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Coarse-grained sensitivity for multiscale data assimilation
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We show that the effective average action and its gradient are useful for solving multiscale data assimilation
problems. We also present a procedure for numerically evaluating the gradient of the effective average action and
demonstrate that the variational problem for slow degrees of freedom can be solved properly using the effective
gradient.
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I. INTRODUCTION

A key problem in the assimilation of data for nonlinear mul-
tiscale systems concerns the optimization of the slow degrees
of freedom after the fast degrees of freedom have been properly
averaged [1]. This is also the case with data assimilation for
coupled atmosphere-ocean systems [2]. From a statistical point
of view, this amounts to performing some integration with
respect to similar realizations of control variables and packing
them together into an effective cost function (action) [3] (see
below for the definition). Geometrically, the rough surface
of the original cost function can be smoothed according to a
coarse-grained averaging procedure.

To see this, we first review how the concept of the effective
action is relevant to data assimilation [4]. Data assimilation
concerns the following statistical problem: Given the observa-
tion y ∈ Rp, the prior probability P [χ ] of the control variable
χ ∈ RM , and the likelihood P [y|χ ] of the observation, the
conditional expectation of any physical quantity G[χ ] is
calculated through the integral

E[G[χ ]|y] =
∫

dχ G[χ ]P [χ ]P [y|χ ]∫
dχ P [χ ]P [y|χ ]

=
∫

dχ G[χ ]e−S[χ]∫
dχ e−S[χ]

, (1)

where S[χ ] is called the action, or cost function, and∫
dχ =

∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
dχ1dχ2 · · · dχM (2)

denotes the multiple integral over all possible combinations
(paths) of χ , also called the path integral. Although the
control variable χ = χ (x,t) can generally be a field defined
in some space-time (x,t), we confine ourselves to the case
of a discrete space-time with M cells, that is, χ ∈ RM .
Note that Eq. (1) includes the posterior probability P [χ |y] =
P [χ ]P [y|χ ]/P [y] as a special case with the δ functional
G[χ ′] = δ[χ ′ − χ ].

If the posterior P [χ |y] is highly concentrated around the
most probable state χ̂ , which means P [χ |y] � δ[χ − χ̂],
Eq. (1) can be approximated as

E[G[χ ]|y] � G[χ̂ ]. (3)

*nsugiura@jamstec.go.jp

In this situation, it is important to find the control variable
that minimizes the cost function S[χ ]. 4D-Var efficiently
determines one of the stationary points satisfying δS[χ ]/δχ =
0. However, it does not necessarily give the desired global
minimum, as the cost function may have multiple minima.
With regard to the shape of the cost function, we could fail to
see the overall structure.

To deal with more general posterior probabilities and to
calculate the conditional expectation more robustly, we present
an effective alternative to the cost function. We introduce an
external source term −J T χ (J ∈ RM is an external field) to
the action in the normalization factor

∫
dχ exp (−S[χ ]) of

Eq. (1). This leads to the following definition of the partition
function:

Z[J ] =
∫

dχ e−S[χ]+J T χ , (4)

which encodes all the information about the conditional
expectation as follows:

E[G[χ ]|y] = 1

Z[0]
G

[
δ

δJ

]
Z[J ]

∣∣∣∣
J=0

, (5)

where G[δ/δJ ] should be interpreted as an operator in which
the argument χ of the algebraic expression G[χ ] is replaced
with the differential operator. The logarithm of the partition
function

W [J ] = ln Z[J ] (6)

is also useful, because it contains all the information about the
cumulants. For example,

δW

δJ
[0] = E[χT |y], (7)

δ2W

δJ 2
[0] = E[(χ − E[χ |y])(χ − E[χ |y])T |y]. (8)

That is to say, we can extract information about the expected
value if we perturb the external field J and observe how the
normalization factor Z[J ], or W [J ], changes.

To estimate the expected value, we can construct a func-
tional called the effective action [3,4], whose independent
variable is the expected value φ in the presence of the external
field J , through the Legendre transformation

�[φ] ≡ sup
J

(−W [J ] + J T φ). (9)
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Taking the supremum while φ remains fixed in Eq. (9), we
obtain

φT = δW

δJ
[J ]. (10)

Using this and taking the derivative with respective to φ gives

δ�

δφ
[φ] = −δW

δJ
[J ]

δJ

δφ
+ δW

δJ
[J ]

δJ

δφ
+ J T = J T . (11)

There are at least two advantages to this transformation.
First, it results in a convex function because we take the
Legendre transform of a convex function W [J ] [5]. Second, it
elicits a symmetric relation between W [J ] and �[φ]:

φT = δW

δJ
[J ], J T = δ�

δφ
[φ]. (12)

This implies that its unique stationary point, which sat-
isfies δ�[φ]/δφ = 0, identifies the expected value φ =
(δW [0]/δJ )T = E[χ |y]. In other words, we can find the
conditional expectation by finding the stationary point of the
effective action. Equation (12) also implies

δ2�

δφ2
[φ] = δJ

δφ
=

(
δφ

δJ

)−1

=
(

δ2W

δJ 2
[J ]

)−1

. (13)

Comparing this with (8), we see that the stationary point of the
effective action also provides more cumulant information.

Since �[φ] in Eq. (9) should be regarded as a function of φ

alone, we eliminate J using Eq. (12) to obtain

�[φ] = −W

[
δ�

δφ
[φ]

]
+ δ�

δφ
[φ]φ (14)

= − ln

{∫
dχ e−S[χ]+(δ�[φ]/δφ)χ

}
+ δ�

δφ
[φ]φ (15)

= − ln

{∫
dχ e−S[χ]+(δ�[φ]/δφ)(χ−φ)

}
. (16)

This suggests a means of calculating the effective action.
However, it requires a recursive procedure that includes
integrations over all possible combinations of control variables
χ , which appears to be intractable.

To compute the effective action, we may evaluate this
integral stepwise, using methods developed in renormalization
group theory [6]. A relevant concept that we will explore later
is the effective average action �k[φ] proposed by Wetterich [7],
which constitutes a one-parameter family of functionals
interpolating between the action S[φ] and the effective action
�[φ].

The aim of this paper is to propose a possible framework
that will help solve the multiscale data assimilation problem by
replacing the cost function with the effective average action.
We also propose a method for evaluating the gradient of the
effective average action numerically. In principle, this enables
us to solve a broader range of data assimilation problems by
seeking the stationary point of the effective average action
using its gradient, which is referred to as the effective gradient
or the coarse-grained sensitivity.

The concept of the effective average action is explained in
Sec. II A and the meaning of its stationary point is clarified in
Sec. II B. Section III describes a procedure for calculating the
gradient of the effective action. Sections IV and V illustrate

some applications of the method to data assimilation or
sensitivity studies.

II. EFFECTIVE AVERAGE ACTION

When dealing with a multiscale system, it is often difficult
to define the sensitivity with respect to the control variable,
because fast degrees of freedom may have many statistical
paths related to the sensitivity that cannot be expressed in a
deterministic manner. In other words, we cannot always use
the sensitivity to choose the optimal realization of a fluctuation
from among a large ensemble of fast fluctuations in the control
space. This motivates the definition of a macroscopic field
in which fast degrees of freedom are treated as averaged
quantities. A suitable tool for this purpose is the effective
average action [7].

A. Definition

The procedure for the effective action reviewed in the
Introduction, S[χ ] → W [J ] → �[φ], can also be applied to
the derivation of the effective average action. This introduces
some filtering terms, �Sk[χ ] to Eq. (4) and −�Sk[φ] to
Eq. (9), which have the effect of selectively integrating out
the fast degrees of freedom in the control space to enable the
dynamics of slower variables to be investigated.

We start by defining an infrared filter [8]

�Sk[χ ] ≡ 1
2χT Rkχ, (17)

where χ ∈ RM is the control variable in a discrete space-time
with M cells and Rk ∈ RM × RM is a discrete low-pass filter.
To derive concrete expressions for Rk , let us consider a simple
case with a cyclic control variable χ in a one-dimensional
discrete domain l = 1,2, . . . ,M . We define the discrete Fourier
transform χ̂ of χ and its inverse as

χ̂j = 1√
M

M∑
l=1

χle
−(2πjl/M)i , |j | < [M/2] (18)

χl = 1√
M

[M/2]∑
j=−[M/2]

χ̂j e
(2πjl/M)i , l = 1,2, . . . ,M, (19)

where M is odd for simplicity, [·] denotes the roundoff, and i

is the imaginary unit. If we assume that the infrared filter is
represented by a cutoff of high-wave-number modes, then

�Sk[χ̂] = 1

2

∑
j

χ̂−j R̂k(j )χ̂j , (20)

R̂k(j ) =
{

k2
(

1 − j 2

j 2
k

)
if |j | < jk

0 otherwise,
(21)

where j,jk ∈ Z and jk is the cutoff level. The filtering term
can then be written as

�Sk[χ̂] = 1

2

∑
|j |<jk

χ̂−j k
2

(
1 − j 2

j 2
k

)
χ̂j

= 1

2

M∑
l,l′=1

χl

⎧⎨
⎩

∑
|j |<jk

k2

M

(
1 − j 2

j 2
k

)
e[−2πj/(l−l′)M]i

⎫⎬
⎭χl′

(22)
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= 1

2

M∑
l,l′=1

χl

⎧⎨
⎩

∑
|j |<jk

k2

M

(
1 − j 2

j 2
k

)

× cos

[
2πj (l − l′)

M

]}
χl′ . (23)

The expression in curly brackets gives a matrix representation
of Rk in position space. If M is even, we can replace Eq. (21)
by

R̂k

(
j + 1

2

)
=

{
k2

(
1 − (j+ 1

2 )2

j 2
k

)
if |j + 1

2 | < jk

0 otherwise,
(24)

where j,jk ∈ Z. To further simplify the filter, we can also use
Rk = k2 with jk → ∞, which yields

�Sk[χ ] = k2

2

M∑
l=1

χ2
l . (25)

As we will see later, the filter should have the following
properties:

k → ∞ ⇒ Rk → ∞, (26)

k → 0 ⇒ Rk → 0. (27)

With the filtering term, the partition function Zk and its
logarithm for the high-wave-number modes can be defined
as

Zk[J ] =
∫

dχ e−S[χ]−�Sk [χ]+J T χ , (28)

Wk[J ] = ln Zk[J ], (29)

where J is the external field. As �Sk[χ ] is large for low-
wave-number modes, the term exp (−�Sk[χ ]) has the effect
of focusing the integration on the high-wave-number modes
in χ .

Applying the Legendre transformation to switch the in-
dependent variable J to φ, we obtain the effective average
action [7]

�k[φ] ≡ sup
J

(−Wk[J ] + J T φ) − �Sk[φ]. (30)

Note that this transform should have the additional term
−�Sk[φ] for the following reason [7]. From the supremum
condition, we find

φ =
(

δWk

δJ
[J ]

)T

= 〈χ〉k,J ≡
∫

dχ χ e−S[χ]−�Sk [χ]+J T χ∫
dχ e−S[χ]−�Sk [χ]+J T χ

(31)

=
∫

dχ (φ + χ )e−S[φ+χ]−�Sk [χ]+(J T −φT Rk)χ∫
dχ e−S[φ+χ]−�Sk [χ]+(J T −φT Rk)χ

. (32)

Equation (31) appears to indicate that φ is analogous to the
conditional expectation of the control variable in the vicinity
of χ = 0 under the existence of the external field J . However,
if we insert into Eq. (32) the relation

δ�k

δφ
[φ] = J T − δ�Sk

δφ
[φ], (33)

which is derived by the same operation as in Eq. (11), we
obtain

φ =
∫

dχ (φ + χ )e−S[φ+χ]−�Sk [χ]+(δ�k [φ]/δφ)χ∫
dχ e−S[φ+χ]−�Sk [χ]+(δ�k [φ]/δφ)χ

. (34)

This shows that φ is in fact analogous to the conditional
expectation of the control variable in the vicinity of φ itself
under the existence of the external field δ�k[φ]/δφ. Thus, the
term −�Sk[φ] in Eq. (30) ensures that φ is always the average
of the surrounding χ .

From Eq. (31) and the derivative of Eq. (33) with respect
to φ, we can see that the effective average action �k[φ] also
satisfies the following equality:

δ2�k

δφ2
[φ] = δJ

δφ
− δ2�Sk

δφ2
(35)

=
(

δ2Wk

δJ 2
[J ]

)−1

− δ2�Sk

δφ2
(36)

= (〈χχT 〉k,J − φφT )−1 − δ2�Sk

δφ2
. (37)

Eliminating J from Eq. (30) using Eq. (33), we have

�k[φ] = −W

[
δ�k

δφ
[φ] + δ�Sk

δφ
[φ]

]

+
(

δ�k

δφ
[φ] + δ�Sk

δφ
[φ]

)
φ − �Sk[φ] (38)

= − ln

{∫
dχe−S[χ]+(δ�k [φ]/δφ)(χ−φ)−�Sk [χ−φ]

}
(39)

= − ln

{∫
dχe−S[φ+χ]+(δ�k [φ]/δφ)χ−�Sk [χ]

}
. (40)

Although this has a recursive form about �k[φ], we can write
an approximation in closed form (see Appendix A 1 for the
derivation):

�k[φ] � S[φ] + 1

2
ln det

[
δ2

δφ2
(S + �Sk)[φ]

]
. (41)

Note that we will not resort to such perturbation expansions
in our numerical calculation, because it requires higher
derivatives of the action, which are not always easy to
calculate.

Figure 1 illustrates the relation between the action and the
effective average action in a simple case, where we assume χ ∈
R1 and the filter is Rk = k2. The tangent point A(φ,�k[φ]) and
the slope δ�k[φ]/δφ are such that the point φ coincides with
the weighted average of the points χ around the interval φ −
k−1 � χ � φ + k−1. Indeed, we see from Eqs. (34) and (40)
that

φ =
∫

dχ χ e−S[χ]+�k [φ]+(δ�k [φ]/δφ)(χ−φ)−(k2/2)(χ−φ)2
. (42)

One interesting thing about this smoothing is that it is not an
averaging of the value of S[χ ] but of its independent variable
χ . Thereby, the effective average action serves as a kind of
smoothed version of the cost function.

Taking Eqs. (26) and (27) into account, k → ∞ im-
plies e−�Sk [χ] = e−χT Rkχ/2 → δ[χ ], which leads Eq. (40)
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α = Γk[φ] + δΓk
δφ

[φ](χ − φ)

φ

α

α = S[χ]

φ φ + k−1φ − k−1

α = Γk[φ]

A

FIG. 1. Concept of the effective average action �k (dot-dashed
curve). The tangent point A(φ,�k[φ]) and the slope δ�k[φ]/δφ are
such that the point φ coincides with the weighted average of the points
χ around the interval φ − k−1 � χ � φ + k−1. The weight exponen-
tiates the deviation (shaded region) of the action α = S[χ ] (solid
curve) from the tangent plane α = �k[φ] + (δ�k[φ]/δφ)(χ − φ)
(dashed line). For simplicity, it is assumed that χ is one dimensional
and the filter has Rk = k2.

to

�k→∞[φ] = S[φ]. (43)

This means that when k is sufficiently large no fields around φ

are counted in �k[φ] other than the field φ itself and thus the
effective average action approaches the original action, or the
cost function. In contrast, it is apparent that

�k→0[φ] = �[φ]. (44)

Hence, we have confirmed that �k[φ] constitutes a one-
parameter family of functionals interpolating between the
action S[φ] and the effective action �[φ]. Hereafter, we
assume that k has a finite value so as to integrate out some
modes.

B. Property of the stationary point

We assume that the stationary problem

δ�k

δφ
[φ] = J T − δ�Sk

δφ
[φ] = 0 (45)

has stationary values at φ̂. From the definition (31), we have

φ̂ = 〈χ〉k,(δ�Sk/δφ)[φ̂]. (46)

Since Eq. (45) can be thought of as the statistical equation of
motion for the field φ, the solution φ̂ offers the estimated path
for the statistical problem. At the stationary point, Eq. (32)
reads

φ̂ =
∫

dχ (φ̂ + χ )e−S[φ̂+χ]−�Sk [χ]∫
dχ e−S[φ̂+χ]−�Sk [χ]

. (47)

This means that the stationary value φ̂ provides the av-
erage with respect to high-wave-number modes (see also
Appendix A 2).

III. ESTIMATION OF THE EFFECTIVE GRADIENT

A. Definition as an expected value

Rewriting Eq. (40), we introduce the exponent R[φ,χ ] for
convenience:

e−�k [φ] = e−S[φ]
∫

dχ e−R[φ,χ], (48)

R[φ,χ ] ≡ S[φ + χ ] − S[φ] − δ�k

δφ
[φ]χ + �Sk[χ ], (49)

�k[φ] = S[φ] − ln
∫

dχ e−R[φ,χ ]. (50)

The gradient of �k[φ] is derived as the expected value 〈·〉R
under the weight e−R:

δ�k

δφ
[φ] = δS

δφ
[φ] −

∫
dχ

( − δR
δφ

[φ,χ ]
)
e−R[φ,χ ]∫

dχ e−R[φ,χ]

=
〈
δS

δφ
[φ + χ ]

〉
R

− 〈χ〉TR
δ2�k

δφ2
[φ]. (51)

From Eq. (34) we have that

0 =
∫

dχ χ e−R[φ,χ] ∝ 〈χ〉R. (52)

Thus, Eq. (51) can be simplified to

δ�k

δφ
[φ] =

〈
δS

δφ
[φ + χ ]

〉
R

. (53)

Equations (49) and (53) are recursive with respect to
δ�k[φ]/δφ. Therefore, we need some approximation to enable
a numerical evaluation. We may replace δ�k[φ]/δφ with the
approximation δS[φ]/δφ in R[φ,χ ] on the right-hand side of
the equation. Equation (53) can then be evaluated using the
Metropolis method [9,10]. We can then apply a successive
correction procedure by updating the expectation with the
latest value of δ�k[φ]/δφ in the weight. Furthermore, from
Eqs. (31), (34), and (37) we find that the second derivative can
also be derived as the expected value

δ2�k

δφ2
[φ] = 〈χχT 〉−1

R
− δ2�Sk

δφ2
. (54)

B. Evaluation through the Metropolis method

In contrast to the case of the effective action in Eq. (16), the
filtering term �Sk[χ ] in Eq. (49) has the effect of confining the
weight exp (−R[φ,χ ]) to a small region in the control space,
as illustrated in Fig. 1. Owing to this, we may assume that the
expected value will be efficiently evaluated by a Markov-chain
Monte Carlo method, e.g., the Metropolis adjusted Langevin
algorithm [11]. Using the fact that the Langevin equation

dχt = 1
2∇ ln f (χt )dt + dWt (55)

(where Wt is the Wiener process) has the invariant distribution
π (χ ) ≡ f (χ )/

∫
dχ f (χ ), we construct a Markov chain by

discretizing the equation and applying an acceptance and
rejection procedure.

At time step n, according to the weight

f (χ (n)) = e−R[φ,χ (n)], (56)

052212-4



COARSE-GRAINED SENSITIVITY FOR MULTISCALE . . . PHYSICAL REVIEW E 93, 052212 (2016)

we define a proposal normal distribution

q(χ |χ (n)) = N
(

χ (n) − σ 2

2
∇χ (n)R[φ,χ (n)],σ 2I

)
, (57)

∇χ (n)R[φ,χ (n)] =
(

δR

δχ (n)
[φ,χ (n)]

)T

, (58)

δR

δχ (n)
[φ,χ (n)] = δS

δφ
[φ + χ (n)] − δ�k

δφ
[φ] + δ�Sk

δφ
[χ (n)]

(59)

� δS

δφ
[φ + χ (n)] − δS

δφ
[φ] + δ�Sk

δφ
[χ (n)]

(60)

to generate a random field χ∗ that obeys q:

χ∗ = χ (n) − σ 2

2
∇χ (n)R[φ,χ (n)] + σξ, ξ ∼ N (0,I ). (61)

We then update χ (n+1) = χ∗ with the acceptance probability

ρ(χ (n),χ∗) = min

(
1,

f (χ∗)

f (χ (n))

q(χ (n)|χ∗)

q(χ∗|χ (n))

)
, (62)

or retain χ (n+1) = χ (n). The ensemble of sample sequences
χ (n) drawn in this way approximately follows the invariant
distribution π (χ ) and we can estimate the expected value
accordingly:

〈
δS

δφ
[φ + χ ]

〉
R

� 1

N

N∑
n=1

δS

δφ
[φ + χ (n)]. (63)

Note that, after averaging, we may perform another refined
averaging by substituting the derived sensitivity into the
weight, because the term (δS[φ]/δφ)T in Eq. (60) should
have been (δ�k[φ]/δφ)T . Furthermore, within the limit of the
accuracy of importance sampling, the finite difference of �k

can also be estimated as

�k[φ + �φ] − �k[φ] = − ln〈e−R[φ+�φ,χ]+R[φ,χ]〉R. (64)

IV. SIMPLE EXAMPLE

As a simple example, we consider a double-well potential

S[φ] = 1
2 (φ2 − a2)2, a = 0.5, Rk = 22. (65)

The effective average action given by a perturbation expansion
up to the second order (see Appendix A 1) is

�[φ] = S[φ] + 1
2 ln (6φ2 − 2a2 + Rk). (66)

Figure 2 shows that the potential barrier at the center (black
curve) is eliminated (purple curve) by integrating out the
fluctuation. The gradients, along with the effective gradient
of the action evaluated by the Metropolis method, are shown
in Fig. 3. These curves suggest that the variational method
using the coarse-grained sensitivity can capture the expected
value φ̂ = 0, which traditional variational methods will fail
to find. This is because, in principle, variational methods are
all designed to find one of the stationary values of the cost
function, in this case φ = ±a.

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

S
, Γ

k

φ

S
Γk (Perturb.)

FIG. 2. Action S[φ] (black curve) and effective average action
�k[φ] evaluated using a perturbation expansion (purple curve) for the
double-well potential.

V. APPLICATION TO DATA ASSIMILATION

A. Quadratic cost function

The cost function used in data assimilation is usually a
quadratic in the nonlinear functional F [φ], such as [12]

S[φ] ≡ 1

2
F [φ]T F [φ],

δS

δφ
[φ] = F [φ]T

δF

δφ
[φ]. (67)

To obtain the averaged sensitivity δ�k[φ]/δφ = 〈δS[φ +
χ ]/δφ〉R, we perform the following calculations:

(
δS

δφ
[φ + χ ]

)T

=
(

δF

δφ
[φ + χ ]

)T

F [φ + χ ], (68)

R[φ,χ ] = 1

2
F [φ + χ ]T F [φ + χ ] − 1

2
F [φ]T F [φ]

−χT

(
δ�k

δφ
[φ]

)T

+ �Sk[χ ] (69)

-3

-2

-1

 0

 1

 2

 3

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

∇
S

, ∇
Γ k

φ

∇S
∇Γk (Perturb.)

∇Γk (Metropolis)

FIG. 3. Gradient of action δS[φ]/δφ (blue curve), effective gra-
dient of action δ�k[φ]/δφ evaluated using a perturbation expansion
(green curve), and effective gradient of action evaluated by the
Metropolis method (red curve) for the double-well potential.
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� 1

2
F [φ + χ ]T F [φ + χ ] − 1

2
F [φ]T F [φ]

−χT

(
δF

δφ
[φ]

)T

F [φ] + �Sk[χ ], (70)

∇χR[φ,χ ] =
(

δF

δφ
[φ + χ ]

)T

F [φ + χ ] −
(

δ�k

δφ
[φ]

)T

+
(

δ�Sk

δχ
[χ ]

)T

. (71)

Thus, each sample requires a forward integration F [φ + χ ]
and a subsequent adjoint integration (δF [φ + χ ]/δφ)T .

B. Logistic map

We now consider a smoothing problem for the logistic map
� �→ r�(1 − �) [13,14] fitted to observation y. As a data
assimilation problem, we use the following cost function S

and its gradient [15]:

S[φ] = 1

2σ 2
0

(φ − m0)2 +
J−1∑
j=0

1

2γ 2
(yj+1 − �(j+1)[φ])2,

(72)

�(j+1)[φ] = r�(j )[φ](1 − �(j )[φ]), �(0)[φ] = φ, (73)

δS

δφ
[φ] = 1

σ 2
0

(φ − m0) + 1

γ 2

J−1∑
j=0

[
j∏

l=0

r(1 − 2�(l)[φ])

]

× (�(j+1)[φ] − yj+1), (74)

where σ 2
0 and γ 2 are the background and observational error

variances, respectively. The parameters are set to r = 4, J = 6,
σ0 = 0.1, γ = 0.2, and m0 = 0.4 (first guess), similar to those
in [14]. The observations are sampled from a model sequence
given by the initial value v0 = 0.3 added to observational
noise.

The optimization problem can apparently be solved using
a variational method that seeks the optimal initial condition
using the gradient information. However, there are multiple
extrema of the cost function (see the black curve in Fig. 4),
which makes it difficult to find the global minimum. Thus,
we should utilize the effective gradient (63), derived using the
Metropolis method. We use a finite constant Rk = (0.008)−2,
where 0.008 is the typical half wavelength of short fluctuations
in S[φ].

Figure 4 shows the action (black curve), the gradient of
action (blue curve), and the effective gradient of action (red
curve) for this system. It is clear that the original gradient has
too many zeros for worthwhile variational data assimilation
using the gradient. However, because the effective gradient
has relatively few zeros, it can be applied to a variational data
assimilation to find the minimum at around φ = v0, as long as
the first guess is not far from the true value.

We performed two data assimilation experiments using
the steepest descent method with the gradient δS[φ]/δφ
and the effective gradient δ�k[φ]/δφ (see the algorithm in
Appendix B). As shown in Fig. 5, the case with δS[φ]/δφ
converges to a local minimum φ = 0.388, whereas the case
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FIG. 4. Action S[φ] (black curve), gradient of action δS[φ]/δφ
(blue curve), and effective gradient of action δ�k[φ]/δφ (red curve)
for the logistic map. The true value for the data assimilation problem
is φ = 0.3 and the first guess is 0.4.

with δ�k[φ]/δφ converges to φ = 0.315 around the global
minimum, which indicates the superiority of the effective
gradient. Note that the decrease in the cost function S[φ]
in the latter case is not necessarily monotonic, because the
optimization problem is actually defined for the effective
average action �k[φ]. This illustrates the potential usefulness
of the effective gradient (sensitivity) for data assimilation.

C. Lorenz model

Next we examine the sensitivity that appears during data
assimilation in the Lorenz model, which is a simple dynamical
system designed to mimic the dynamics of Rossby waves in
atmospheric dynamics [14,16]. This system can be written as

dθl

dt
= θl−1(θl+1 − θl−2) − θl + F, l = 1,2, . . . ,M (75)

θ0 = θM, θM+1 = θ1, θ−1 = θM−1. (76)
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FIG. 5. Variation of the cost function during data assimilation
using the steepest descent method with δS[φ]/δφ (blue curve) and
δ�k[φ]/δφ (red curve). The former converges to a local minimum
φ = 0.388; the latter converges to φ = 0.315, which is close to the
global minimum.
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We write the time evolution operator from the initial condition
as

�(j )[θ (t = 0)] = θ (t = tj ), (77)

with time step tj+1 − tj = �t . If we choose the initial
condition θ (t = 0) = φ ∈ RM as the control variable, we can
define a cost function similar to that in Eq. (72):

S[φ] = 1

2σ 2
0

‖φ − m0‖2 +
J−1∑
j=0

1

2γ 2
‖yj+1 − �(j+1)[φ]‖2,

(78)

where ‖ · ‖ is the Euclidean norm. The parameters are set
to F = 6, J = 32, M = 20, σ0 = 2, and γ = 2. With these
parameters, this model is in an unstable regime with the first
Lyapunov exponent λ1 � 0.84 > 0. The true initial condition
v0 ∈ RM is given by model integration within an interval
from a randomly chosen initial condition. The observation
is sampled from a model sequence starting from v0, with
observational noise added to the sample. The observation
is defined only at the times j + 1 = 3,6, . . . ,30 and space
l = 1,2, . . . ,8. The first guess m0 is given by changing only
the first component of v0:

(m0)1 = (v0)1 + σ0, (m0)2 = (v0)2, . . . , (m0)M = (v0)M.

(79)

The filter Rk is in the form of Eq. (24) with jk = 10 and
k = 0.25−1. Here k is set so that the filtering term �Sk[φ] is of
order 1, that is, O(1) = �Sk[φ] � k2var(φ), where the typical
fluctuation is assumed to be var(φ) � k−2 = 0.252. The time
evolution of (75) and its adjoint are solved by the Runge-
Kutta method with time step �t = 0.1. The experiments are
designed to investigate how the action, the gradient of action,
and the effective gradient of action change if we move the
control variable as

φ1 = (v0)1 + σ0η, φ2 = (v0)2, . . . , φM = (v0)M, (80)

where −1 � η � 1.
Figure 6 shows the action (black curve), the gradient of

action (blue curve), and the effective gradient of action (red
curve) for this experiment. It is clear that the original gradient
has several zeros that will complicate the variational data
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FIG. 6. Action S[φ] (black curve), gradient of action δS[φ]/δφ1

(blue curve), and effective gradient of action δ�k[φ]/δφ1 (red curve)
for the Lorenz model. The true value for the data assimilation problem
is φ1 = −2.156 and the first guess is −0.156.

assimilation using the gradient. However, the effective gradient
has only one zero near the true value, which is a similar result
as for the logistic map. Thus, this example also shows the
potential usefulness of the effective gradient for finding the
optimal initial condition.

D. Slow and fast degrees of freedom

Toward the application to high-dimensional systems, we
briefly note a possible procedure for treating two distinct
spatial modes in the coarse-grained data assimilation. Assume
the infrared filter has a sharp cutoff in the momentum
representation

Rk(p) =
{
a2 if |p| < k

0 otherwise
(81)

and the fluctuation χ can be decomposed into

χ (p) =
{
χs(p) if |p| < k

χf (p) otherwise. (82)

Then, as the mass a2 → ∞, we have

e−�Sk [χs+χf ] = e−(a2/2)χT
s χs → δ[χs], (83)

which leads to

δ�k

δφ
[φ] =

∫
dχs

∫
dχf

δS
δφ

[φ + χs + χf ] exp
( − S[φ + χs + χf ] + S[φ] + δ�k

δφ
[φ](χs + χf )

)
δ[χs]∫

dχs

∫
dχf exp

( − S[φ + χs + χf ] + S[φ] + δ�k

δφ
[φ](χs + χf )

)
δ[χs]

(84)

→
∫

dχf
δS
δφ

[φ + χf ]e−S[φ+χf ]+S[φ]+(δ�k [φ]/δφ)χf∫
dχf e−S[φ+χf ]+S[φ]+(δ�k [φ]/δφ)χf

. (85)

Hence, the sensitivity can be calculated as the average under
the weight that integrates out the fast degrees of freedom,
which will contribute to reducing the dimensionality of the
path space. In the case of coupled atmosphere-ocean systems,
we can assume that the atmospheric system is represented by
χf and the oceanic system is χs . This suggests that, through
this coarse-graining procedure, the sensitivity regarding the

coupled system can be expressed by the slow oceanic variables
alone.

E. Two-scale Lorenz model

To illustrate the application to multiscale systems, as
mentioned in Sec. V D, we examine the sensitivity appearing
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during data assimilation in the two-scale Lorenz model [16].
This system can be written for the slow ζ and the fast ξ

variables as

dζl1

dt
= ζl1−1(ζl1+1 − ζl1−2) − ζl1 + F − hc

b

M2∑
l2=1

ξl2,l1 ,

l1 = 1,2, . . . ,M1 (86)

dξl2,l1

dt
= cbξl2+1,l1 (ξl2−1,l1 − ξl2+2,l1 ) − cξl2,l1 + hc

b
ζl1 ,

l2 = 1,2, . . . ,M2, l1 = 1,2, . . . ,M1 (87)

ζ0 = ζM1 , ζM1+1 = ζ1, ζ−1 = ζM1−1, (88)

ξ0,l1 = ξM2,l1−1, ξM2+1,l1 = ξ1,l1+1, ξM2+2,l1 = ξ2,l1+1,

l1 = 1,2, . . . ,M1, (89)

where ζ (t) ∈ RM1 and ξ (t) ∈ RM1M2 . We write the time
evolution operator of the state θ = (ζ T ,ξT )T from the initial
condition as

�(j )[θ (t = 0)] = θ (t = tj ), (90)

with time step tj+1 − tj = �t . If we choose the initial
condition θ (t = 0) = φ ∈ RM , where M = M1 + M1M2, as
the control variable, we can define a cost function as follows:

S[φ] = 1

2σ 2
0

‖φ − m0‖2 +
J−1∑
j=0

1

2γ 2
‖yj+1 − �(j+1)[φ]‖2,

(91)

where ‖ · ‖ is the Euclidean norm. The parameters are set
to F = 6, J = 110, M1 = 5, M2 = 3, h = 1.6, b = c = 10,
σ0 = 2, and γ = 2. With these parameters, this model is
in an unstable regime with the first Lyapunov exponent
λ1 � 9.0 > 0. The true initial condition v0 ∈ RM is given
by model integration within an interval from a randomly
chosen initial condition. The observation is sampled from a
model sequence starting from v0, with observational noise
added to the sample. The observation is defined only at
the times j + 1 = 3,6, . . . ,108 and for the slow variables
l1 = 1,2, . . . ,M1. The first guess m0 is given by changing
only the first component of v0:

(m0)1 = (v0)1 + σ0, (m0)2 = (v0)2, . . . , (m0)M = (v0)M.

(92)

Similar to Eq. (81), we set the filter Rk as

Rk =
{

k2
ζ for ζ (t = 0)

k2
ξ for ξ (t = 0),

(93)

with kζ = 0.01−1 and kξ = 0.04−1. This setting kζ > kξ

mainly integrates out the fast degrees of freedom ξ (t = 0),
whose typical fluctuation is assumed to be var(ξ (t = 0)) �
k−2
ξ = 0.042. The time evolution of (86) and (87) as well as

their adjoints are solved by the Runge-Kutta method with time
step �t = 0.006. As in Sec. V C, the experiments are designed
to investigate the changes in the action, the gradient of action,
and the effective gradient of action if we move the control
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FIG. 7. Action S[φ] (black curve), gradient of action δS[φ]/δφ1

(blue curve), and effective gradient of action δ�k[φ]/δφ1 (red
curve) for the two-scale Lorenz model. The true value for the data
assimilation problem is φ1 = 3.011 and the first guess is 5.011.

variable as

φ1 = (v0)1 + σ0η, φ2 = (v0)2, . . . , φM = (v0)M, (94)

where −1 � η � 1.
Figure 7 shows the action (black curve), the gradient of

action (blue curve), and the effective gradient of action (red
curve) for this experiment. The action is almost parabolic
in shape with many small bumps due to the fast degrees of
freedom. Consequently, the gradient has many zeros that can
complicate the variational data assimilation using it. However,
the effective gradient has only one zero near the true value,
similar to the result obtained for the Logistic map and for
the one-scale Lorenz model. Thus, this example shows the
potential application of the effective gradient for finding the
optimal initial condition in multiscale data assimilation.

VI. CONCLUSION

We have investigated the use of the effective average action
and its gradient in multiscale data assimilation. A framework
has been proposed that allows the multiscale data assimilation
problem to be solved by replacing the cost function with the
effective average action. We have also proposed a method
of evaluating the gradient of the effective average action
numerically. In principle, this enables a broader range of data
assimilation problems to be solved by seeking the stationary
point of this effective average action numerically using its
gradient.

This work can be summarized as follows:
(i) The concept of the effective average action provides

a consistent framework for data assimilation in nonlinear
multiscale systems.

(ii) If we can numerically evaluate the path integral

δ�k

δφ
[φ] =

∫
dχ δS

δφ
[φ + χ ]e−R[φ,χ ]∫
dχe−R[φ,χ]

≡
〈
δS

δφ
[φ + χ ]

〉
R

,

R[φ,χ ] ≡ S[φ + χ ] − S[φ] − δ�k

δφ
[φ]χ + �Sk[χ ],

with reasonable accuracy and computational burden, then we
obtain the coarse-grained sensitivity, which constitutes a key
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factor in the variational data assimilation of a coarse-grained
field.

(iii) The proposed procedure estimates the coarse-grained
sensitivity through the Metropolis method by averaging an
ensemble of original sensitivities that are distributed according
to weights related to the nonlinearity:〈

δS

δφ
[φ + χ ]

〉
R

� 1

N

N∑
n=1

δS

δφ
[φ + χ (n)].

(iv) The stationary problem for the effective average action
�k[φ] can be solved using a gradient method with the gradient
δ�k[φ]/δφ.

(v) The stationary value φ̂ represents the extremum for
the coarse-grained field after integrating out the ultraviolet
fluctuations. This can be regarded as a solution of the
multiscale data assimilation problem.

(vi) We demonstrated the usefulness of the effective
gradient for data assimilation in a simple setting with the
double-well potential, the logistic map, the one-scale Lorenz
model, and the two-scale Lorenz model.

Future research should consider the following issues:
(a) The infrared filter works well when we can separate

slow and fast modes cleanly, as described in Secs. V D and V E.
However, in general, we have to deal with control variables that
have continuous spectra. For such cases, we should carefully
consider an infrared filter design that is suitable for revealing
the slow dynamics of the system under consideration.

(b) In the case of a larger system, the computational burden
of the Metropolis method could be huge, because we require
many samples to yield a statistically reasonable integration
result. Moreover, this should be incorporated into a recursive
procedure or a fixed point calculation.

Despite these technical difficulties, the coarse-grained
sensitivities are of great importance since they provide an
invaluable perspective on the slow dynamics of multiscale
systems. It should be noted that our approach in the present
form has a fairly limited scope of application to data as-
similation problems in geoscience, which typically require
higher-dimensional systems.
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APPENDIX A: PROPERTIES OF �k

1. Perturbation expansion

To evaluate the path integral (50) through a perturbation ex-
pansion, we apply the approximation δ�k[φ]/δφ � δS[φ]/δφ
in the exponent of Eq. (49) and truncate the Taylor series
expansion of S[φ + χ ] to the quadratic order:

S[φ + χ ] − S[φ] − δ�k

δφ
[φ]χ + �Sk[χ ]

� S[φ] + δS

δφ
[φ]χ + 1

2
χT δ2S

δφ2
[φ]χ

− S[φ] − δS

δφ
[φ]χ + 1

2
χT Rkχ

= 1

2
χT δ2S

δφ2
[φ]χ + 1

2
χT Rkχ = 1

2
χT

(
δ2S

δφ2
[φ] + Rk

)
χ.

(A1)

Taking the Gaussian integral, we obtain

�k[φ] � S[φ] − ln
∫

dχ exp

[
− 1

2
χT

(
δ2S

δφ2
[φ] + Rk

)
χ

]

= S[φ] + 1

2
ln det

(
δ2S

δφ2
[φ] + Rk

)
. (A2)

Thus, we require at least the second derivative of the action
S[φ] for the perturbation calculation of �k[φ].

The same procedure can be applied to the gradient (53) as
follows:

δ�k

δφ
[φ] � δS

δφ
[φ] + 1

2

〈
χT

(
δ3S

δφ3
[φ]

)
χ

〉
R

= δS

δφ
[φ] + 1

2
tr

{
δ3S

δφ3
[φ]

(
δ2S

δφ2
[φ] + Rk

)−1
}

. (A3)

Hence, we require at least the second and third derivatives of
the action S[φ] for the perturbation calculation of the gradient
of �k[φ].

2. Relationship to the growth of instabilities

We consider the case where S[φ] is the cost function
of strong-constraint 4D-Var [17]. The meaning of ln det in
Eq. (A2) can be clarified by considering the basis of singular
vectors. With the singular values σ1 > σ2 > · · · , we can write

δ2S

δφ2
[φ] �

(
δF

δφ
[φ]

)T (
δF

δφ
[φ]

)
= diag

(
σ 2

1 ,σ 2
2 , . . .

)
. (A4)

Using a positive constant k � 1, we can define the infrared
filter as

Rk =
{
k2 if σi < k

0 otherwise.
(A5)

Then we have

δ2S

δφ2
[φ] + Rk � diag

(
σ 2

1 ,σ 2
2 , . . . ,k2, . . . ,k2

)
, (A6)

1

2
ln det

(
δ2S

δφ2
[φ] + Rk

)
�

∑
σi�k

ln σi +
∑
σi<k

ln k. (A7)

That is, the term ln det represents the sum of the logarithms
of the leading singular values. The additional term in Eq. (A7)
has the effect of integrating out the growing disturbances in
the cost function.
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APPENDIX B: ALGORITHM FOR COARSE-GRAINED DATA ASSIMILATION

Algorithm 1 coarse-grained data assimilation
�0 ← v0 � set true value
for t = 0 → T − 1 do

�t+1 ← ψ(�t )
generate ξ ∼ N (0,I )
yt+1 ← �t+1 + γ ξ � set observation

end for
φ0 ← m0 � set first guess
for i = 0 → I − 1 do � assimilation loop

CALL COST(y1:T ,φi,�0:T ,Si)
CALC SENSITIVITY(y1:T ,�0:T ,∇Si) � see gradient calculations
CALC COARSE-GRAINED SENSITIVITY(y1:T ,φi,Si,∇Si,∇�i) � see gradient calculations
if |∇�i | < Cth then

return φi,Si

end if
φi+1 ← φi − α∇�i � update control variable

end for

procedure CALC COST(y1:T ,φi,�0:T ,Si)
�0 ← φi � background term
Si ← 1

2σ 2
0
|�0 − m0|2

for t = 0 → T − 1 do
�t+1 ← ψ(�t ) � forward time stepping
Si ← Si + 1

2γ 2 |yt+1 − �t+1|2 � observational term
end for

end procedure
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Algorithm 2 gradient calculations
procedure CALC SENSITIVITY(y1:T ,�0:T ,∇Si)

�̂0:T ← 0
for t = T − 1 → 0 do

�̂t+1 ← �̂t+1 − 1
γ 2 (yt+1 − �t+1) � observational term

�̂t ← �̂t +
(

∂ψ

∂�t

)T

�̂t+1 � adjoint time stepping

�̂t+1 ← 0
end for
�̂0 ← �̂0 + 1

σ 2
0

(�0 − m0) � background term

∇Si ← �̂0

�̂0 ← 0
end procedure

Procedure CALC COARSE-GRAINED SENSITIVITY(y1:T ,φi,Si,∇Si,∇�i)
∇�i ← ∇Si � first guess of gradient in weight
for l = 1 → L do � successive correction of gradient in weight

χ ← 0
∇S ← ∇Si

R ← 0
∇R ← 0
∇�acc ← 0
for n = 0 → N − 1 do � Markov-chain loop

generate ξ ∼ N (0,I )
χ∗ ← χ − 1

2σ 2∇R + σξ � proposed
CALC COST(y1:T ,φi + χ∗,�0:T ,S∗)
CALC SENSITIVITY(y1:T ,�0:T ,∇S∗)
R∗ ← S∗ − Si − 〈∇�i,χ

∗〉 + 1
2k2|χ∗|2

∇R∗ ← ∇S∗ − ∇�i + k2χ∗

q+ ← 1
2σ 2 |χ − 1

2σ 2∇R − χ∗|2
q− ← 1

2σ 2 |χ∗ − 1
2σ 2∇R∗ − χ |2

a ← −R∗ + R − q− + q+
generate ζ ∼ U(0,1)
if a � 0 or ζ < exp (a) then � Metropolis criterion

χ ← χ∗

∇S ← ∇S∗

R ← R∗

∇R ← ∇R∗

end if
∇�acc ← ∇�acc + ∇S � accumulate gradient

end for
∇�i ← ∇�acc/N � take average

end for
end procedure
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