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Noise-induced transitions in a double-well oscillator with nonlinear dissipation
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We develop a model of bistable oscillator with nonlinear dissipation. Using a numerical simulation and an
electronic circuit realization of this system we study its response to additive noise excitations. We show that
depending on noise intensity the system undergoes multiple qualitative changes in the structure of its steady-state
probability density function (PDF). In particular, the PDF exhibits two pitchfork bifurcations versus noise
intensity, which we describe using an effective potential and corresponding normal form of the bifurcation. These
stochastic effects are explained by the partition of the phase space by the nullclines of the deterministic oscillator.
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I. INTRODUCTION

Bistable dynamics is typical for many natural systems
in physics [1–3], chemistry [4,5], biology [6–12], ecology
[13,14], and geophysics [15–17]. The simplest kind of bista-
bility occurs when a system possesses two stable equilibria
in the phase space, separated by a saddle. Adding noise gives
rise to random switchings between the deterministically stable
states, resulting in a steady-state probability density with two
local maxima. The Kramers oscillator is a classical example
of the stochastic bistable system describing Brownian motion
in a double-well potential [2,4,18],

ẏ = v, v̇ = −γ v − dU (y)

dy
+

√
2γD n(t), (1)

where γ is the (constant) drag coefficient, U (y) is a double-
well potential and n(t) is Gaussian white noise, and D is the
noise intensity. The two-dimensional equilibrium probability
density function (PDF) is

P (y,v) = k exp

[
− 1

D

(
v2

2
+ U (y)

)]
, (2)

with the normalization constant k, and possesses two maxima,
corresponding to the potential wells, separated by a saddle
point of the potential. This structure does not depend on the
noise intensity D: although the peaks in the PDF are smeared
out, their position is invariant with respect to increase of noise
intensity.

External random perturbations may result in the so-called
noise-induced transitions whereby stationary PDF changes
its structural shape, e.g., number of extrema, when noise
intensity varies [19]. Such transitions may occur both with
multiplicative noise as in the original Horsthemke-Lefever
scenario [19], and with additive noise (see, e.g., Refs. [20,21]).
For example, with a multiplicative noise stochastic bistable
oscillator shows reentrant (multiple) noise-induced transitions
when the noise intensity varies [22]. Noise-induced transitions
were observed in excitable systems ranging from a single
excitable neuron [23–25] to coupled excitable elements and
media [26,27]. In many cases noise-induced transitions are not
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true bifurcations [28], rather they underlie qualitative changes
of stochastic dynamics when noise strength is the control
parameter. Noise-induced phase transitions were studied in
spatially distributed systems perturbed by multiplicative noise
[29] and were shown to exist for the case of additive noise [30].
In this paper we develop a generalized bistable oscillator with
nonlinear dissipation and report on a multiple noise-induced
transition due to additive noise in this system. We first develop
an electronic circuit of the oscillator and demonstrate noise-
induced transitions in analog experiment. Second, we use a
corresponding deterministic model of the circuit and numerical
simulations of stochastic model to explain mechanisms of
noise-induced transitions.

II. MODEL AND METHODS

Figure 1 shows a circuit diagram with two nonlinear
elements N1 and N2 with the S- and N-type of the I-
V characteristic, respectively: iN1 = F (V ),VN2 = G(i). The
circuit is similar to Nagumo’s tunnel diode neuron model
[31,32], except it contains nonlinear resistor N2 in series with
the inductor, L. The circuit also includes a source of broadband
Gaussian noise current inoise(t), which will be assumed white
in the following. By using the Kirchhoff’s current law the
following differential equations for the voltage V across the
capacitance C and the current i through the inductance L can
be derived: ⎧⎪⎨

⎪⎩
C

dV

dt ′
+ iN1 + i + inoise(t ′) = 0,

V = L
di

dt ′
+ VN2.

(3)

In the dimensionless variables x = V/v0 and y = i/i0 with
v0 = 1V, i0 = 1A and dimensionless time t = [(v0/(i0L)]t ′,
Eq. (3) can be rewritten as,{

εẋ = −y − F (x) − √
2D n(t),

ẏ = x − G(y).
(4)

The parameter ε sets separation of slow and fast variables of
the system, ε = (C/L)(v0/i0)2. The first equation for the volt-
age contains an additive source of white Gaussian noise, n(t),
with the intensity D: 〈n(t)〉 = 0,〈n(t)n(t + τ )〉 = 2Dδ(τ ).
Depending on the shape of the functions F (x) and G(y)
the circuit demonstrates wide range of dynamics, including
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FIG. 1. Schematic circuit diagram of the model.

various types of bistability, self-sustained oscillations and
excitability. It allows us to observe a wide range of dynamical
regimes: from the behavior like in oscillator (1) with a
double-well potential to dynamics of an excitable oscillator
or a bistable self-sustained oscillators. This paper is restricted
to bistability of two stable equilibria with S-shaped function
G(y) = −ay + by3 with positive coefficients a and b.

We start with a linear resistor N1, F (x) = c1x, with positive
c1. The circuit is described by,

εÿ = −((3by2 − a)ε + c1)ẏ − (1 − c1a + c1by
2)y

−
√

2Dn(t). (5)

The friction is nonlinear, but depends solely on the coordinate
variable, y. For sufficiently small ε,c1 � ε(3by2 − a) and
dissipation becomes essentially linear. Then the system is
closely akin to Kramers oscillator, Eq. (1), with linear friction.
Our analog and numerical simulations indicated no qualitative
differences in dynamics of the Kramers oscillator and the
circuit (5) with linear resistor N1, i.e., no noise-induced
qualitative change in the stationary PDF.

Next, we consider the case of nonlinear resistor N1 with
F (x) = c1x − c3x

3 + c5x
5 and with fixed positive coefficients

c1 = 1,c3 = 9,c5 = 22. A variety of the electronic elements
and circuits have I-V characteristics like that. For example,
N1 can be realized by the so-called λ-diode circuit [33]. In
this case the following equations describes the system under
study,

{
εẋ = −y − c1x + c3x

3 − c5x
5 − √

2Dn(t),
ẏ = x + ay − by3.

(6)

Equations (6) can be written in the coordinate-velocity form
with dynamical variables y,v ≡ ẏ and x = v − ay + by3:
⎧⎨
⎩

ẏ = v,

εv̇ = −y − c1(v − ay + by3) + c3(v − ay + by3)3−
c5(v − ay + by3)5 + εv(a − 3by2) − √

2Dn(t).
(7)

In the oscillatory form (7) becomes,

ÿ + q1(y,ẏ)ẏ + 1

ε
q2(y) = −

√
2Dn(t), (8)

where q2(y) defines the form of the potential, and q1(y,ẏ) is
the nonlinear dissipation,

q1(y,ẏ) = −a + 3by2 + 1

ε
(c1

− c3

3∑
n=1

3!

n!(3 − n)!
ẏn−1(by2 − a)3−ny3−n

FIG. 2. Circuit diagram of the model used in analog experiments.

+ c5

5∑
n=1

5!

n!(5 − n)!
ẏn−1(by2 − a)5−ny5−n),

q2(y) = y + c1(by2 − a)y

− c3(by2 − a)3y3 + c5(by2 − a)5y5. (9)

We note that unlike for the case of linear resistor Eq. (5),
the system’s dissipation now depends on both coordinate and
velocity, y and ẏ. As we show below, it gives the main reason
of the qualitative difference between dynamics of the system
(7) and behavior of the models (1) and (5).

The proposed system was studied by means of analog
and numerical simulations. The experimental electronic setup
was developed by using principles of analog modeling of
stochastic systems [34,35]. The main part of the analog model
is the operational amplifier integrator, whose output voltage
is proportional to the input voltage integrated over time:

Vout = − 1

R0C0

∫ t

0 Vindt or R0C0V̇out = −Vin.

The circuit diagram is shown in Fig. 2. It contains two
integrators, A1 and A10, whose output voltages are taken as
the dynamical variables, x∗ and y∗, respectively. Then the
signals x∗ and y∗ are transformed in order to match expressions
of the right-hand side of Eqs. (6). The necessary signal
transformations are carried out by using analog multipliers
AD633JN and the operational amplifiers TL072CP connected
in the inverting and noninverting amplifier configurations.
Finally, transformed signals come to the input of the integrators
as Vin. The experimental setup allows us to obtain the in-
stantaneous values of the variables x∗,y∗ and v∗ = ẏ∗ = x∗ +
ay∗ − by3

∗ . Time series were recorded from corresponding
outputs (marked in Fig. 2) using an acquisition board (National
Instruments NI-PCI 6133). All signals were digitized at the
sampling frequency of 50 kHz. 150 s long realizations were
used for further offline processing. A noise generator G2-59
was used to produce broadband Gaussian noise, whose spectral
density was almost constant in the frequency range 0–100 kHz.
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In this frequency range noise can be approximated by white
Gaussian.

The circuit in Fig. 2 is described by the following equations:

⎧⎪⎨
⎪⎩

RxCx

dx∗
dt∗

= −y∗ − c1x∗ + c3x
3
∗−

c5x
5
∗ − ξ (t∗),

RyCyẏ∗ = x∗ + ay∗ − by3
∗,

(10)

where Cx = 30nF, Cy = 300nF, Rx = 1K� is the resis-
tance at the integrator A1 (R1 = R2 = R13 = R20 = Rx =
1K�), Ry = 10K� is the resistance at the integrator A10
(R14 = R19 = Ry = 10K�). The parameter a is equal to
the input value of the voltage Va at the analog mul-
tiplier A14, b = 10(1 + R17

R18
); c1 = 1,c3 = 4(1 + R5

R6
),c5 =

0.4R7
R8

; ε = RxCx

RyCy
. Transition to dimensionless equations (7)

is then carried out by substitution t = t∗/τ0,x = x∗/v0,y =
y∗/v0,v = v∗/v0, where τ0 = R0C0 = RyCy = 3ms is the
circuit’s time constant and v0 = 1V. The intensity D′ of noise
generated by noise generator is related to the dimensionless D

of Eq. (7) by D = D′/τ0. Numerical simulations were carried
out by the integration of Eq. (7) using the Heun method [36]
with time step 	t = 0.0001.

In the following the parameters of deterministic system
were set to ε = 0.01,a = 1.2,b = 100,c1 = 1,c3 = 9,c5 =
22. For this set of parameters the deterministic system
possesses three equilibria: two stable nodes and a saddle at
the origin. Noise intensity, D, was used as a control parameter
in analog experiments and numerical simulations.

III. NOISE-INDUCED TRANSITIONS AND EFFECTIVE
POTENTIAL

A. Analog experiment

Experiments with the analog circuit showed that noise
strength is the true control parameter of the system. For
weak noise the circuit exhibits bistable dynamics with a
typical hopping between two metastable states and two peaks
in the PDF shown in Figs. 3(a1), 3(b1). Increase of noise
intensity leads to qualitative change in the stochastic dynamics:
switching between two states disappears and so the PDF has
a single global maximum [Figs. 3(a2), 3(b2)]. Furthermore,
larger noise results in yet another noise-induced transition
whereby dynamics becomes again bistable with two-state
hopping and double-peaked stationary PDF [Figs. 3(a3),
3(b3)].

These multiple noise-induced transitions are shown in Fig. 4
for the marginal PDFs of the coordinate and velocity vari-
ables, P (y) = ∫ ∞

−∞ P (y,v)dv,P (v) = ∫ ∞
−∞ P (y,v)dy. While

the PDF of the coordinate, P (y), shows noise-controlled
changes of its modality from bimodal to unimodal and back
to bimodal, the velocity PDF shows no modality change. In
this respect, the velocity distribution is similar to one of the
Kramers oscillator. Although, indeed we do not expect P (v)
to follow a Gaussian distribution as for the Kramers oscillator.

Noise-induced transitions are most apparent in a diagram
of the marginal PDF of coordinate, P (y), plotted vs noise
intensity, D, in Fig. 5(a). Here the PDF P (y; D) is shown as
filled contour lines allowing us to track positions of PDF’s

FIG. 3. Noise-induced transitions in analog simulations. (a) Time
traces of state variables for various values of noise intensity:
1, D = 1.51 × 10−4; 2, D = 3.78 × 10−4; 3, D = 3.00 × 10−3.
(b) Stationary probability density functions (PDFs) P (y,v) corre-
sponding to traces on (a). Other parameters are ε = 0.01,c1 = 1,c3 =
9,c5 = 22,a = 1.2,b = 100.

extrema vs noise intensity and clearly indicates two pitchfork
bifurcations.

The described stochastic dynamics can be represented
in terms of an effective potential Ueff(y), such that the
marginal coordinate PDF is P (y) ∝ exp[−Ueff(y)/Deff], with
an effective noise intensity, Deff. Figure 4(a) shows that the
marginal coordinate PDF, P (y), can be nicely fitted by

P (y) = k1 exp

[
− 1

Deff
Ueff(y)

]
, Ueff(y) = −αy2 + βy4,

(11)
where k1 is the normalization constant. The effective noise
intensity is calculated as the variance of velocity, Deff(D) ≡
var[v], while the parameters α,β are estimated from the least
square fit of the experimentally measured marginal PDF, P (y).
The effective potential can be rewritten in the form, Ueff(y) =
4β(−μy2/2 + y4/4), with μ = α/(2β). The shape of the
effective potential is determined by the effective bifurcation
parameter, μ(D). Thus, noise-induced transitions of the circuit
can be effectively described by the normal form of the pitchfork
bifurcation perturbed by white noise [37],

ẏ = 4β(μy − y3) +
√

2Deff ξ (t). (12)

With positive β, the dynamics of Eq. (12) is bistable for
μ(D) > 0, monostable for μ(D) < 0, and critical at μ(D) =
0. Figure 5(b) shows the dependence of the effective bifurca-
tion parameter vs noise intensity, μ(D), and clearly indicates
two pitchfork bifurcations at D = 2.6 × 10−4 and D = 1.34 ×
10−3, which match the bifurcation diagram, Fig. 5(a), obtained
from the marginal PDF, P (y; D). Furthermore, as indicated in
Fig. 5(c), while the velocity variance, σ 2

v = var[v] (and so the
effective noise intensity, Deff) increases monotonously with D,
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FIG. 4. Noise-induced bifurcations in analog simulations.
(a) Marginal PDF of the coordinate, P (y), (red circles) and its fit using
the effective potential Eq. (11) (lines). (b) Marginal velocity PDF,
P (v), (red circles) and a Gaussian distribution with the same mean
and variance σ 2 = Deff (lines). Noise intensity, parameters of the
effective potential and the effective noise intensity are: 1, D = 1.51 ×
10−4,α = 14.35,β = 3193.5,Deff = 1.15 × 10−2; 2, D = 3.78 ×
10−4,α = −9.71,β = 2532.4,Deff = 4.07 × 10−2; 3, D = 3.00 ×
10−3,α = 76.12,β = 7707.1,Deff = 2.35 × 10−1. Other parameters
are the same as in the previous figure.

the coordinate variance, σ 2
y = var[y], shows a nonmonotonous

dependence, reflecting transitions from bistable to monostable
regimes.

Stochastic bistable oscillators are characterized by two
time scales: fast intrawell fluctuations and slower interwell
switching. The mean frequency of bistable oscillator can be
quantified by the Rice frequency [18,38], which is the rate
of zero crossings by the oscillator’s coordinate with positive
velocity, ωR = 2π

∫ ∞
0 vP (y = 0,v)dv. For the Kramers os-

cillator (1) with linear friction the Rice frequency reads [38],

ωR =
√

2πD exp
[ − U (0)

D

]
∫ ∞
−∞ exp

[ − U (y)
D

]
dy

. (13)

It increases with noise intensity [38], reflecting the increase
of the Kramers rate of transitions between metastable states:
the longer is the residence in metastable states, the smaller
is the Kramers’s rate and the Rice frequency. The depen-
dence of the Rice frequency on noise intensity for our
circuit is nonmonotonous [Fig. 5(d)]: ωR is low for weak
and strong noise, where the system is bistable, and attains
its maximal value for intermediate noise, corresponding to
effective monostable dynamics with the minimal value of the
bifurcation parameter, μ. Unlike for the Kramers oscillator (1),

FIG. 5. Noise-induced transitions in analog simulations.
(a) Marginal coordinate PDF vs noise intensity, P (y; D). For each
value of noise intensity, D, the PDF P (y), was normalized to its
maximal value, i.e., Pn(y) = P (y)/Pmax. Blue dots show minima of
the corresponding effective potential (11). (b) Effective bifurcation
parameter μ(D). Vertical dashed lines indicate positions of two
pitchfork bifurcations. (c) Coordinate and velocity variance vs
noise intensity. The coordinate variance, σ 2

y is shown by the open
black circles; the velocity variance which equals the effective noise
intensity, Deff = σ 2

v , is shown by filled red circles. (d) Rice frequency,
ωR , vs noise intensity. Open red circles show results of analog
simulations; solid line shows Eq. (13) with the effective potential
Ueff and effective noise Deff.

which is characterized by Gaussian velocity distribution, the
velocity PDF, P (v), for our bistable oscillator is non-Gaussian
[Fig. 4(b)]. Nevertheless the nonmonotonous dependence
ωR(D) is qualitatively approximated by Eq. (13) with the
effective potential and noise intensity, i.e., with the substitution
Ueff → U,Deff → D in (13).

B. Numerical simulations

Numerical simulations confirmed the existence of multiple
noise-induced transitions in the mathematical model of the
circuit Eqs. (7) as shown in Fig. 6. Double-peaked stationary
coordinate PDF, P (y), becomes unimodal with the increase
of noise intensity. Further increase of noise gives rise to the
backward transition from monostable to bistable dynamics
with doubly peaked coordinate PDF shown in Fig. 6(a). As
for analog simulations, noise-induced transitions are well
described by the effective bifurcation parameter, μ(D), shown
in Fig. 6(b). Similar to analog experiment, the velocity
variance, σ 2

v , which determines the effective noise intensity,
shows monotonous increase with D, while the coordinate
variance possesses a minimum, reflecting the first noise-
induced transition from bimodal to unimodal structure of
the coordinate PDF [compare Figs. 5(c) and 6(c)]. Similarly,
the Rice frequency exhibits nonmonotonous dependence on
noise intensity attaining its maximum at D corresponding to
the minimal value of effective bifurcation parameter, μ(D)
[compare Figs. 5(d) and 6(d)].
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FIG. 6. Noise-induced bifurcations in numerical simulations of
Eqs. (7). (a) Normalized coordinate PDF, P (y)/Pmax vs noise
intensity. (b) Effective bifurcation parameter μ(D). Vertical dashed
lines indicate positions of two pitchfork bifurcations. (c) Variances of
coordinate (open black circles), σ 2

v , and velocity (filled red circles),
σ 2

v vs noise intensity. (d) Rice frequency, ωR , vs noise intensity. Red
circles show values numerically obtained values; solid line shows ωR

calculated from Eq. (13) with the effective potential Ueff and noise
intensity, Deff. Other parameters are: ε = 0.01,c1 = 1,c3 = 9,c5 =
22,a = 1.2,b = 100.

IV. MECHANISM OF NOISE-INDUCED TRANSITIONS

Noise-induced changes in the oscillator’s dynamics can be
understood by studying the structure of the phase space of the
corresponding deterministic system described by Eqs. (7) with
D = 0. Figure 7(a) shows two stable nodes, separated by the
saddle at the origin, and nullclines of the system. The intrinsic
feature of the system under study is an unusual structure of the
nullcline v̇ = 0. Besides the conventional N-shaped branch
passing through equilibria [inset in Fig. 7(a)], the nullcline
includes two symmetric separate closed-loop branches. Let us
consider a loop at the top left quadrant in Fig. 7(a). The top side
of the loop is attractive and the bottom side is repulsive. When
a phase trajectory approaches the loop from above, it slows
down and moves on the attractive side until it approaches the
separatrix of the saddle, and then eventually falls onto vicinity
of the saddle equilibrium at the origin. The repulsive side of
the closed-loop branch directs phase trajectories towards the
stable equilibrium. Symmetrical behavior occurs for the loop
at the right bottom quadrant. We note, that for the linear resistor
N1 the nullcline v̇ = 0 has a single N-shaped branch only, i.e.,
no closed-loop segments.

Weak noise results in conventional stochastic hopping
between two metastable states with the double-peaked PDF
[Fig. 7(b)]. Note that the probability to cross closed-loop
branches of the nullcline is rather low and so they have no
effect on the position of the PDF’s maxima. With the increase
of noise intensity the PDF P (y,v) smears vertically, i.e.,
with respect to velocity, v. Figure 7(c) indicates that phase
trajectories frequently visit closed-loop branches [areas are

FIG. 7. Mechanism of noise-induced pitchfork bifurcations. On
all panels: equilibrium points are shown by blue circles; blue dashed
line indicates the nullcline ẏ = 0; orange solid line shows the nullcline
v̇ = 0; the separatrix of the saddle at the origin is shown by blue
dotted line. (a) Deterministic dynamics of Eq. (7). Phase trajectories
started from various initial conditions are shown by black arrowed
lines. Inset shows expanded region near equilibria. (b)–(d) also show
contour maps of the stationary PDF, P (y,v), obtained numerically.
(b) D = 2 × 10−5; (c) D = 6 × 10−5; (d) D = 2.4 × 10−3. Other
parameters are: ε = 0.01,c1 = 1,c3 = 9,c5 = 22,a = 1.2,b = 100,
i.e., the same as in analog experiments.

marked by the green dashed line on Fig. 7(c)], which results
in deflection towards the origin, as described for deterministic
case on Fig. 7(a). This results in shifting of the PDF’s maxima
towards the origin. There is a critical noise intensity, which
corresponds to maximal influence of the closed-loop nullcline
branches, resulting in the PDF with single peak at the origin.
For larger values of noise intensity phase trajectories begin to
pass through the repulsive sides of the closed-loop nullcline
branches. Trajectories are then slowed down on attractive
branches of the nullcline [areas marked by violet dashed line
on Fig. 7(d)] and then deflected towards the origin. However,
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because of larger noise, phase trajectories can now overcome
the separatrix towards another stable equilibrium, rather than
fall onto the origin. As a result, the origin is visited less
frequently than symmetrical areas on the left and right of the
separatrix. In this way the central peak of the PDF becomes
divided into two and bistability is restored.

Analysis of the oscillator model has shown that S-shaped
I-V characteristic of nonlinear element N1 (Fig. 1) with fifth-
order nonlinearity in the function F (x) in Eq. (4) is necessary
for specific nullclines arrangements shown in Fig. 7(a) and so
for the observed noise-induced transitions. Addition of higher-
order nonlinearities (e.g., seventh-order term) to F (x) does not
change qualitatively the dynamics of the system.

V. CONCLUSIONS

We have developed a generic model of the bistable
oscillator with nonlinear dissipation. Using analog circuit ex-
periment and numerical simulation we showed that this system
demonstrates multiple noise-induced transitions, registered as
changes of extrema in the stationary PDF. Using the effective
potential approach we showed that the observed noise-induced

transitions are described by a normal form of pitchfork
bifurcation. We note that qualitative structural changes in the
stationary PDF are not pure noise-induced transitions [19],
as the bistability is inherent for the model. Nevertheless, the
observed transitions from bimodal and unimodal and back
to bimodal cannot be realized in the system by changing
a single parameter of nonlinear or linear components of
the circuit. Thus, noise intensity is an independent control
parameter, which determines the qualitative nature of the
system’s dynamics. We provided a clear explanation of the
mechanism of the effect based on partition of the phase
space of the system by nullclines and manifolds of the saddle
equilibrium.
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