 = −d2ψ0

dx2
+ V (x)ψ0 + α|ψ0|2ψ0 + (σ − 1)(α + 1)ψ0.

(5)
In the region far from the defect (x → ±∞), the densities of
the system are uniform with ψ0 → 1 and n0 → 1. We then
find the chemical potential of the system, μ̃ = ασ + (σ − 1),
from Eq. (5). Substituting μ̃ back to Eq. (5), we obtain

d2ψ0

dx2
+ α(1 − |ψ0|2)ψ0 = V (x)ψ0. (6)

When V (x) = 0, the solution of Eq. (6) is an unstable dark
soliton [33] with a hyperbolic tangent function ψ0(x) =
tanh(Bx), where B = √

α/2.
We are interested in the analytical symmetric solutions of

Eq. (6), and, in that case, all solutions become hyperbolic
trigonometric functions with a density change around the
defect and no oscillations at x → ±∞. Such a potential
models an impurity which deforms the uniform condensate
on a length scale much less than the healing length of the
condensate. The negative and positive values of V0 represent
attractive and repulsive impurities, respectively.

The bright NNDM, ψ(x) = coth[B(|x| − x0)], may exist in
Eq. (6), where the translational offset, x0, is determined by the
pump parameter α and potential strength V0. The peak value
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of ψ(0) is coth(−x0), and the density far from the maximum
is approaching to unity. By integrating Eq. (6) from −ε to +ε,
and then letting ε → 0, we obtain

dψ0

dx

∣∣∣∣
x=0+

− dψ0

dx

∣∣∣∣
x=0−

= V0ψ0(0), (7)

indicating that the derivative of the wave function experiences
a discontinuity at the point defect. After some manipulations,
we obtain

x0 = 1

2B
sinh−1

(
4B

V0

)
. (8)

Only the negative x0, corresponding to the attractive point
defect, i.e., V0 < 0, is valid for the coth mode. The positive x0

is not allowed because it will cause a singularity at x = x0.
Dark NNDMs also exist in Eq. (6) with ψ0(x) =

tanh[B(|x| − x0)]. Following the same procedure above to deal
with the discontinuity of the potential around x = 0, now, x0

becomes

x0 = 1

2B
sinh−1

(−4B

V0

)
. (9)

The x0 becomes positive and negative for the repulsive point
defect (V0 > 0) and the attractive point defect (V0 < 0),
respectively. Two density profiles of the dark NNDMs are
available. One is the bound state with two dark solitons for
x0 < 0 (V0 < 0), the other is the gray soliton bound by a defect
for x0 > 0 (V0 > 0).

From the above derivations, there are three possible
NNDMs of Eq. (6) depending on the sign of the defect
potential: a bright NNDM [see Figs. 1(a) and 1(d)] for V0 < 0,
a bound state with two dark solitons for V0 < 0 [see Figs. 1(b)
and 1(e)], and a gray soliton bound by a defect for V0 > 0 [see

FIG. 1. Wave function ψ0(x), squared wave function (ψ0(x))2

and reservoir density n0 of the analytical localized states. Panels (a)
and (d) show the bright NNDM localized by a point defect with
V0 = −1; panels (b) and (e) show the bound state with two dark
solitons localized by a point defect with V0 = −1; and panels (c) and
(f) show the gray soliton localized by a point defect with V0 = 1. The
pump parameter is α = 1.

Figs. 1(c) and 1(f)] . Under the pump parameter α = 1 and the
potential strength |V0| = 1, the wave functions as well as the
corresponding densities are shown in the first and second rows
of the figure. The wave functions of NNDMs in a point defect
are changing sharply around the pinning site, x = 0. The bright
NNDM, the first solution, shows a bright localized state in a
uniform MPC. The accumulation of polaritons around a defect
is due to the balance of repulsive nonlinearity and attractive
defect potential. The bound state with two dark solitons, the
second solution, can exist under the condition that the repulsion
between two dark solions is exactly balanced by the attraction
of the defect potential. The gray soltion bound by a defect,
the third solution, can be treated as a single dark soliton
pinned by a point defect. Here the tanh modes can support
a notch density distribution, and the dip value of the density
distribution is nonzero and given by [tanh(x0)]2. It should
be noted that the 1D spatial soliton, which could feature a
localized density peak or notch accompanied by a phase jump,
is pinned by the corresponding potential. The suitable termi-
nology is a localized soliton instead of a solitary wave which
is propagating.

IV. NNDMS IN A FINITE-SIZE DISORDER

After showing analytic approximation of NNDMs in a
point defect, what we really want to solve is the NNDM
in a finite-size defect having a Gaussian distribution. This
finite-size defect, which is characterized by its strength Vd

and width a, can be created by illuminating the MPC with a
Gaussian beam and is given by

V (x) = Vd√
2πa

e
− x2

2a2 , (10)

Due to the finite size of the defect, the amplification rate is
modified and depends on the reservoir density. Here we assume
that the amplification rate is a linear function of reservoir
density, i.e., R̃(n) = β̃n with β̃ being a constant. In the limit
x → ±∞, ψ0 → 1 and n0 → 1, we find that β̃ = γ̃ on the
steady state of the system and the chemical potential of the
system is still given by μ̃ = ασ + (σ − 1). Applying R̃(n) =
γ̃ n and μ̃ to the steady states of Eqs. (3) and (4), we obtain

d2ψ0

dx2
− V (x)ψ0 + ασ (1 − |ψ0|2)ψ0 − (σ − 1)(n0 − 1)ψ0

− iγ̃

2
(n0 − 1)ψ0 = 0, (11)

n0(1 + α|ψ0|2) − α − 1 = 0. (12)

Using the Newton-Raphson method, we can solve Eqs. (11)
and (12) numerically. We choose the analytical solutions
shown in Fig. 1 as the initial trial solutions of the Newton-
Raphson method. It easily takes several iterations to get a
solution correct to two decimal places. Thus the significance
of the analytical work in Sec. III becomes manifest here. For
α = 1, |Vd| = 1, and a = 0.5, the wave functions as well as the
corresponding condensate and reservoir densities are shown in
Fig. 2. The wave functions of NNDMs in a finite-size defect
are changing smoothly around the pinning site, x = 0. There
are now only two kinds of NNDMs in a finite-size defect: a
bright NNDM for Vd < 0 [see Figs. 2(a) and 2(c)] and a gray
soliton bound by a defect for Vd > 0 [see Figs. 2(b) and 2(d)].
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FIG. 2. Absolute wave function |ψ0(x)|, squared norm |ψ0(x)|2,
and reservoir density n0 of numerical solutions for α = 1 and a = 0.5.
Diagrams (a), (c), and (e) are the solutions of an attractive Gaussian
defect (Vd = −1); panels (b), (d), and (f) are the solutions of a
repulsive Gaussian defect (Vd = 1). No solution can be found for
an attractive Gaussian defect (Vd = −1) corresponding to the initial
condition of Figs. 1(b), 1(e), and 1(h).

There is no bound state with two dark solitons for V0 < 0. The
numerical results confirm the analytic solutions that we have
found in a pointlike defect. The bound state with two dark
solitons is unstable when the polariton condensate is scattered
by reservoir polaritons. With the consideration of the spatial
variation of the amplification rate, the condensate density
will be further decreased or increased by the accumulation
or depletion of the reservoir density near the center as shown
in Figs. 2(a) and 2(e) and 2(b) and 2(f).

In a nonequilibrium condensate under a finite defect poten-
tial, the combination of spatial inhomogeneity and pumping
tend to produce states with steady state currents in order to
balance the gain and loss. Since the net gain depends on local
density, inhomogeneous density distributions caused by the
defect imply different rates of gain or loss at different positions,
so requiring currents to connect these regions. Therefore, spon-
taneous bright solitons [Fig. 2(c)] and gray solitons [Fig. 2(d)]
are possible to be observed based on our simulation. For the
case of nonresonant excitation in this work, the mechanism
whereby the effective pump strength would decrease as the
condensate density increases is through the consideration of
a separate dynamics of the reservoir [35]. Equivalently, this
introduces a nonlinear dissipation term modeled by Keeling
et al. [29], which microscopically includes the depletion of
reservoir density and subsequent influence of the condensate
density distribution. In the typical case where the decay rates
of reservoir (γR) or the redistribution among the different states
of the reservoir is much faster than all other scales, one can
adiabatically eliminate the dynamics of reservoir like Keeling
et al. does. However, in our simulation here, γ /γR = 0.2 (or
σ = 5), the consideration of reservoir density will get a more
precise quantitative results.

V. BOGOLIUBOV EXCITATION SPECTRUM

We can find which NNDMs are stable from the stability
analysis with a defect in the framework of the Bogoliubov-de
Gennes approach [35]. We consider the steady state ψ0 and
n0 of the system being perturbed by small fluctuations δψ and
δn, which are given by

δψ = uq(x)eiqxe−i�t + v∗
q (x)e−iqxei�t , (13)

δn = wq(x)eiqxe−i�t + w∗
q(x)e−iqxe−i�t , (14)

where uq,vq,wq are the amplitudes of the excitation quasi-
particles, and q and � are the index labeling the excitation
quasimomentum and frequency, respectively. The Bogoliubov
spectrum then describes the energy of small wave packet with
quasimomentum q on top of a macroscopically populated soli-
ton (carrying wave) at rest. Then substituting ψ = e−iμt (ψ0 +
δψ) and n = n0 + δn into Eqs. (3) and (4) and linearizing
them around the steady state, we can obtain the excitation
frequency � as a function of q. To linearize Eqs. (3) and (4), we
have to know the functional relation between the amplification
rate R̃(n) and reservoir density n. For simplification we take
R̃(n) = β̃n in Eqs. (3) and (4). The decay [Im(�) < 0] or
growth (Im[(�) > 0] behavior of the excitation mode indicates
the steady state of the system being stable or unstable. If the
system has an eigenvalue with a positive imaginary part, the
amplitude of the corresponding mode will grow exponentially
in time and the mode is identified as a dynamically unstable
mode.

The excitation spectra of NNDMs are shown in Fig. 3. They
are respectively spectra for a bright NNDM [see Figs. 3(a) and
3(d)], spectra for a bound state with two dark solitons [see
Fig. 3(b)] and spectra for a gray soliton bound by a defect

FIG. 3. The Bogoliubov excitation spectra of the lowest excita-
tion energies corresponding to the NNDMs shown in Figs. 1 and 2.
Panels (a), (b), and (c) are excitation frequencies of the bright NNDM,
the bound state with two dark solitons and the gray soliton bound by a
point defect, respectively. Panels (d) and (e) are excitation frequencies
of the bright NNDM and the gray soliton bound by a finite-size
defect, respectively. The solid and empty circles represent the real
and imaginary part of the eigenvalues, respectively. The parameters:
σ = 5, α = 1, a = 0.5, |V0| = 1, and |Vd| = 1.
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[see Figs. 3(c) and 3(e)]. We find that the excitation energy
is increasing with the momentum for the bright NNDM and
gray soliton bound by a defect. From Im(�), we conclude
that the bright NNDM and gray soliton bound by a defect
are stable, but the bound state with two dark solitons by a
point defect is unstable [see Fig. 3(b)] when the polariton
condensate is scattered by reservoir polaritons. This is also
the reason why we can not find a numerical solution for a
finite defect corresponding to Fig. 1(b). For the bright NNDM,
the density of the MPC is increased in the vicinity of an
attractive defect. Because of the finite lifetime of polaritons,
the inelastic collisions between polaritons around a defect,
which is supposed to be enhanced strongly, become smaller
than the equilibrium BEC. The loss of polaritons resulting
from these collisions are replenished by the pump power
constantly. The stabilizing mechanism of the bright NNDM is
from the pump-dissipation character of nonequilibrium MPCs.
The formation of the bound state of two dark solitons is
a very delicate mechanism that the repulsion between two
dark solions is exactly balanced by the attraction of the
defect potential. However, the balance will be destroyed if
there is some density fluctuation resulting from the pump
and dissipation of a nonequilibrium MPC. Then a soliton
bound by two dark solitons becomes unstable and will break
into two abrupt-decaying dark solitons [33]. Unlike the dark
soliton, a gray soliton bound by a defect has a character that
some particles exist in a dip and create repulsive forces to
prevent extra particles refilling the dip. In a dip, it is difficult
to redistribute the MPC density from excitations. Therefore,
a gray soliton bound by a defect for Vd > 0 is stable. In a
homogeneous-pump scheme in this work, we find that the

stable NNDMs occurring in a nonequilibrium MPC with a
finite-size defect are therefore the bright NNDM [Fig. 2(a)]
and gray soliton bound by a defect [Fig. 2(b)] for attractive
and repulsive defects, respectively. We also notice that, for a
fixed pump power, both NNDMs are stable for a wide range
of defect strength.

VI. CONCLUSIONS

In summary, we study the nonlinear localized modes created
by a defect in a nonequilibrium MPC. We show the analytic
solutions of NNDMs for the pointlike defect and numerical
solutions of NNDMs for the finite-size defects, which are
pertaining to the one-dimensional MPC. There are three kinds
of analytic solutions for NNDMs for a point defect: (i) a bright
NNDM for an attractive defect, (ii) a bound state with two dark
solitons for an attractive defect, and (iii) a gray soliton bound
by a repulsive defect. However, only the bright NNDM and the
gray soliton are stable in a nonequilibrium MPC. In particular,
the bright NNDM shows a localized state bound by an
attractive defect. The bright NNDM is a unique state occurring
in a nonequilibrium MPC that owns pump-dissipation and
repulsive-nonlinearity characters. There is no such state in an
equilibrium BEC with repulsive nonlinearity.
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