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Very recent experimental work has demonstrated the existence of Kelvin waves along quantized vortex filaments
in superfluid helium. The possible configurations and motions of such filaments is of great physical interest, and
Svistunov previously obtained a Hamiltonian formulation for the dynamics of quantum vortex filaments in the
low-temperature limit under the assumption that the vortex filament is essentially aligned along one axis, resulting
in a two-dimensional (2D) problem. It is standard to approximate the dynamics of thin filaments by employing the
local induction approximation (LIA), and we show that by putting the two-dimensional LIA into correspondence
with the first equation in the integrable Wadati-Konno-Ichikawa-Schimizu (WKIS) hierarchy, we immediately
obtain solutions to the two-dimensional LIA, such as helix, planar, and self-similar solutions. These solutions
are obtained in a rather direct manner from the WKIS equation and then mapped into the 2D-LIA framework.
Furthermore, the approach can be coupled to existing inverse scattering transform results from the literature in
order to obtain solitary wave solutions including the analog of the Hasimoto one-soliton for the 2D-LIA. One large
benefit of the approach is that the correspondence between the 2D-LIA and the WKIS allows us to systematically
obtain vortex filament solutions directly in the Cartesian coordinate frame without the need to solve back from
curvature and torsion. Implications of the results for the physics of experimentally studied solitary waves, Kelvin
waves, and postvortex reconnection events are mentioned.
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I. INTRODUCTION

The study of vortex filament dynamics in quantum fluids
has been of great interest in recent times, as quantized vortex
filaments have been experimentally observed in superfluid
helium. Due to the low viscosity of superfluid helium, such
quantized vortex filaments can persist at larger time scales
than their classical vortex filament counterparts, making such
filament solutions realizable in experiments. Furthermore,
vortex filament tangles and vortex reconnection events have
been seen as harbingers of quantum turbulence, and indeed
such vortex dynamics have been shown to degenerate into
turbulence in a number of numerical simulations. Therefore,
the construction of vortex filament solutions in the low-
temperature regime is of great interest both physically and
mathematically.

In this paper, we shall employ an integrable systems
approach in order to study the dynamics of vortex filaments
under a localized form of a specific model derived by
Svistunov [1,2]. For many scenarios, particularly when the
vortex filaments are not too tightly coiled or do not self-
intersect, such local models give us an accurate understanding
of the temporal dynamics of the vortex filaments. Physically,
the present results allow us to obtain physically interesting
solutions for the dynamics of vortex filaments in the very
low temperature regime of superfluid helium. As we shall
discuss later, a number of the analytical solutions obtained
here correspond nicely to prior numerical simulations or
experimental work. Yet, by virtue of studying these dynamics
through an integrable systems approach, we obtain a coherent
and organized treatment of such solutions. Mathematically,
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the results demonstrate the utility of the map between the
two-dimensional local induction approximation (2D-LIA) and
the first equation in the Wadati-Konno-Ichikawa-Schimizu
(WKIS) hierarchy. Furthermore, and somewhat importantly,
the 2D-LIA can be used to obtain vortex filament solutions
in the Cartesian coordinate frame directly. In contrast, using
the connection between the nonlinear Schrödinger equation
(NLS) and standard LIA, one would obtain solutions in terms
of the curvature and torsion of the vortex filament. Then one
would need to integrate the Frenet-Serret formulas in order
to recover the tangent vector to the filament. This tangent
vector would then need to be integrated in order to recover the
explicit Cartesian representation for the vortex filament curve.
Therefore, the present approach is more computationally
efficient for those filaments we construct. As such, while
connections among the NLS, WKIS, and standard LIA have
been considered before, the present connection to the 2D-LIA
allows us to obtain Cartesian representations of the vortex
filaments in a direct manner worth exploring.

To begin with, recall that in the very low temperature
regime, the self-induced dynamics of a thin vortex filament
are given by the Biot-Savart formulation [1–3],

rt = �

4π

∫
(s − r) × ds

|s − r|3 . (1)

The integration is over the length of the filament r, and �

represents the strength or circulation of the filament. The
nonlocal dynamics are often approximated by the LIA, which
gives [4,5]

rt = γ κt × n, (2)

where κ is curvature, t is the tangent vector to the curve, n
is the normal vector to the curve, and γ = �

4π
ln ( �

a
), where
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a > 0 denotes the vortex filament radius and � denotes the
inter-vortex distance. This formulation introduces a cutoff at
a < |r − s| to avoid the singularity in (1). The well-known
Hasimoto transformation [6] can be used to map (2) directly
into the cubic NLS equation, with the resulting complex scalar
potential encoding the curvature and torsion of the filament.
This approach has been used in a number of works, where
one obtains a particular solution to the cubic NLS equation
and inverts the Hasimoto map in order to obtain a vortex
filament solution to the LIA. Solutions such as one-solitons [6],
N -solitons [7], breathers [8,9], multiple breathers [10], and
torus knots [11] have been found via such an approach. Some
of these theoretical results were even demonstrated to be
experimentally relevant [12–14]. Furthermore, the relation
between an extended Wadati-Konno-Ichikawa (WKI) model
(which includes a sign term) and the LIA has been ex-
plored [15], and both one-soliton [16,17] and multisoliton [18]
solutions have been obtained. Therefore, there is an obvious
connection among the LIA (2), the cubic NLS, and members
of the integrable WKIS hierarchy. This motivates us to obtain
similar results for the so-called 2D-LIA [1] derived from a
2D-Biot-Savart integral by Ref. [2]. Since solutions are known
already for the standard 3D form of the LIA, one may wonder
why we wish to directly consider solutions of this 2D-LIA.
One primary benefit is that the 2D-LIA employed is derived
in Cartesian coordinates, and hence once we have a solution,
we immediately know the vortex filament curve. Meanwhile,
for the solutions resulting from the connection between the 3D
LIA and the cubic NLS equation, note that the solutions are
obtained for the curvature and torsion of the filament curve
and given in terms of a parametrization of arclength. While
these quantities are used for understanding qualitative features
of the solution curves, one must then invert the FrenetSerret
formulas in order to recover the actual vortex filament curve
in Euclidean space. Therefore, the solutions under 2D-LIA
allow us to directly see the filament curves, provided that
certain conditions hold which permit uniquely defined filament
curves. We outline specific mathematical requirements in the
next section.

The 2D-LIA can be derived from Svistunov’s Hamiltonian
formulation [2] for the dynamics of a thin vortex filament
in the very cold superfluid limit, and this was done in [1].
The benefit of this model is that it permits one to recover the
extrinsic form of the vortex filament in Cartesian coordinates,
assuming that the vortex filament is aligned along one axis
and is of sufficiently bounded variation. The drawback is
that, by expressing the vortex filament in extrinsic form, the
mathematical model is more complicated than the standard
LIA in the intrinsic space (where the solution is expressed
in terms of curvature and torsion). The goal of the present
paper will be to obtain a result similar to that of the Hasimoto
transformation and then exploit that transformation in order
to recover vortex filament solutions. While the standard LIA
can be put into correspondence with the cubic NLS equation
and also with the extended WKIS model, we show that the
2D-LIA can be put into correspondence with the first equation
of the integrable WKIS hierarchy [19,20]. Therefore, while
the 2D-LIA is derived differently than the standard LIA, both
equations are integrable and one may search for their respective
vortex filament solutions by solving simpler integrable models.

In Sec. II, we shall follow Svistunov’s Hamiltonian formu-
lation for the dynamics of a thin vortex filament in the very cold
superfluid limit in which mutual friction effects are negligible
and arrive at the 2D-LIA derived by Ref. [1]. However, we then
show that the resulting 2D-LIA can be put into correspondence
with one of the WKIS equations, in particular, the first equation
of the WKIS hierarchy. The utility of this approach lies in the
fact that the WKIS model is simpler than the 2D-LIA (since
the 2D-LIA involves derivatives of the unknown potential
function in a nonlinear term), while both equations are still
far more complicated than the cubic NLS. Since solutions
of the WKIS are known via the inverse scattering transform,
this effectively allows us to use such results to recover vortex
filament solutions to the 2D-LIA. In Sec. III, we give the
most general form of stationary solutions for the WKIS model
before transforming these into solutions of the 2D-LIA. These
solutions are related back to those of Refs. [21,22] which
were obtained directly from the 2D-LIA. We find that the
solutions more readily come out of the WKIS framework.
As special cases, one can recover planar and helical filament
structures. In Sec. IV, we obtain self-similar solutions to the
WKIS model (which have not been previously considered
in the literature) and we use these to construct self-similar
solutions to the 2D-LIA. The solutions are in agreement with
those discussed previously in Ref. [22]. In Sec. V, we exploit
this correspondence between the WKIS system and 2D-LIA
to obtain a soliton and solitary wave solutions to the 2D-LIA.
Obtaining such solutions to the 2D-LIA has the benefit of
providing a soliton in the natural Cartesian coordinates, while
often such solitons are constructed in the curvature-torsion
coordinates by use of the Hasimoto transformation between the
cubic NLS and the standard LIA. As pointed out in Ref. [22],
the most general purely traveling-wave solution under LIA will
be a helical filament. Indeed, for the solitary waves, we find that
there are two distinct wave speeds: one for the amplitude of the
deflections along the filament (the wave envelope) and one that
is involved with the phase of the solution. The solitary waves
include two shape parameters which will alter the structure of
the resulting filaments. We discuss the results and make some
concluding remarks in Sec. VI.

As we progress, we relate obtained solutions to various
physical scenarios of interest. For instance, the solutions of
Sec. V allow us to construct the one-soliton in the Cartesian
representation under the 2D-LIA. Such solutions were ob-
served experimentally in the 1980s. Meanwhile, the solutions
of Sec. IV agree with what is observed in postreconnection
events, where after vortex reconnection a sharp kink is formed
and then gradually smoothed in time as Kelvin waves radiate
away from the kink. Kelvin waves generated in this manner
were also observed very recently in experiments in superfluid
helium, and our analytical solutions are in good qualitative
agreement with the experimental observations.

II. FORMULATION OF THE PROBLEM
AND CORRESPONDENCE BETWEEN THE 2D-LIA

AND THE WKIS MODELS

Svistunov [2] studied vortex filament dynamics for a low-
temperature superfluid in the Cartesian form, which allows
one to immediately see the geometry of the line filaments.
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In contrast, the curvature-torsion formulation (which is what
is used to map the LIA into the cubic NLS equation)
requires extra effort in order to recover the Cartesian so-
lutions. In particular, Svistunov considered the Hamiltonian
formulation of the Biot-Savart dynamics (1) in Cartesian
coordinates. Writing the vortex filament curve in the form
r(x,t) = (x,y(x,t),z(x,t)) and introducing a complex scalar
function w(x,t) = y(x,t) + iz(x,t), Svistunov obtained the
Hamiltonian system

iwt = δH [w]

δw∗ , (3)

where

H [w] = �

4π

∫
1 + Re(w∗

x(x1,t)wx(x2,t))√
(x1 − x2)2 + |w(x1,t) − w(x2,t)|2

dx1dx2

(4)
and the star denotes complex conjugation. Under the assump-
tion that the vortex filament r is of sufficient bounded variation,
that is,

|w(x1,t) − w(x2,t)|/|x1 − x2| � 1, (5)

one can apply the LIA procedure to the Hamiltonian (4),
obtaining the local approximation

Ĥ [w] = 2
�

4π
ln

(
�

a

) ∫ √
1 + |wx(x,t)|2dx. (6)

If we scale time to remove the parameters multiplying the
integral, then we obtain the Hamiltonian formulation of the
2D-LIA,

iwt = δĤ [w]

δw∗ . (7)

The equation of motion for (7) is then

iwt +
(

wx√
1 + |wx |2

)
x

= 0, (8)

and we shall refer to this as the 2D-LIA after the paper in
which it was derived [1]. This equation has been studied in a
number of contexts, and once any such solution is found we
directly have a solution for r = (x,Re(w),Im(w)). Equation (8)
is a scalar partial differential equation (PDE) which is of a
more complicated form than the cubic NLS, hence solving this
equation directly can be challenging for all but the simplest
solutions. Still, some general solutions for purely rotating
filaments [21] (where translation along the filament is zero)
or translating waves along filaments [22] have been discussed.

The primary focus of this paper is to bring to light a
relation between (8) and the integrable WKIS model studied
in Ref. [20]. Assuming w is sufficiently regular, then we can
differentiate (8) with respect to the coordinate x, obtaining

iwxt +
(

wx√
1 + |wx |2

)
xx

= 0. (9)

Let us transform the dependent variable by w(x,t) =∫ x

0 u(σ,t)dσ . Then (9) takes the form

iut +
(

u√
1 + |u|2

)
xx

= 0, (10)

which is exactly the WKIS model studied in Ref. [20] (in
particular, this is the first equation in the WKIS hierarchy). The
inverse scattering problem was discussed, and soliton solutions
have been obtained. It has been shown that a generalized
version of Hirota’s equation with linear inhomogeneities is
equivalent to a generalized continuum Heisenberg ferromag-
netic spin chain equation as well as to a generalized WKIS-type
equation [23]. The equivalence of generalized versions of these
equations through a moving helical space curve formalism and
stereographic representation was demonstrated in Ref. [24].
The scattering problem was also considered, and it was
shown that an infinite number of constants of motion can
exist for these systems, demonstrating the integrability of
such systems. The spectral problem of the WKIS equation
and certain nonlinear evolution equations related to it, the
Bäcklund transformations, and the completeness relations of
the eigenfunctions of the relevant generating operators were all
studied in Ref. [25]. The elementary Bäcklund transformations
were found and it was shown that they can be cast into a
form similar to that found by Darboux for the Schrödinger
spectral problem. The nonlinear superposition formulas are
also explicitly written.

Though Eq. (10) is more complicated than the NLS or
derivative-NLS equations, one can still obtain a variety of
dynamics. Therefore, integrating known solutions of (10),
we can immediately recover vortex filament solutions to the
2D-LIA (8). This is useful, as it spares one from solving (8)
directly in those cases where a solution to (10) is already
known. In this way, every solution to (10) yields a solution
to (8). (Although, physically, we would want to ensure that
such solutions are sufficiently well behaved in order to consider
them candidates for vortex filament solutions.) With this in
mind, we demonstrate the approach by using four classes of
solutions to (10) in order to construct vortex filament solutions.
In each case, we obtain solutions observed numerically and
experimentally in the literature.

We should note that the condition (5) is more often
approximated by |wx | � 1, which is equivalent for most vortex
structures. This condition is equivalent to saying that we expect
small perturbations along what are locally line filaments. In
order to get a feel for the types of solutions possible under the
WKIS framework which satisfy this boundedness condition,
let us assume that wx = O(δ) for some small parameter
0 < δ � 1. Then we may write u = wx = O(δ). From the
form of (10), it makes sense to consider a solution

u(x,t) = u1δ + u2δ
2 + u3δ

3 + O(δ4). (11)

Placing (11) into (10), noting that |u|2 = |u1|2δ2 + O(δ3), and
matching powers of the small parameter δ, we obtain

iu1t + u1xx = 0, (12)

iu2t + u2xx = 0, (13)

iu3t + u3xx = 1
2 (|u1|2u1)x. (14)

If we assume that any initial or boundary condition is at order
O(δ), then we may neglect u2 since the homogeneous solution
is zero. Then we obtain u(x,t) = u1(x,t)δ + u3(x,t)δ3 +
O(δ4), where u1(x,t) is simply a solution to the linear
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Schrödinger equation for a free particle and u3(x,t) is the
next correction which involves solving a linear Schrödinger
equation for a free particle with an external force term. Note
that the force term in (14) will depend on the solution to (12)
and that both (12) and (14) have the same homogeneous
solution set. Therefore, one may obtain resonances in the
solution of (14) which can cause the solution u3(x,t) to grow
without bound, violating the requirement that u3 = O(1).
Therefore, care must be taken when we are searching for
solution which obey the appropriate boundedness conditions.

Once a solution u(x,t) is obtained, we integrate over x

in order to recover a solution to the 2D-LIA, which in turn
is used in constructing a vortex filament solution by use of
r(x,t) = (x,Re[w(x,t)],Im[w(x,t)]). Since a solution of the
2D-LIA must be of bounded variation, it suffices to consider
small |wx | = |u|, suggesting that small-amplitude solutions
u will be the most useful to us. In what follows, we exploit
the connection between the 2D-LIA and the WKIS equation
to construct general stationary solutions (modeling various
rotating vortex filament), similarity solutions (modeling vortex
kinks), and solitons (modeling solitary pulses or waves along
vortex filaments). Some of these solutions have been found in
other, more involved, ways under the 2D-LIA; however, using
the WKIS formulation, we obtain these solutions rather easily
and directly in Cartesian coordinates. Other solutions, such
as the more generalized rotating filaments, were previously
obtained approximately or numerically.

III. STATIONARY STATES FOR THE WKIS EQUATION
AND CORRESPONDING VORTEX FILAMENTS

We now present stationary states (solutions with time-
constant modulus). While helical and planar solutions are
special cases and have been shown to exist in a number of
contexts, this derivation of general stationary states is new and
allows us to say much about these general stationary solutions
analytically rather than just numerically.

In order to more succinctly discuss the stationary states to
the WKIS equation (10), let us consider the transformation

q = u√
1 + |u|2

, (15)

which puts Eq. (10) into the form

i

(
q√

1 − |q|2
)

t

+ qxx = 0. (16)

It makes sense to search for a time-constant modulus solution,
so we consider q(x,t) = 	(x) exp(iτ (x,t)). Since the phase
term τ now depends on x, the stationary solutions are, in
general, complex valued. This results in nonplanar dynamics.
The transformation q(x,t) = 	(x) exp(iτ (x,t)) puts Eq. (16)
into the form

2	xτx + 	τxx = 0 and 	xx − 	τt√
1 − 	2

− 	τ 2
x = 0.

(17)
The first equation can be integrated exactly, giving τx =
C0(t)	−2, for C0(t) > 0. The second equation then reads

	xx − 	τt√
1 − 	2

− C2
0 (t)

	3
= 0. (18)

Now 	 is independent of time, so in order for Eq. (18) to
be consistent, we require τt = ω, a constant, and C0(t) = C1,
another constant. With this, the phase τ is determined by 	

like

τ (x,t) = τ0 − ωt + C2
1

∫ x

0

dσ

	(σ )2
. (19)

Meanwhile, the function 	 is governed by the second-order
ordinary differential equation (ODE):

	xx + ω	√
1 − 	2

− C2
1

	3
= 0. (20)

Multiplying Eq. (20) by 2	x and integrating, we obtain

	x
2 − 2ω

√
1 − 	2 + C2

1

	2
= C2, (21)

where C2 is another constant of integration. Equation (21) is
a three-parameter ODE and can admit a variety of dynamics.
Due to the form of τ , we shall seek positive solutions 	.
Furthermore, to ensure real-valued solutions, we shall search
for dynamics satisfying 0 < 	(x) < 1 for all x. Transforming
these solutions into vortex filament solutions to the 2D-LIA,
we should have

y(x,t)=
∫ x

0

	(σ )√
1 − 	(σ )2

cos

[
τ0−ωt+C2

1

∫ σ

0

ds

	(s)2

]
dσ,

(22)

z(x,t) =
∫ x

0

	(σ )√
1 − 	(σ )2

sin

[
τ0 − ωt + C2

1

∫ σ

0

ds

	(s)2

]
dσ.

(23)

While (21) can admit a wide variety of dynamics, for the
sake of demonstration we shall seek a particular solution.
If we desire an oscillating solution of the form 	(x) =
ζ ∗[1 + δζ (x) + O(δ2)] for small 0 < δ � 1 and where ζ ∗ is
an equilibrium point 0 < ζ ∗ < 1 [which makes sense in light
of the 0 < 	(x) < 1 condition, hence we seek a solution with
small oscillations around an equilibrium point], the we can then
use (20) to obtain this approximate solution. The equilibrium
point ζ ∗ satisfies the condition

ωζ ∗√
1 − ζ ∗2

− C2
1

ζ ∗3 = 0. (24)

The existence of such a 0 < ζ ∗ < 1 to Eq. (24) is equivalent to
the existence of a solution 0 < ρ = ζ ∗2 < 1 to the polynomial
equation

ω2

C4
1

ρ4 + ρ − 1 = 0. (25)

If we assume that ρ = ζ ∗2 is a solution, then we assume
this polynomial has a linear factor and write the equivalent
polynomial

ω2

C4
1

(ρ − ζ ∗2)

(
ρ3 + ζ ∗2

ρ2 + ζ ∗4
ρ + ζ ∗6 + C4

1

ω2

)

= ω2

C4
1

ρ4 + ρ − ω2

C4
1

− ζ ∗2
, (26)
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and these polynomials are equivalent provided

ω2

C4
1

+ ζ ∗2 = 1. (27)

Thus, the polynomial equation has the root ρ = ζ ∗2 such that
ζ ∗2 < 1 provided

ζ ∗ =
√

1 − ω2

C4
1

. (28)

In turn, this implies that there exists an equilibrium solution for
Eq. (20) provided that C2

1 > |ω|. The linear equation governing
ζ (x) then becomes

ζxx + �2ζ = 0, (29)

where

�2 =
(

1 − ω2

C4
1

)
C6

1

ω2
+ C2

1 + 3C2
1

(
1 − ω2

C4
1

)−2

> 0. (30)

This then gives us 	(x) = ζ ∗[1 + δ cos(�x)] + O(δ2). In-
cluding order δ terms, we then have the solution

y(x,t) = C2
1

ω

√
1−ω2

C4
1

∫ x

0

[
1+δC4

1

ω2
cos(�σ )

]
cos

×
{

τ0−ωt+C2
1

(
1−ω2

C4
1

)−1[
σ−2δ

�
sin(�σ )

]}
dσ,

(31)

z(x,t) = C2
1

ω

√
1−ω2

C4
1

∫ x

0

[
1+δC4

1

ω2
cos(�σ )

]
sin

×
{

τ0−ωt+C2
1

(
1−ω2

C4
1

)−1[
σ−2δ

�
sin(�σ )

]}
dσ.

(32)

When δ → 0, we recover a helical vortex filament solution.
Therefore, we can see this particular solution as a type of
perturbation of the helical filament, a wavy helix. For other
assumptions on the stationary solution governed by (20), other
solutions would be possible. However, we have demonstrated
that multiple types of stationary states (other than just planar
and helix solutions) can be obtained from the WKIS equation,
and these various solutions all correspond to different vortex
filament structures. For small δ, we have therefore obtained
a nice analytical approximation to the various generalized
stationary structures studied in Refs. [21,22], and these
solution forms are perhaps a bit more succinct. We remark that
the planar filament case is not exactly recovered from these
solutions, since we would need C1 = 0 for that case. We would
have needed to set C1 = 0 earlier in the calculations in order to
recover that case. We shall directly consider that case, below,
as it is worth working through in the WKIS setting. We will
also briefly show how we can recover the standard helical case
directly, without any small-amplitude approximations needed.

In Fig. 1 we give plots for various values of the parameters
in (31) and (32). The solutions will take the form of deformed
helices. To better view the solutions, we take a cross section

in the x-y plane, which better shows the features of the
solutions than does the three-dimensional plot. We then give a
three-dimensional plot of one of the representative solutions in
Fig. 2. Note that the relatively simple analytical formulas allow
us to recover filament curves sharing properties of the more
complicated solutions in Ref. [21]. While some of the filament
curves appear jagged or to have sharp kinks, the structures are
actually smooth upon close inspection [as would be expected
from the analytical approximations given in (31) and (32)].
Further, since they are coming from (31) and (32), these
solutions are of sufficient bounded variation to be considered
relevant under the restrictions of the 2D-LIA.

A. The planar vortex filament reduction

There exist real-valued stationary solutions to the WKIS
equation, as discussed in Refs. [26,27]. To find such solutions,
we exploit the U (1) symmetry of the system and set u(x,t) =
U (x)e−iωt . For our purposes, we shall take U (x) to be a real-
valued function, as this will eventually give a planar filament.

Under the transformation of variable U (x) = φ(x)[1 −
φ(x)2]−1/2 (see Ref. [27] for details) we have

φ′′ + ωφ√
1 − φ2

= 0. (33)

Assuming φ(0) = φ0 and φ′(0) = 0, we obtain

φ′2 = 2ω
(√

1 − φ2 −
√

1 − φ2
0

)
, (34)

which gives the implicit representation

√
2ωx =

∫ φ(x)

φ0

dν√√
1 − ν2 −

√
1 − φ2

0

. (35)

The corresponding planar solution for the 2D-LIA is then
immediately found to be

w(x,t) = +e−iωt

∫ x

0
U (σ )dσ = e−iωt

∫ x

0

φ(σ )dσ√
1−φ(σ )2

= −e−iωt

∫ x

0

φ′′(σ )

ω
dσ = − 1

ω
e−iωtφ′(x). (36)

Hence, by solving the differential equation (34), we im-
mediately obtain the stationary solution desired. The pla-
nar solution can then be recovered by r(x,t) = (x, −
ω−1φ′(x) cos(ωt),ω−1φ′(x) sin(ωt)). We plot a representative
planar vortex filament solution in Fig. 3.

Planar vortex filaments have previously been studied in
other settings, including for the standard LIA (2) and other
related models [4,28–32]. Purely rotating filaments were
studied for the 2D-LIA in Ref. [21], and these hold the planar
filaments as special cases. Regarding the 2D-LIA, such planar
filament solutions were constructed using a direct approach.
However, as we have seen here, one may also obtain such
solutions through the correspondence with the WKIS model.
Naturally, the solutions we obtain here agree with those
obtained by other approaches in the literature.
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(a) (b) (c)

(d) (e) (f)

FIG. 1. Plots of various generalized stationary solutions given by (31) and (32). Here we plot cross sections of the vortex filament solutions in
the x-y plane. We take τ0 = 0, and vary the small parameter δ and the shape parameter ω, with values (a) δ = 0,ω = 0.2; (b) δ = 0.03,ω = 0.2;
(c) δ = 0.1,ω = 0.2; (d) δ = 0.1,ω = 0.3; (e) δ = 0.1,ω = 0.8; and (f) δ = 0.1,ω = 0.9. We fix C1 = 1, as only the relative values of C1 and
ω will matter. We need C1 >

√|ω| > 0, which is why 0 < ω < 1 in the various plots provided. The solutions are plotted for t = 0, and the
solutions maintain their form and rotate in time, so this choice is sufficiently general in order to view the filament structure. Corresponding
Cartesian three-dimensional representations of the vortex filament curves are given in Fig. 2. Note that panel (a) corresponds to a regular helical
filament in the limit δ = 0, while the others correspond to generalized, less regular forms.

In the warmer temperature regime, mutual friction and
normal fluid effects will matter, and such effects are taken into
account in the Schwarz model [33]. It was shown in Ref. [34]
that purely planar filaments should be expected in the classical
LIA, or in the zero-temperature limit for the quantum model,
while they will not exist in the presence of mutual friction and
normal fluid flow due to the induced torsion due to these small
terms. The result will be a twisted planar filament. In other
words, if we begin with a planar filament as the initial data at
time t = 0, then the time evolution of this initial condition will
result in a twisted form of this initial data which no longer is
confined to a plane.

B. The helical filament reduction

Let us show that planar-wave solutions of the WKIS
model yield helical vortex filaments under the 2D-LIA.
Assume u(x,t) = a exp(i{kx − �t + j}), where a,k,�,j are
constants. Placing this into (10), we obtain the dispersion
relation � = k2/

√
1 + a2, which is exactly the dispersion

relation found in the literature for the direct 2D-LIA problem.

A solution w to the 2D-LIA (8) then takes the form

w(x,t) = −i
a

k
exp

(
i

{
kx − k2

√
1 + a2

t + j

})

= A exp

(
i

{
kx − k2

√
1 + A2k2

t + ĵ

})
. (37)

Pick parameters A = a/k and ĵ = j − π
2 . Then, the helical

filament has the structure

r(x,t) =
(

x,A cos

(
kx − k2

√
1 + A2k2

t + ĵ

)
,

A sin

(
kx − k2

√
1 + A2k2

t + ĵ

))
. (38)

These are exactly the solutions one obtains directly [35], which
should not be surprising. In the very low temperature limit, the
helical filaments are eternal. However, in the warmer superfluid
regime (say, temperatures near 1 K), mutual friction effects
and the normal fluid flow can amplify Kelvin waves along line
filaments (realized mathematically as helical filaments) due
to the Donnelly-Glaberson instability [36–38]. Therefore, the
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(a) (b) (c)

(d) (e) (f)

FIG. 2. Three-dimensional Cartesian representations of the vortex filament solutions for which we considered cross sections in Fig. 1. We
take τ0 = 0 and vary the small parameter δ and the shape parameter ω, with parameters fixed as (a) δ = 0,ω = 0.2; (b) δ = 0.03,ω = 0.2;
(c) δ = 0.1,ω = 0.2; (d) δ = 0.1,ω = 0.3; (e) δ = 0.1,ω = 0.8; and (f) δ = 0.1,ω = 0.9. We fix C1 = 1, as only the relative values of C1 and
ω will matter. We need C1 >

√|ω| > 0, which is why 0 < ω < 1 in the various plots provided. The solutions are plotted for t = 0, and the
solutions maintain their form and rotate in time, so this choice is sufficiently general in order to view the filament structure. Note that panel (a)
corresponds to a regular helical filament in the limit δ = 0, while the others correspond to generalized, less regular forms. While some of the
filament curves may appear to be jagged, if one zooms in close enough, then all structures are actually smooth.

helical filaments can decay or amplify when mutual friction
and normal fluid velocity are included, such as in the Schwarz
model [33]. The nonlinear dynamics of such Kelvin waves
under the Schwarz model were recently studied in Ref. [39],
where is was shown that the rate of amplification or decay
of Kelvin waves along these quantum vortex filaments will
depend strongly on the mutual friction parameter, with the rate
becoming larger as the superfluid warms. Helical filaments in
both classical and quantum fluids continue to be an active area
of research interest [40–43].

IV. SIMILARITY SOLUTIONS AND VORTEX KINKS

Self-similar solutions have been studied in different but
related models for vortex filament dynamics. Therefore, we
now show that self-similar solutions are possible under the
2D-LIA by means of the WKIS model. Note that the author has

not seen a treatment of self-similar solutions for any member
of the WKIS hierarchy, and hence such solutions may be of
use for other applications relating to the WKIS hierarchy.

For Eq. (10), we assume u(x,t) = f (χ ) where χ = x/
√

2t ,
which gives

−iχ
df

dχ
+ d2

dχ2

(
f√

1 + |f |2
)

= 0. (39)

One then may recover the self-similar solution to the 2D-LIA
via

w(x,t) =
∫ x

0
u(q,t)dq =

∫ x

0
f

(
q√
2t

)
dχdq. (40)

There is no exact solution to Eq. (39) in general, dueowing
to the nonlinearity. However, if we assume a small amplitude
solution f (χ ) = βF (χ ) for small parameter β, corresponding
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(a) (b)

FIG. 3. (a) Plot of a planar filament solution r(x,t) = (x,−ω−1φ′(x) cos(ωt),ω−1φ′(x) sin(ωt)) in space when ω = 1 and φ0 = 0.1. A value
of t = 2 is used for the time variable, but motion of the filament is that of a pure rotation around the x axis with period 2π

ω
. The entire spatial

structure of the filament maintains its form under this periodic motion. (b) Plots of the function ω−1φ′(x) used to generate the planar vortex
filaments for various values of the spectral parameter ω and initial condition φ(0) = φ0.

to small deformations of the vortex line, then we arrive at the
linearized equation

−iχ
dF

dχ
+ d2F

dχ2
= O(β2). (41)

This gives a solution f (χ ) = β
∫ χ

0 exp ( i
2σ 2)dσ + O(β3).

Recovering

w(x,t) = β

∫ x

0

∫ q/
√

2t

0
exp

(
i

2
σ 2

)
dσdq + O(β3), (42)

we obtain the vector representation for the vortex filament as

r(x,t) =
(

x,β

∫ x

0

∫ q/
√

2t

0
cos

(
1

2
σ 2

)
dσdq

+O(β3),β
∫ x

0

∫ q/
√

2t

0
sin

(
1

2
σ 2

)
dσdq + O(β3)

)
.

(43)

A. Boundedness of similarity solutions in variation

One may show that there exist positive constants C1 and C2

such that the solution (43) must remain bounded like |r(x,t)| <

C1|x| + C2 for all t � 0. Similarly to the arguments presented
in Ref. [22] for the boundedness for solutions to the 2D-LIA,
for small-enough C1 the solution (43) will be of sufficient
bounded variation to justify the application of the 2D-LIA.
Therefore, while there can be a sharp kink at the origin, for
any positive t > 0, the filament curves will be of bounded
variation.

More formally, note that

wx = β

∫ x/
√

2t

0
exp

(
i

2
σ 2

)
dσ, (44)

hence

|wx | = |β|
∣∣∣∣∣
∫ x/

√
2t

0

{
cos

(
1

2
σ 2

)
+ i sin

(
1

2
σ 2

)}
dσ

∣∣∣∣∣
= √

π |β|
∣∣∣∣FresnelC

(
x√
2πt

)
+ iFresnelS

(
x√
2πt

)∣∣∣∣
= √

π |β|
√

FresnelC

(
x√
2πt

)2

+ FresnelS

(
x√
2πt

)2

< 1.69|β|.
(45)

Therefore,

lim
x2→x

|w(x,t) − w(x2,t)|
|x − x2| = |wx | < 1.69|β|, (46)

so we need |β| � 1 in order for the vortex filament curve
to be of sufficient bounded variation. Then, the assumption
that f (χ ) = βF (χ ) for |β| � 1 made above is completely
reasonable. From the form of (43) we then have that

|r(x,t)| < |x| + 1.69|β||x| + C2 < C1|x| + C2, (47)

if we pick C1 > 1 + 1.69|β|. Therefore, the self-similar
solution (43) does indeed obey a bound of the form |r(x,t)| <

C1|x| + C2 for all t � 0.
The above derivation shows that solutions are of bounded

variation in the weak sense, that is, |wx | � 1. In order to show
that these solutions are of bounded variation in the strong sense
of (5), observe that∣∣∣∣w(x1,t) − w(x2,t)

x1 − x2

∣∣∣∣ =
∣∣ ∫ x1

x2
f

(
q√
2t

)
dq

∣∣
|x1 − x2|

=
∣∣ ∫ x1

x2

∫ q/
√

2t

0

{
β exp

(
i
2σ 2

)
dσ + O(β3)

}
dq

∣∣
|x1 − x2|
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�
∣∣ ∫ x1

x2
|1.69β + O(β3)|dq

∣∣
|x1 − x2|

� |1.69β||x1 − x2|
|x1 − x2| + O(β3)

= 1.69|β| + O(β3). (48)

As such, we have shown that the approximation to the
similarity solution will satisfy∣∣∣∣w(x1,t) − w(x2,t)

x1 − x2

∣∣∣∣ � 1 (49)

for small |β| � 1, and hence it satisfies the strong form of the
bounded variation restriction given in (5).

B. Behavior of similarity solutions

We provide a plot of self-similar waves along a vortex
filament in Fig. 4. In Fig. 4(a) we plot the analytical
approximation corresponding to (43). Meanwhile, in Fig. 4(b)
we plot the numerical solution for the exact problem (39).
There is strong agreement between analytical approximations
and the numerical solutions when the amplitude of the waves
along the V-shaped filaments is small. This small amplitude
regime is consistent with the requirement that the vortex
filament curves be of bounded variation.

These kinds of solutions have been observed in the
literature for vortex filaments in various physical scenarios
through experiments, numerical simulations, and theoretical
studies. Theoretical and analytical studies of self-similar
vortex filament dynamics in superfluids demonstrate that a
wide variety of behaviors are possible [44–46], including the
behaviors displayed here in the very low temperature limit.
More mathematical papers have considered the existence of
self-similar structures for the LIA and related problems (such
as the relevant cubic NLS dynamics), see Refs. [47–50].

Interestingly, the solutions appear quite similar to postre-
connection events. In such events, two vortex filaments swap
tails, resulting in two new V-shaped filaments. This process is
necessarily discontinuous at the time of the filament-filament
intersection. If the reconnection event occurs at time t = 0,
then we can view t > 0 dynamics as the postreconnection
time evolution of the newly formed filament. At the moment
of reconnection, the filament would take the form of a V with
a sharp kink at the origin (the curve would fail to have a well-
defined derivative at x = 0, which we take to be the location
of the kink). Then, as time increases, the sharp kink would
smooth, resulting in a smooth vortex filament. This is exactly
what we see for t > 0, and hence the self-similar solutions
shown here are reasonable approximations to postreconnection
events. At very small values of time, there is very large
curvature at the origin, and this curvature is transported along
the vortex filament curve, resulting in a smoothing of the kink,
as best seen in Fig. 4(b).

This type of reconnection scenario was theoretically con-
sidered in Ref. [51]. However, rather recently there were
experimental results [52] which showed that Kelvin waves
radiate away from the kinks formed after reconnection events.
That is to say, the V-shaped filaments have Kelvin waves
which propagate outward from the kink along the two line

segments that make up the vortex filament. These experimental
results are in complete agreement with the self-similar vortex
filament dynamics we obtain above. A sharp vortex kink exists
at time t = 0, and this kink gradually smooths as Kelvin waves
radiate away from it. This is precisely the time evolution
observed in Fig. 4. Hence, the self-similar solutions we obtain
are in nice qualitative agreement with the dynamics observed
experimentally in Ref. [52].

In addition to the interesting vortex filament dynamics we
discuss above, the results here are also interesting as they
are the first attempt at a study of the self-similar dynamics
arising from the WKIS equations. Indeed, the author is not
aware of any other studies regarding self-similarity within
the framework of the WKIS hierarchy. However, due to the
relations between some members of this integrable hierarchy
and other, more well-known integrable systems, the existence
of self-similarity in these equations should be anticipated.
The form of self-similarity differs from what one expects
from equations such as the diffusion equation or the cubic
NLS equation: Often, there is a coefficient of t−1/2 or t1/2

multiplying the unknown function, yet the WKIS equations
only involve the time variable within the similarity variable,
preventing any blow-up or singularity provided that the
similarity function remains bounded.

V. SOLITARY WAVES ALONG VORTEX FILAMENTS
UNDER THE 2D-LIA

The author is not aware of any soliton solutions to the
2D-LIA, likely due to the fact that the governing PDE is
more complicated than the cubic NLS (which of often what
is used to construct soliton solutions on vortex filaments).
Usually, one obtains the soliton solution of the NLS equation,
which, from the Hasimoto map, can be put into correspondence
with the curvature and torsion of an LIA solution. Then, one
integrates the Frenet-Serre formulas in order to recover the
tangent, normal, and binormal vectors. Finally, one integrates
along the tangent vector to obtain a particular vortex filament
curve. We bypass this procedure, since we can directly obtain a
vortex filament curve from the 2D-LIA once a WKIS solution
is known.

Since the soliton solutions to the WKIS model are rea-
sonably well studied, we can use these in order to construct
solution solution to the 2D-LIA. Under the framework laid
out for the one-soliton solution of (10) in Ref. [20], we can
obtain immediately the one-soliton for the 2D-LIA using
w(x,t) = ∫ x

0 u(σ,t)dσ . In terms of the coordinates y and z,
we have

y(x,t) = −|ξ |η
ξ 2 + η2

∫ x

0

cosh(A(σ,t)) cos(B(σ,t))

cosh2(A(σ,t)) − 2η2

ξ 2+η2

dσ

+ ξ

|ξ |
η2

ξ 2 + η2

∫ x

0

sinh(A(σ,t)) sin(B(σ,t))

cosh2(A(σ,t)) − 2η2

ξ 2+η2

dσ, (50)

z(x,t) = |ξ |η
ξ 2 + η2

∫ x

0

cosh(A(σ,t)) sin(B(σ,t))

cosh2(A(σ,t)) − 2η2

ξ 2+η2

dσ

+ ξ

|ξ |
η2

ξ 2+η2

∫ x

0

sinh(A(σ,t)) cos(B(σ,t))

cosh2(A(σ,t)) − 2η2

ξ 2+η2

dσ, (51)
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(a () b)

FIG. 4. Plot of self-similar wave structures along a vortex filament. (a) We use the approximate solution (43) and take the amplitude of
the waves to be of size β = 0.05. Time is taken to be t = 1. As time increases, the waves broaden and propogate away from the origin. This
gives the appearance of a wavy V-shaped curve that smooths over time. (b) We obtain numerical solutions to the ODE governing a self-similar
solution, and, on recovering the Cartesian representation, we plot the cross section of the exact self-similar solution in the x-z plane. In this
case, the amplitude parameter corresponds to β = 0.1. The plots clearly show the time evolution of the vortex filament: For very small values
of time, there is a very sharp kink at the origin, and this kink smooths as time increases.

where A(x,t) = 2η(1 + ε)(x + 4ξ t), B(x,t) = 2ξx + 4(ξ 2 −
η2)t + 2ξε(x + 4ξ t) are distinct wavelike variables, ξ and η

are parameters modifying the shape of the WKIS soliton, and
ε(q) is a function satisfying the implicit algebraic relation

ε(q) = η

ξ 2 + η2
(tanh(2η[q + ε(q)]) − 1). (52)

As discussed in Ref. [22], the only purely traveling wave
solutions to the 2D-LIA are those which take the form of
a helix. In order to obtain more complicated solitary waves,
we have needed to introduce two competing wave variables,
x + 4ξ t , which enters into both A(x,t) and B(x,t), and
x + 2ξ−1(ξ 2 − η2)t , which enters into only B(x,t).

The greatest complication here is obtaining the implicitly
defined function ε give through (52). In Fig. 5 we give
numerical plots of ε as a function of q for various values of
η and ξ . The curve ε is a well-defined function of q provided
that ξ is not too small. In the limit where ξ → 0, the curve
ε becomes multivalued in q in a region near the origin. This
happens when the change in ε with q becomes infinite at a
point. If we were to reverse the formal relation between ε

and q, then this would be equivalent to the point at which
there is zero change in q with a change in ε. There should
be some critical value ξ = ξc > 0 for which this occurs. For
|ξ | < ξc, the relation will be multivalued. For |ξ | > ξc, there
is a well-defined function ε = ε(q) from the relation (52).

In order to obtain the critical value ξc, let us write the
expression (52) so it describes a function q(ε). Differentiation
of (52) in terms of ε, we find

1 = 2η2

ξ 2 + η2
sech2(2η(q + ε))

{
dq

dε
+ 1

}
. (53)

At the critical value ξc, we must have dq

dε
= 0 (which is

equivalent to | dε
dq

| → ∞). In particular, there will be two such
ε values for |ξ | < ξc, one value for |ξ | = ξc, and no such values
for |ξ | > ξc.

Taking dq

dε
= 0 in (53), we have

1 = 2η2

ξ 2 + η2
sech2[2η(q + ε)]. (54)

FIG. 5. Plot ε(q) from the implicit relation (52). The solution will
be sensitive to the sign of η but not ξ . The curve ε is a well-defined
function of q provided that ξ is not too small. In the limit where
ξ → 0, the curve ε becomes multivalued in q in a region near the
origin.
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Combining (52) and (54), we obtain

1 + 4ηε∗ + 2(ξ 2 + η2)(ε∗)2 = 0, (55)

and this gives the roots

ε∗ = −2η ±
√

2(η2 − ξ 2)

2(η2 + ξ 2)
. (56)

When |ξ | < |η| we have two roots, while when |ξ | > |η| we
have no roots. When |ξ | = |η| we have exactly one root, and
by our discussion above, we obtain the critical value ξc = |η|.

From this we see that (52) can be interpreted as the
intersection of a straight line with a stretched and horizontally
shifted tanh function of ε, and Eq. (54) corresponds to the
condition of tangent intersection. When there are two roots
to (55), there can be two such intersections, highlighting the
multivalued property of the relation when |ξ | < ξc.

Assuming then that |ξ | > ξc, note from (52) that we have
the limits

lim
q→±∞ ε(q) = η

ξ 2 + η2
[±sgn(η) − 1]. (57)

We have two possibilities. If η > 0, then ε → 0 as q → ∞,
while ε → − 2η

ξ 2+η2 < 0 as q → −∞. Meanwhile, if η < 0,

then ε → − 2η

ξ 2+η2 = 2|η|
ξ 2+η2 > 0 as q → ∞, while ε → 0 as

q → −∞. This suggests that the solutions ε(q) themselves
should take a form much like tanh profiles, and this is supported
by the numerical solutions in Fig. 5. From those numerical
plots, we see that the curves are not exactly symmetric about
the origin. Rather, we see that the midpoint (between the
maximal and minimal value) occurs for

εmid = − η

ξ 2 + η2
, (58)

and this actually gives, from (52), that

− η

ξ 2 + η2
= η

ξ 2 + η2

{
tanh

(
2η

[
qmid − η

ξ 2 + η2

])
−1

}
.

(59)

Solving this, we must have

qmid − η

ξ 2 + η2
= 0, (60)

and so

qmid = η

ξ 2 + η2
. (61)

Therefore, we can approximate the solution for ε(q) by

ε(q) ≈ η

ξ 2 + η2

{
tanh

(
2η

[
q − η

ξ 2 + η2

])
− 1

}
. (62)

This approximation is reasonable for |ξ | > ξc. In this
regime, we may therefore approximate the functions of wave
variables like

A(x,t) ≈ 2ηx + 8ηξt − 2η2

ξ 2 + η2

×
{

1 − tanh

(
2η

[
x + 4ξ t − η

ξ 2 + η2

])}
, (63)

B(x,t) ≈ 2ξx + 4(ξ 2 − η2)t − 2ξη

ξ 2 + η2

×
{

1 − tanh

(
2η

[
x + 4ξ t − η

ξ 2 + η2

])}
. (64)

From this analysis, we see that the function ε(q) = O(1) in
q and hence can be treated as a constant in most instances.
Doing so, we obtain from (50) and (51) the approximations

y(x,t) ≈ − |ξ |η
ξ 2+η2

∫ x

x0

× cosh(2ησ+8ξηt) cos(2ξx+4(ξ 2−η2)t−x1)

cosh2(2ησ+8ξηt)− 2η2

ξ 2+η2

dσ

+ sgn(ξ )
η2

ξ 2+η2

∫ x

x0

× sinh(2ησ+8ξηt) sin(2ξx+4(ξ 2−η2)t−x1)

cosh2(2ησ+8ξηt)− 2η2

ξ 2+η2

dσ,

(65)

z(x,t) ≈ |ξ |η
ξ 2+η2

∫ x

x0

× cosh(2ησ+8ξηt) sin(2ξx+4(ξ 2−η2)t−x1)

cosh2(2ησ+8ξηt)− 2η2

ξ 2+η2

dσ

+ sgn(ξ )
η2

ξ 2+η2

∫ x

x0

× sinh(2ησ+8ξηt) cos(2ξx+4(ξ 2−η2)t−x1)

cosh2(2ησ+8ξηt)− 2η2

ξ 2+η2

dσ,

(66)

where we introduce constants x0 and x1 to approximate the
effect of treating ε(q) as a constant in the phase and amplitude
parts of the solutions.

We may now consider some special cases. First, in the limit
where ξ 2 	 η2 (in which the phase of the soliton is rapidly
varying compared with the amplitude) we have

y(x,t) ≈ −η

ξ

∫ x

0
sech(2η[σ + 4ξ t]) cos(2ξσ + 4ξ 2t)dσ,

(67)

z(x,t) ≈ η

ξ

∫ x

0
sech(2η[σ + 4ξ t]) sin(2ξσ + 4ξ 2t)dσ. (68)

Such a soliton is qualitatively similar to the NLS one-soliton.
In Fig. 6 we plot a representative soliton solution. We see that
the soliton consists of an envelope which propagates toward the
negative x direction. Along this envelope, the filament twists
due to torsion effects. The curvature maximum occurs at the
center of the envelope. Away from the center of the envelope,
the filament behaves like a line filament. This solution may thus
be considered as a solitary wave or topological defect which
moves along a line filament. Once this solitary wave passes, the
filament locally returns to its prior line filament configuration.
Such solutions as those displayed here are consistent with
both analytical [6,16,17] and experimental [12–14] results in
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(a () b)

FIG. 6. Plot of a one-soliton solution (67) and (68) in space when ξ = 10 and η = 1, satisfying ξ 2 	 η2. The twisting of the vortex filament
line is due to the torsion effects governing the dynamics. Maximal curvature occurs at the envelope peak. In (a) we plot the vortex filament in
Cartesian coordinates at time t = 0. A value of t = 0 is used for the plot, but the wave envelope maintains its form and propagates toward the
left along the x axis as time increases. In (b) we plot the modulus |w(x,t)| = √

y(x,t)2 + z(x,t)2 for various values of time, so we may better
view the wave envelope.

the literature, as were discussed in Sec. 1. These particular
specific solutions will exhibit rotation about the x axis (due to
the sine and cosine terms), while the wave packet itself will
translate along the x axis (due to the sech terms).

In the limit where ξ → 0, y = z = 0, and we recover a
line filament. Similarly, when η → 0, we have y = z = 0, and
hence the solutions collapse to a line filament.

In the case where ξ = η, the solutions (65) and (66) reduce
to

y(x,t) ≈ − sgn(η)

2

∫ x

x0

cosh(2ησ + 8η2t) cos(2ηx − x1)

cosh2(2ησ + 8η2t) − 1
dσ

+ sgn(η)

2

∫ x

x0

sinh(2ησ + 8η2t) sin(2ηx − x1)

cosh2(2ησ + 8η2t) − 1
dσ,

(69)

z(x,t) ≈ sgn(η)

2

∫ x

x0

cosh(2ησ + 8η2t) sin(2ηx − x1)

cosh2(2ησ + 8η2t) − 1
dσ

+ sgn(η)

2

∫ x

x0

sinh(2ησ + 8η2t) cos(2ηx − x1)

cosh2(2ησ + 8η2t) − 1
dσ.

(70)

Note that the rotational part of the solutions (the sin and
cos functions) are now independent of time. Therefore, the
solutions will not tend to rotate around the reference axis.
The time dependence is now strictly in the terms governing
the wave envelope, and the solutions will maintain their form
while translating along the reference axis. Note that these
solutions develop a singularity when 2ησ + 8η2t = 1, which
would give the solutions an appearance like a breather at
certain locations. In order to avoid such situations, one should
consider a restriction

0 <
2η2

ξ 2 + η2
< 1, (71)

which is equivalent to 0 < |η| < |ξ |. So we can view the ξ =
η case at the upper limit to this restriction, and hence the
irrotational solutions (69) and (70) can be considered as the
least regular physical solutions possible under this reduction.
What this means is that, for 0 < |η| < |ξ |, there will always be
a nontrivial rotational component to the solitary waves in time.
Therefore, solitary wave solutions will tend to both translate
along the reference axis while also rotating along the reference
axis. This is a property they share with other solutions, such
as the helical filaments. In contrast, the rate of rotation and
translation will differ, due to the appearance of two different
wave speeds in the solutions. This is in contrast to the helix,
which has one wave speed (as discussed in Ref. [22]).

In Fig. 7 we provide solitary wave solutions from (65)
and (66). We see that for the limit where ξ 2 	 η2 [shown in
Fig. 7(a)], the solutions generally agree with the simplification
given in (67) and (68) [a representative of such solutions
was shown in Fig. 6(a)]. As η increases relative to ξ (still
subject to the restriction 0 < |η| < |ξ |), we find that the
oscillations within the central wave packet decrease and
the filament becomes much more regular in form. These wave
packets will propagate along the vortex filament in time, while
the constituent oscillations will rotate around the reference
axis.

In similar ways, one can use the inverse scattering transform
results in the literature to obtain multisoliton solutions,
breathers, and other such solution forms under the WKIS
model (10) and then map these into vortex filament solutions
under the 2D-LIA. One should then recover the analogs to
the LIA solutions derived previously in citations mentioned
above. We should note that these results are valid in the
very low temperature limit, where mutual friction terms are
vanishingly small. In the warmer superfluid care, solitary
waves or topological kinks are be possible at smaller time
scales, before they collapse due to the mutual friction effects.
In this way, the mutual friction terms will tend to smooth
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(a () b) (c)

FIG. 7. Three-dimensional Cartesian representations of the solitary waves along vortex filaments. Parameter values are x0 = 0, x1 = 1,
ξ = 1, and we plot the solutions for various η > 0: (a) η = 0.1, (b) η = 0.2, (c) η = 0.4. As we take η → ξ from below, the oscillations in the
filament curve die off.

these solitary strictures over time. This was considered in
Refs. [53,54].

VI. DISCUSSION

Using the fact that the 2D-LIA can be mapped into the first
equation in the WKIS hierarchy, we have been able to use
solutions to this WKIS equation in order to construct vortex
filament solutions to the 2D-LIA. The 2D-LIA is derived from
the Hamiltonian formulation of Svistunov, which itself is valid
for a vortex filament in the Cartesian frame aligned along one
axis. As such, the 2D-LIA solutions immediately give one a
vortex filament in the natural Cartesian space. Therefore, we
remark that the approach discussed herein allows one to rather
simply recover solutions and that the solutions obtained are
completely relevant to what is seen in actual experimental
observations or numerical simulations of low-temperature
vortex filament dynamics (as discussed in each of the relevant
sections). Part of the reason that this approach was successful
lies in the fact that the 2D-LIA (8) is a scalar equation. In the
warmer-temperature limit, when mutual friction and normal
fluid effects are no longer negligible (as in the Schwartz
model [33]), the relevant model equation becomes more
complicated. In some limits that equation can be put into
scalar form (for weak normal fluid effects [54]); otherwise
one must work with some other reduction or the full vector
equation. In the case where scalar equations are possible,
one can study soliton-like solutions that persist over certain
time scales before decaying due to friction effects [53,54]. For
some of the solutions, such as the soliton and planar filaments,
the WKIS solutions were already known in the literature and
hence were easily mapped into vortex filament solutions under
the 2D-LIA, such as the solitary wave solutions. In other cases,
such as for the self-similar or stationary solutions, solutions
known previously under the 2D-LIA were found easily under
the WKIS framework.

One main benefit of the approach used here is that it enables
us to obtain the vortex filament curve directly. Usually, one
obtains a solution of the NLS equation, which from the

Hasimoto map can be put into correspondence with the
curvature and torsion of an LIA vortex filament solution. With
curvature and torsion known (up to some scaling constants),
one integrates the Frenet-Serre formulas in order to obtain
the tangent, normal, and bi-normal vectors to the vortex
filament curve. After these are found, one finally integrates
along the tangent vector to obtain a vortex filament curve.
Although one may obtain exact or analytical solutions to the
NLS equation, the integration of the Frenet-Serre formulas
is often performed numerically, meaning that the resulting
vortex filament curve still needs to be obtained numerically.
Using the correspondence between the 2D-LIA and the WKIS
solutions, we may bypass this more complicated procedure,
since we can directly obtain a vortex filament curve from the
2D-LIA once a WKIS solution is known. Furthermore, exact
or analytical solutions to the WKIS equation result in exact
or analytical vortex filament curves in Cartesian coordinates,
since numerical integration of the Frenet-Serre formulas is not
needed.

Generalized stationary states were considered in Sec. III,
and these solutions consist of vortex filaments which maintain
their form as they rotate about a reference axis. What is nice
about the approach used here (in particular, the connection
between the WKIS and 2D-LIA) is that we are able to
obtain nice analytical approximations in (31) and (32). These
analytical approximations give us a better understanding of
the generalized stationary states previously claimed to exist
numerically in Ref. [21]. Indeed, from the analytical solutions,
we are able to obtain solutions which effectively generalize the
helical filaments ore common in the literature. Some of these
analytical curves are shown in Fig. 2, and these recover some
of the numerical structures observed in Ref. [21]. Analytical
solutions for these generalized stationary states were not
previously found in the literature, yet the WKIS framework has
afforded us the chance to obtain such approximate analytical
solutions rather easily. Note also that by using the WKIS
framework, one may recover planar and helical filaments
previously considered in the literature, with minimal effort
(and we show this in Sec. III, as well).
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From Sec. IV, we now know the type of self-similarity
possible under the WKIS model. Self-similarity is a trait shared
among many integrable models and is quite distinct from other
common solution forms (such as traveling wave solutions or
stationary solutions) in that it yields solutions that appear to
have the same structure at various time scales. Due to the
form of self-similarity observed, the self-similar solutions to
the WKIS equation remain bonded provided that the similarity
function itself remains bounded. In contrast, other integrable
models can admit similarity solutions that scale as

√
t or 1/

√
t ,

yielding large or small time blow-up, respectively. In Sec. IV
we were able to obtain analytical approximations to the self-
similar dynamics of vortex filaments, and these agree with
what was shown in Ref. [22] through a different approach.

Solitary waves along the vortex filament should be expected
to exist for the 2D-LIA reduction of the 3D-LIA model, since
related solitons were found theoretically for the standard LIA
by way of the Hasimoto transformation and t10 years later
were found experimentally. However, as explained in Ref. [22],
such solutions are hard to recover from the 2D-LIA directly.
Part of the complication is that the solitary waves (such as
those discussed here) really involve two wave variables with
differing wave speeds, as the amplitude and phase of the
solutions will evolve at different rates (in general). In contrast,
it was shown in Ref. [22] that traveling wave solutions in
one wave variable result in helices. From Sec. V, we find that
solitary waves translate along the reference axis, with solutions
analogous to one-solitons consisting of a single wave packet
in which the filament curve oscillates. The particular shape
of the solitary wave along the vortex filament will depend on
two parameters, which act to broaden and increase the twist or

torsion on the filament. This can be seen in Fig. 7, where
the filament becomes more tightly coiled with a decrease
in the shape parameter η. In the case where ξ 2 	 η2, the
solitary waves take on a similar appearance to the Hasimoto
one-soliton in Cartesian coordinates. The wave envelope for
that case behaves like the integral of a hyperbolic secant (again
in agreement with the solution derived from the bright soliton
solution for the NLS equations). It should be possible to
consider the n-soliton solutions from the WKIS equation in
order to construct filament curves which consist of n wave
packets translating along the filament curve. The structure of
each wave packet will be similar to the single wave packet
shown in Fig. 7.

Regarding future work, note that the correspondence
between the 2D-LIA and the WKIS equation (10) is rather
direct. Somewhat less direct would be a map between the
nonlocal equation for the 2D Biot-Savart dynamics given
by the Hamiltonian formulation (4) and a nonlocal analog
to the WKIS equation (10). Assuming that the relevant
nonlocal WKIS equation was simpler to solve than the 2D
Biot-Savart equation [which is certainly possible, considering
that the local WKIS equation (10) is simpler to solve than
directly solving the 2D-LIA (8)], this may provide a route
to obtaining analytical solutions (under some conditions) for
the Biot-Savart dynamics. Such dynamics are much harder to
study analytically (hence the common use of the LIA), and any
approach that permits one to obtain analytical solutions to these
dynamics would be worthy of investigation. Recent work [3]
suggests that a Biot-Savart law can be obtained via a NLS
equation, and this approach may merit further consideration in
the context of the 2D-LIA.
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