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We introduce and study the “kicked Hall system” (KHS), i.e., charged particles periodically kicked in the
presence of uniform magnetic (B) and electric (E) fields that are perpendicular to each other and to the kicking
direction. We show that for resonant values of B and E and in the weak-chaos regime of sufficiently small noninte-
grability parameter κ (the kicking strength), there exists a generic family of periodic kicking potentials for which
the Hall effect from B and E significantly suppresses the weak chaos, replacing it by “superweak” chaos (SWC).
This means that the system behaves as if the kicking strength were κ2 rather than κ . For E = 0, SWC is known to
be a classical fingerprint of quantum antiresonance, but it occurs under much less generic conditions, in particular
only for very special kicking potentials. Manifestations of SWC are a decrease in the instability of periodic orbits
and a narrowing of the chaotic layers, relative to the ordinary weak-chaos case. Also, for global SWC, taking
place on an infinite “stochastic web” in phase space, the chaotic diffusion on the web is much slower than the
weak-chaos one. Thus, the Hall effect can be relatively stabilizing for small κ . In some special cases, the effect
is shown to cause ballistic motion for almost all parameter values. The generic global SWC on stochastic webs
in the KHS appears to be the two-dimensional closest analog to the Arnol’d web in higher dimensional systems.
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I. INTRODUCTION

The nature of chaotic transport in typical Hamiltonian
systems is known to depend on the system dimensionality
[1,2]. For the lowest-dimensional systems which can be nonin-
tegrable, i.e., either one-dimensional time-dependent systems
or two-dimensional time-independent ones (both described by
area-preserving Poincaré maps), Kolmogorov-Arnol’d-Moser
(KAM) tori [3–5] are barriers to chaotic transport and thus
form boundaries of localized chaotic regions. Only when all
the KAM tori break for a sufficiently large nonintegrability
parameter, these regions merge into a global chaotic region
permeating all the phase space. A paradigmatic realistic model
of this scenario is the famous kicked rotor described by the
Taylor-Chirikov standard map [2,6–9]. The situation is fun-
damentally different in higher-dimensional systems. Because
of purely topological reasons, KAM tori in these systems
do not divide phase space. Then, global chaotic transport
on the so-called “Arnol’d web” takes place generically for
arbitrarily small nonintegrability parameter but at a very slow
rate [10–12].

There is an analog to the Arnol’d web in area-preserving
maps describing another well-known paradigmatic system
basically different from the kicked rotor. This is the system
of charged particles periodically kicked perpendicularly to a
uniform magnetic field [13–19]. Assuming, by proper choice
of units and without loss of generality, particles of unit mass
and charge, the system is defined by the general Hamiltonian:

H0 = �

2

2

+ KV (x)
∞∑

s=−∞
δ(t − sT ), (1)

where � = p − B × r/(2c) is the kinetic momentum in a uni-
form magnetic field B along the z axis, K is a nonintegrability
parameter, V (x) is a general periodic potential, and T is the
time period. Let us summarize the relevant properties of the
system (1); see more details in Secs. II and III B. This system is
equivalent to a periodically kicked harmonic oscillator on the

phase plane (u = �x/ω,v = �y/ω), where ω = B/c is the
cyclotron angular velocity; in terms of v, the potential reads
V (x) = V (xc − v) [16], where xc is the x coordinate of the
cyclotron orbit center and is a constant of the motion. KAM
theory is not applicable to this system for small K since the
harmonic-oscillator Hamiltonian is degenerate, being linear in
the action. In fact, at least for some values of ωT , the Poincaré
map for the system has no KAM tori and exhibits a global
weak chaos on a “stochastic web” over all the phase space for
arbitrarily small κ = K/ω [13,16]; see Fig. 1. This web is thus
analogous to the Arnol’d web. For special values of xc such that
V (xc − v) is an odd function of v (up to an additive constant),
as in Fig. 1(b), the width of the stochastic web and the diffusion
rate on it are much smaller than those for V (xc − v) with
generic values of xc [18,19]; compare the diffusion rates in
Figs. 1(a) and 1(b). These rare phenomena, manifestations
of what we call “superweak chaos” (SWC), were originally
discovered in Ref. [18] as classical fingerprints of quantum
antiresonance; see also Ref. [20]. SWC is due to the fact that for
small κ the system behaves as if the nonintegrability parameter
were κ2 rather than κ [18,19].

In this paper we introduce and study the “kicked Hall
system” (KHS), i.e., the system (1) with the addition of a
uniform electric field E perpendicular to both B and the kicking
direction. We show that for resonant values of B and E, defined
by Eqs. (8) below, and for sufficiently small κ the Hall effect
from B and E causes SWC, either local or global, to occur for a
generic family of kicking potentials. This is in contrast with the
E = 0 case, where SWC occurs under much more restrictive
conditions, in particular only for odd potentials in this family.
Thus, the Hall effect significantly stabilizes the system by
transforming the weak chaos for E = 0 into SWC. When
the KHS has translational invariance in phase space, global
SWC on stochastic webs is shown to emerge under generic
conditions while ballistic motion occurs only in some special
cases. The generic global SWC on stochastic webs in the KHS,
with a much smaller transport rate than that of ordinary weak
chaos, appears to be the two-dimensional closest analog to the
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FIG. 1. Global stochastic-web diffusion of a 20 × 20 chaotic
ensemble after 120 000 iterations of the one-period map for the
system (1) [i.e., the map (5) for η = 0] with κ = K/ω = 0.6,V (x) =
− cos(x) [f (x) = − sin(x)],γ = ωT = π/2, and two values of the
constant of the motion xc = x(0)

c : (a) xc = 0 [the effective potential
V (xc − v) = − cos(v) is even]; (b) xc = π/2 [V (xc − v) = − sin(v)
is odd]. Clearly, the diffusion in case (b) is significantly slower than
that in case (a).

Arnol’d web in higher-dimensional systems. However, while
the rate of Arnol’d diffusion decreases exponentially with
the nonintegrability parameter [10–12], the SWC-diffusion
rate is expected to decrease only algebraically with this
parameter, as in the case of ordinary weak chaos on stochastic
webs [14].

The paper is organized as follows. In Sec. II we present
the general KHS in natural coordinates and derive its basic
Poincaré map under resonance conditions on B and E. In
Sec. III we define SWC and derive general conditions for
it in both the E = 0 case (Sec. III B) and the E �= 0 case
(Sec. III C); these conditions clearly imply that SWC occurs
generically for resonant E �= 0. In Sec. III D we show that
SWC leads to a decrease of the linear instability of periodic
orbits and to a narrowing of the corresponding chaotic layers,
relative to the weak-chaos case. In Sec. IV we consider the
KHS with translational invariance in phase space, leading
to a global SWC on stochastic webs. We provide numerical
evidence for the suppression of the chaotic-diffusion rate for
E �= 0 relative to the weak-chaos one for E = 0. Integrable
effective Hamiltonians, giving the skeleton of the stochastic
webs, are derived. In Sec. V we show that, in special cases of
weak chaos and SWC, ballistic motion occurs for almost all
parameter values while stochastic webs emerge only in small
parameter intervals. A summary and conclusions are presented
in Sec. VI. Several technical details appear in the appendices.

II. THE KICKED HALL SYSTEM (KHS) AND ITS
POINCARÉ MAP

A. KHS in natural coordinates

The KHS is defined by adding to (1) a uniform electric field
E in the y direction, i.e., perpendicularly to both B and x:

H = �

2

2

− Ey + KV (x)
∞∑

s=−∞
δ(t − sT ), (2)

where we recall that unit mass and charge are assumed, without
loss of generality. Let us express (2) in the two natural degrees
of freedom in a magnetic field [21]. These are the independent

conjugate pairs (xc,yc) (coordinates of the cyclotron-orbit
center) and (u = �x/ω,v = �y/ω), with ω = B/c; here u

and −v are, respectively, the y and x coordinates of the radius
vector of a cyclotron orbit, so that x = xc − v and y = yc + u.
Using these relations and defining the variable u′ = u − E/ω2,
which we redenote by u, the Hamiltonian (2) can be expressed
as follows:

H = ω2(u2 + v2)/2 − Eyc + KV (xc − v)
∞∑

s=−∞
δ(t − sT ),

(3)
where an insignificant constant E2/(2ω2) was omitted. As
one can easily check, the conjugate pairs above have Poisson
brackets {yc,xc} = {u,v} = 1/ω, so that the Hamilton equation
for xc is ẋc = −1/(ω)∂H/∂yc = E/ω. Thus, xc evolves
linearly in time (Hall effect):

xc = x(0)
c + JHallt, JHall = E

ω
, (4)

where JHall is the Hall velocity. Inserting Eq. (4) in Eq. (3),
we see that the Hamiltonian (3) for the conjugate pair (u,v)
is essentially that of a kicked harmonic oscillator with a time
modulated kicking potential V (x(0)

c + JHallt − v). For E = 0,
JHall = 0 and xc is a constant of the motion.

B. The Poincaré map and its iterates

From {u,v} = 1/ω, the Hamilton equations for (u,v) are
u̇ = (1/ω)∂H/∂v and v̇ = −(1/ω)∂H/∂u, where H is given
by (3) with (4). Integrating the latter equations from time
t = sT − 0 to time t = (s + 1)T − 0 (s integer) and denoting
us = u(t = sT − 0), vs = v(t = sT − 0), we easily obtain the
one-period Poincaré map for the system:

us+1 = [
us + κf

(
x(0)

c + sη − vs

)]
cos(γ ) + vs sin(γ ),

(5)
vs+1 = −[

us + κf
(
x(0)

c + sη − vs

)]
sin(γ ) + vs cos(γ ),

where κ = K/ω, γ = ωT , η = JHallT = ET/ω, and f (x) =
−dV/dx is the force function. For E = 0, with arbitrary con-
stant value of xc = x(0)

c , the map (5) reduces to a generalized
version of the Zaslavsky web map [13,16].

Defining zs = us + ivs , the map (5) can be written more
compactly as

Mγ,η : zs+1 = [
zs + κf

(
x(0)

c + sη − vs

)]
e−iγ . (6)

After s iterations of (6) starting from z = z0, we get

Mγ,η,s : zs =
⎡
⎣z0 + κ

s−1∑
j=0

f
(
x(0)

c + jη − vj

)
eijγ

⎤
⎦e−isγ .

(7)
We choose length units such that the period of V (x) is 2π

and assume hereafter on rational values of γ /(2π ) and η/(2π ):

γ

2π
= m

n
,

η

2π
= k

l
, (8)

where (m,n) and (k,l) are two pairs of coprime integers.
Due to the 2π -periodicity of both exp(−iγ ) and f (x) in
Eq. (6), Eqs. (8) are resonant conditions on γ and η: After
the minimal number s = r of iterations, where r = lcm(n,l) is
the least common multiple of n and l, one has rγ mod(2π ) =
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rη mod(2π ) = 0 and all the multiples of γ and η modulo
2π will appear in the map (7). In this sense, the map Mγ,η,s

“closes” after not fewer than s = r iterations, so that Mγ,η,r

may be considered as the basic map of the system under the
conditions (8):

Mγ,η,r : zr = z0+κ

r−1∑
j=0

f
(
x(0)

c +jη − vj

)
eijγ ,

r = lcm(n,l). (9)

The importance of the map (9) is, in particular, that points of a
periodic orbit of (5) are generally fixed points of some iterate
of Mγ,η,r .

III. SUPERWEAK CHAOS (SWC)

A. General

One can easily see that the map (5) for n = 1,2 (γ = 0,π ) is
integrable even for irrational η/(2π ). Thus, chaos can emerge
only for n > 2. We then say that the map (9) for n > 2 and
small κ � 1 exhibits SWC if its expansion in powers of κ

starts from κ2:

Mγ,η,r : zr = z0 + O(κ2). (10)

This is unlike ordinary weak chaos, with zr = z0 + O(κ).
In Secs. III B and III C, we shall examine the validity of

Eq. (10) for the general family of 2π -periodic potentials with
finite Fourier expansion,

V (x) =
N∑

g=−N

Vg exp (igx), V0 = 0, (11)

for both E = 0 and E �= 0. In Sec. III D, we show that SWC
leads to a decrease of the linear instability of periodic orbits of
the map (5) and to a narrowing of the corresponding chaotic
layers, relative to the weak-chaos case.

B. SWC for E = 0

We consider here the case of E = 0 or η = 0 in a framework
more general than in previous works [18,19]. For η = 0, xc =
x(0)

c (constant) and k/l = 0/1 in Eq. (8), so that r = n in
Eq. (9). We then show that Eq. (10) holds only if n is even and
the potential V (xc − v) [with V (x) given by Eq. (11)] is odd:
V (xc + v) = −V (xc − v).

Let us calculate the first-order term in the expansion of the
map (9) in powers of κ and determine under which conditions
this term vanishes. To this end, it is sufficient to calculate vj

in Eq. (9) to zero order in κ . From Eq. (7) one has, to this
order, zs = z0 exp(−isγ ). Using the latter relation together
with Eq. (11) and f (x) = −dV/dx, we get Eq. (9) (with r =
n) to first order in κ:

zn = z0 − iκ

N∑
g=−N

gVg exp(igxc)Sn,g(u0,v0), (12)

Sn,g(u0,v0) =
n−1∑
j=0

e2πijm/n exp{ig[u0 sin(2πjm/n)

− v0 cos(2πjm/n)]}. (13)

Equation (10) will hold provided the coefficient of κ in
Eq. (12) vanishes for all (u0,v0). This is the case only if
gVg exp(igxc)Sn,g(u0,v0) is an odd function of g for all (u0,v0).
This means that Vg exp(igxc) and Sn,g(u0,v0) are either both
even or both odd functions of g. From Eq. (13), we see that
Sn,g(u0,v0) has a definite parity under g → −g for all (u0,v0)
only if n is even and then

Sn,g(u0,v0) = 2i

n/2−1∑
j=0

e2πijm/n sin[gu0 sin(2πjm/n)

− gv0 cos(2πjm/n)],

an odd function of g. Thus, Vg exp(igxc) must be also odd in
g, implying V (xc + v) = −V (xc − v).

C. Generic SWC for E �= 0

Given arbitrary rational values of γ /(2π ) = m/n and
η/(2π ) = k/l �= 0 (E �= 0) in Eq. (8), let us write n/l = n′/l′,
where (n′,l′) are coprime integers. Consider the family of
potentials (11) with any given number 2N of harmonics. We
then show here that if

l′ > N, (14)

SWC occurs for arbitrary potential (11) and initial value x(0)
c

in Eq. (9), irrespectively of the parity of n. This is in contrast
with the E = 0 case for which SWC can occur only if n is
even and only if the potential (11) and the constant xc are such
that V (xc + v) is an odd function of v (see Sec. III B).

To show this, we first note that since r = lcm(n,l) one
has r = l′n. Let us write in Eq. (9) j = bn + w, where b =
0, . . . ,l′ − 1 and w = 0, . . . ,n − 1. Then, to zero order in κ ,
zj = z0 exp(−ijγ ) = zw since γ = 2πm/n; thus, vj = vw to
this order. Using all this in Eq. (9), we obtain, to first order
in κ:

zr = z0 − iκ

n−1∑
w=0

eiwγ

N∑
g=−N

gVg exp
[
ig

(
x(0)

c + wη − vw

)]

×
l′−1∑
b=0

exp(igbnη). (15)

The second line in Eq. (15) is a geometric series which
vanishes since gl′nη = 2πgn′k and gnη = 2πgn′k/l′ is never
an integer multiple of 2π because of condition (14). Thus, the
coefficient of κ in Eq. (15) is identically zero, implying the
SWC condition (10).

As an example, Fig. 2 shows cases of γ = 2π/3, i.e.,
n = 3, for η = 0 [Fig. 2(a)] and η = π , i.e., k/l = 1/2
[Fig. 2(b)]. Since n is odd, the case in Fig. 2(a) is one of
ordinary weak chaos (see Sec. III B). On the other hand,
in the case of Fig. 2(b), with n = 3 and l = 2, l′ = 2 and
the SWC condition (14) is thus satisfied for the potential
V (x) = − cos(x) (N = 1). Indeed, the diffusion rate in this
case is clearly slower than that in Fig. 2(a).

D. SWC, linear instability, and chaotic layers

Equation (10) for SWC has straightforward implications
for the linear instability of periodic orbits of the map (5).
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FIG. 2. Similar to Fig. 1 with the only differences that the number
of iterations is 90 000, κ = 0.415, γ = 2π/3, and, in (b), η = π and
x(0)

c = 0. Case (b) is a simple example of SWC for η �= 0, when xc

is not a constant of the motion. In case (a), η = 0 and xc = x(0)
c = 0,

similarly to Fig. 1(a).

Each point of such an orbit must generally be a fixed point
of some iterate s of Mγ,η,r . A hyperbolic fixed point of
Ms

γ,η,r is characterized by its Lyapunov multiplier λ, i.e., the
larger eigenvalue (>1) of the linear-stability matrix DMs

γ,η,r

evaluated at the point. This matrix has unit determinant since
Ms

γ,η,r is area preserving. Using this fact and Eq. (10), it
is easy to show that Tr(DMs

γ,η,r ) = 2 + O(κ4), so that λ =
1 + O(κ4). Thus, the fixed point is significantly less unstable
than in the case of ordinary weak chaos [with zr = z0 + O(κ)],
where one has λ = 1 + O(κ2). As a consequence, a SWC layer
emanating from an unstable fixed point should be narrower
than an ordinary weak-chaos layer.

This is illustrated in Figs. 3 and 4. The case in Fig. 3,
corresponding to the E = 0 webs in Fig. 1, was analyti-
cally studied in Ref. [19], and the following nonrigorous

FIG. 3. Chaotic layers around hyperbolic points of the webs in
Fig. 1. The large chaotic region (black dots) is the layer for the case
in Fig. 1(a) (xc = 0). The two crossing lines correspond to the much
narrower SWC layer for the case in Fig. 1(b) (xc = π/2). Only after
a significant zoom does this chaotic layer become visible (see inset).
For the sake of comparison, the hyperbolic point in the latter case
was shifted so as to coincide with that in the former case.

−0.5774 −0.5773

−0.8

−0.4

0

0.4

0.8

x 10
−5

u/(2π)

v
/(

2π
)

FIG. 4. Similar to Fig. 3 but for the webs in Fig. 2. The SWC
chaotic layer [red (dark gray) region], corresponding to Fig. 2(b), is
again narrower than the ordinary weak-chaos one (black region) for
the case in Fig. 2(a).

estimates of the chaotic-layer width � for κ � 1 were
derived: �0 = (16π3/κ) exp(−π2/κ) for xc = 0 (weak chaos)
and �π/2 = (4π3/κ3) exp(−π2/κ2) for xc = π/2 (SWC). The
main dependence on κ in these formulas is consistent with
the fact that the effective kick strength for SWC is κ2 rather
than κ; thus, the ratio �π/2/�0 → 0 in the limit κ → 0, as
expected. Due to computational limitations, we could not
check numerically these formulas for sufficiently small κ � 1.
Our accurate numerical results in Fig. 3 clearly show that the
actual value of �π/2/�0 for κ = 0.6 is already very small, in
fact much smaller than its estimate from the formulas above.

The case in Fig. 4 corresponds to the webs in Fig. 2 for
E �= 0. We see that the SWC layer [red (dark gray) region]
is again narrower than the ordinary weak-chaos one (black
region). Due to computational limitations, we were not able to
get similar accurate plots for smaller values of κ for which the
SWC layer is expected to be much narrower than the ordinary
weak-chaos one.

IV. TRANSLATIONAL INVARIANCE, STOCHASTIC WEBS,
AND EFFECTIVE HAMILTONIANS

We now assume that the basic map (9) has translational
invariance in the (u,v) phase space. As shown in Appendix A,
this is the case only for the following values of n in Eq. (8):
n = 1,2,3,4,6. As already mentioned in Sec. III A, the map
(9) for n = 1,2 is integrable. For n = 3,4,6, the map may
exhibit chaos emanating from hyperbolic fixed points. Then
the translational invariance implies the existence of an entire
lattice of such points. Heteroclinic intersections of the stable
and unstable manifolds of neighboring points on this lattice
may generate global chaos on a stochastic web with triangular
(n = 3), square (n = 4), or hexagonal (n = 6) symmetry.
Examples of both weak chaos and SWC on stochastic webs
for n = 4 and n = 3 are shown in Figs. 1 and 2, respectively.
Other examples of SWC webs for n = 4 are shown in Fig. 5.
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FIG. 5. SWC stochastic webs (within the phase-space unit cell of
periodicity) generated by iterating a 20 × 20 chaotic ensemble with
the map (5) for κ = 0.1, f (x) = − sin(x), γ = π/2 (n = 4), and (a)
η = 0, x(0)

c = π/2; (b) η/(2π ) = 2/3, x(0)
c = 0; (c) η/(2π ) = 3/5,

x(0)
c = 0; (d) η/(2π ) = 8/13, x(0)

c = 0. The values of η/(2π ) in (b)–
(d) correspond to rational approximants of the golden-mean inverse
(
√

5 − 1)/2. The plot for the 5/8 approximant is not displayed. It
corresponds to a nongeneric case, see Sec. V B. The number of
iterations is 120 000 in (a) and 40 000 in (b)–(d).

Hereafter we shall restrict ourselves to the case of n = 4
with the standard potential V (x) = − cos(x), i.e., N = 1 in
Eq. (11). Then the SWC condition (14) for E �= 0 is

l′ > 1, (16)

where l′ is defined by 4/l = n′/l′, with (n′,l′) coprime
integers. The basic map (9) reduces in our case to

Mγ,η,r : zr = z0 − κ

r−1∑
j=0

sin
(
x(0)

c + jη − vj

)
eijπ/2, (17)

where r = lcm(4,l) = 4l′, and, among the two values of γ =
π/2 or 3π/2 for n = 4, we choose γ = π/2 without loss of
generality (see note [22]). SWC for the map (17) is generic
under the condition (16) in the sense that Eq. (10) holds for
arbitrary value of x(0)

c . Also, a SWC stochastic web will emerge
for all l′ > 2 and for all x(0)

c (see Sec. IV B); examples of such
generic SWC webs are given in Figs. 5(b)–5(d). In Sec. IV A
we present numerical results for the global SWC diffusion on
stochastic webs. In Sec. IV B we derive effective Hamiltonians
giving the SWC web skeleton for l′ > 2.

A. Numerical results for global SWC diffusion

Global chaos on stochastic webs under the basic map (17) is
illustrated in Figs. 1 and 5 for different values of η/(2π ). One
expects this chaotic motion to exhibit a normal or anomalous
diffusive behavior:

〈|zrs − z0|2〉E ≈ 2Dsμ, (18)

0 4 8 12 16

x 10
6

0

2

4

Iterations (rs)

10
−

3
z r

s
−

z 0
|2

η/(2π)=0/1, x
c
(0)=0

η/(2π)=0/1, x
c
(0)=π /2

η/(2π)=2/3, x
c
(0)=0

η/(2π)=3/5, x
c
(0)=0

FIG. 6. Diffusive behavior (18) of a 100 × 100 chaotic ensemble
after s iterations of the map (17) for κ = 0.1, maximal time interval
rsmax = 1.56 × 107, and different values of η and x(0)

c specified in
the legend in order of descending curves. One has r = 4, smax =
3.9 × 106 for η = 0; r = 12, smax = 1.3 × 106 for η/(2π ) = 2/3;
r = 20, smax = 7.8 × 105 for η/(2π ) = 3/5.

where 〈 〉E denotes average over an ensemble E of initial
conditions z0 = u0 + iv0 within the chaotic layer, r = 4l′, D

is the diffusion coefficient, and μ is the diffusion exponent;
μ = 1 (μ �= 1) corresponds to normal (anomalous) diffusion.
Figure 6 shows 〈|zrs − z0|2〉E versus rs at fixed r for κ =
0.1 and different values of η and x(0)

c . Clearly, the SWC
diffusion for η = 0 and x(0)

c = π/2 or for η �= 0 and l′ > 1 is
significantly suppressed relative to the weak-chaos one for η =
0 and x(0)

c = 0. The results in Fig. 6 appear in Fig. 7 as log-log
plots, showing that within the large time interval considered

9 12 15

2

5

8

ln(rs)

ln
(

z r
s
−

z 0
|2

)

η/(2π)=0/1, x
c
(0)=0:   μ=0.52

η/(2π)=0/1, x
c
(0)=π/2: μ=0.62

η/(2π)=2/3, x
c
(0)=0:   μ=0.60

η/(2π)=3/5, x
c
(0)=0:   μ=0.57

FIG. 7. Log-log plots of the curves in Fig. 6. The slope of each
plot is approximately the anomalous diffusion exponent μ (given in
the legend) over the time interval considered.
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6 9 12 15

3

6

9

12

ln(4s)

ln
(
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−
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|2
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κ=0.5, μ=0.96
κ=0.4, μ=0.93
κ=0.3, μ=0.84
κ=0.2, μ=0.53
κ=0.1, μ=0.52

FIG. 8. Log-log plots of the diffusive behavior (18) of a 100 ×
100 chaotic ensemble after s iterations of the map (17) for η = 0 (r =
4), maximal time interval 4smax = 1.56 × 107, x(0)

c = 0, and different
values of κ specified in the legend in order of descending curves. The
anomalous diffusion exponent μ given in the legend is the slope of the
corresponding curve near s = smax. For κ > 0.2, the slope appears to
increase toward an asymptotic value of μ = 1, indicating a transition
to normal diffusion at sufficiently large times.

the diffusion is anomalous, i.e., it is a subdiffusion (μ < 1)
with μ ranging between ≈0.5 and ≈0.6. Such a subdiffusion is
theoretically expected [15] to be a transient behavior followed,
at sufficiently large times, by normal diffusion (μ = 1). We
were able to observe a transition to normal diffusion only for
κ > 0.2. Examples of such a transition are shown in Fig. 8.

B. Integrable effective Hamiltonians for SWC
on stochastic webs

We show here that for sufficiently small κ , i.e., rκ � 1 (r =
4l′), the basic map (17) can be approximately replaced by the
Hamilton equations with an integrable effective Hamiltonian
He. Considering rκ as a small time step �t , we replace (ur −
u0)/(rκ) and (vr − v0)/(rκ) by the time derivative u̇ and v̇,
respectively. We then write the real and imaginary parts of
Eq. (17) as approximate Hamilton equations

u̇ ≈ ∂He

∂v

∣∣∣∣
u0,v0

= �(F ), v̇ ≈ − ∂He

∂u

∣∣∣∣
u0,v0

= �(F ), (19)

where

F = −1

r

r−1∑
j=0

sin
(
x(0)

c + jη − vj

)
eijπ/2. (20)

In the SWC case of l′ > 1 [Eq. (16)], F must be of order O(κ)
because of Eq. (10). Indeed, after a lengthy but straightforward
calculation given in Appendix B, we find that the leading-order
term of F in a power expansion in κ is, for l′ > 2,

F = κ

8 cos(η)
[cos(u0) sin(v0) − i sin(u0) cos(v0)], (21)

independent of x(0)
c . For l′ = 2, on the other hand, we show in

Appendix B that F depends on x(0)
c . The implications of this

dependence are studied in detail in Sec. V B. Here we consider
the more general case of l′ > 2, with F given by Eq. (21).
Using Eq. (21) in Eqs. (19), we obtain the leading-order term
of the SWC effective Hamiltonian for l′ > 2, up to an additive
constant:

He = − κ

8 cos(η)
cos(u0) cos(v0). (22)

The integrable Hamiltonian (22) gives approximations to the
orbits of the map (17) as “level sets” He = C for constant
“energy” C, |C| � κ/[8 cos(η)]. As shown in Appendix C,
a stochastic web must correspond to the level set He = 0.
From Eq. (22), this level set is the union of the straight lines
u0 = π/2 + a1π and v0 = π/2 + a2π , for all integers (a1,a2).
This set, a grid with a π × π unit cell, gives the integrable
skeleton of the stochastic web in the limit of κ → 0. Stochastic
webs close to this skeleton are shown in Fig. 5. The case of
η = 0 and x(0)

c = π/2 in Fig. 5(a) also exhibits this skeleton;
see Ref. [19].

V. BALLISTIC MOTION IN WEAK-CHAOS
AND SWC CASES

In Sec. IV B we derived effective Hamiltonians for the
basic map (17) in the generic SWC case of l′ > 2, where a
stochastic web always exists for all x(0)

c . Here we consider the
exceptional cases of l′ = 1 [ordinary weak chaos, since the
SWC condition (16) is not satisfied] and l′ = 2 (SWC). We
show that in these cases ballistic motion arises for almost all
values of x(0)

c while stochastic webs emerge only in very small
intervals of x(0)

c .

A. Weak-chaos case of l ′ = 1

Among the different values of η corresponding to l′ = 1,
it is sufficient to consider η = π/2, without loss of generality
(see note [23]). To derive an effective Hamiltonian in this case,
let us first calculate the map (17) for l′ = 1 and η = π/2 to
first order in κ; to this end, it is sufficient to write vj to zero
order in κ: v1 = −u0, v2 = −v0, and v3 = u0 [from Eqs. (5)
for κ = 0]. Then, proceeding as in Sec. IV B, we find that
Eqs. (19) are satisfied with F = (z4 − z0)/(4κ) ≈ ż explicitly
given by

F = − 1
2

[
sin

(
x(0)

c

)
cos(v0) + i cos

(
x(0)

c

)
cos(u0)

] + O(κ).
(23)

Using Eq. (23) in Eqs. (19) and integrating, we get the leading-
order term of He up to an additive constant:

He = 1
2

[
cos

(
x(0)

c

)
sin(u0) − sin

(
x(0)

c

)
sin(v0)

]
. (24)

For a general level set He = C, we obtain from Eq. (24):

sin(u0) = tan
(
x(0)

c

)
sin(v0)) + 2C/ cos

(
x(0)

c

)
. (25)

We see from Eq. (25) that for | tan(x(0)
c )| < 1 and any C, u0

will cover only part of the interval [0,2π ) when v0 varies in
this interval. This case corresponds to ballistic motion in the v

direction, i.e., vs increases, on the average, linearly in “time”
s; see, e.g., Fig. 9(a). For | tan(x(0)

c )| > 1 and any C, v0 will
cover only part of [0,2π ) when u0 varies in [0,2π ). This case
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π
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FIG. 9. Orbits of the map (17) within the phase-space unit cell of
periodicity for κ = 0.1, η = π/2, and two values of x(0)

c : (a) x(0)
c =

π/8, corresponding to ballistic orbits in the v direction; (b) x(0)
c =

π/4, the critical value of x(0)
c for the emergence of a stochastic web.

corresponds to ballistic motion in the u direction. Only in the
case of | tan(x(0)

c )| = 1 and C = 0, both u0 and v0 will cover all
the interval [0,2π ). As shown in Appendix C, this is the only
case where a stochastic web can emerge in the framework of
the effective Hamiltonian (24). An example of stochastic web
for the critical value of x(0)

c = π/4 [tan(x(0)
c ) = 1] is shown in

Fig. 9(b). It agrees very well with the web skeleton which, from
Eq. (24) with He = 0 and x(0)

c = π/4, is the union of the lines
u0 − v0 = 2a1π and u0 + v0 = (2a2 + 1)π for all integers
(a1,a2). Because of the effective-Hamiltonian approximation
and the small but finite width of the chaotic layer, a stochastic
web will actually exist in small intervals of x(0)

c around the
critical values of x(0)

c satisfying | tan(x(0)
c )| = 1.

B. SWC case of l ′ = 2

By considerations similar to those in note [23], we find that
among the different values of η corresponding to l′ = 2, it is
sufficient to consider η = π/4 and η = 3π/4, without loss of
generality. We shall restrict ourselves here to the case of η =
π/4 since the case of η = 3π/4 can be treated in a very similar
way. The expression (20) for l′ = 2 and η = π/4 is calculated
in Appendix B to first order in κ and is given by Eq. (B14)
there. Using this expression in Eqs. (19) and integrating, we
get the leading-order term of He up to an additive constant:

He = −
√

2κ

8

[
cos(u0) cos(v0) + cos

(
2x(0)

c

)
sin(u0) cos(v0)

− sin
(
2x(0)

c

)
cos(u0) sin(v0)

]
. (26)

We show in Appendix C that a stochastic web must again
correspond to the level set He = 0 of Eq. (26). To determine
the critical values of x(0)

c for this web, let us write Eq. (26) for
He = 0 as follows:

1 + cos
(
2x(0)

c

)
tan(u0) = sin

(
2x(0)

c

)
tan(v0), (27)

where we assumed that both cos(2x(0)
c ) and sin(2x(0)

c ) are
nonzero, i.e., x(0)

c �= aπ/4 for integer a. Then, by Eq. (27),
v0 is a monotonically increasing function of u0 in the interval
[−π/2,π/2]. This corresponds to “diagonal” ballistic orbits
for which both us and vs increase, on the average, linearly in
“time” s [unlike the “horizontal” or “vertical” ballistic orbits
in the case of Sec. V A, see Fig. 9(a)]. Consider now the special

TABLE I. Straight lines defining the web skeleton for η = π/4.

x(0)
c mod(π ) u0 mod(π ) v0 mod(π )

0 3π/4 π/2
π/4 π/2 π/4
π/2 π/4 π/2
3π/4 π/2 3π/4

values above of x(0)
c , x(0)

c = aπ/4, a integer. For example, in
the case of x(0)

c = π/4, Eq. (26) for He = 0 gives

cos(u0)[cos(v0) − sin(v0)] = 0

with solutions u0 = π/2 + a1π and v0 = π/4 + a2π for all
integers (a1,a2). These vertical and horizontal lines define a
web skeleton similar to that in the generic SWC case of l′ > 2
in Sec. IV B. The positions of the lines modulo π for the four
values of x(0)

c = aπ/4 modulo π are summarized in Table I.

C. Transition from ballistic motion to a stochastic web

As shown above, the exceptional cases of l′ = 1,2 feature
ballistic motion for almost all x(0)

c and stochastic webs in small
intervals of x(0)

c around critical values x(0)
c = x(0)

cc . As x(0)
c

approaches some value x(0)
cc , ballistic motion should change

gradually to transport not faster than chaotic diffusion on the
web. Therefore, the average ballistic velocity is expected to
vanish as x(0)

c → x(0)
cc . Defining the average velocity in, say,

the v direction by

Iv ≡ lim
s→∞

1

rs
〈|vrs − v0|〉E , (28)

for some suitable ensemble E of initial conditions, our
numerical results indicate that Iv vanishes almost linearly as
x(0)

c → x(0)
cc . See, e.g., Fig. 10 for the case in Fig. 9, with

x(0)
cc = π/4.

0 0.2 0.4 0.6 0.8
0

0.01

0.02

0.03

x(0)
c

Iv

FIG. 10. The average velocity (28) versus x(0)
c for the case in

Fig. 9 [κ = 0.1,η = π/2 (r = 4), and x(0)
cc = π/4]; Iv was calculated

using Eq. (28) with s = 30 000 and an ensemble E of 20 × 20 initial
conditions in the 2π × 2π unit cell of periodicity.
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VI. SUMMARY AND CONCLUSIONS

In this paper, we have introduced a realistic non-KAM
Hamiltonian system, the KHS defined by Eq. (2) or by Eqs. (3)
and (4), and we have performed a first study of its classical
dynamics and transport in the weak-chaos regime of small
nonintegrability parameter κ = K/ω. We have shown that the
classical Hall effect from the perpendicular magnetic (B) and
electric (E) fields is relatively stabilizing: Under resonance
conditions (8), it induces a suppression of the weak chaos into
superweak chaos (SWC) [defined by Eq. (10)] for a generic
family of periodic kicking potentials (11). The SWC, either
local or global, manifests itself in a decrease of the instability
of periodic orbits and in a narrowing of the corresponding
chaotic layers relative to the ordinary weak-chaos case; see
Figs. 3 and 4. Also, for global SWC on stochastic webs,
the chaotic diffusion on the web is much slower than the
weak-chaos one; see Figs. 6 and 7. This global SWC was
studied in detail in Secs. IV and V in the case of γ = π/2
and the standard potential V (x) = − cos(x). We have shown
that global SWC on stochastic webs is a generic phenomenon,
occurring for all l′ > 2 [where l′ is defined by 4/l = n/l′ with
(n,l′) coprime integers] and for all initial values x(0)

c of xc. In
the special cases of l′ = 1 and l′ = 2, one has, respectively,
weak-chaos and SWC ballistic motion for almost all values
of x(0)

c . A transition from ballistic motion to stochastic-web
diffusion occurs when x(0)

c approaches some critical values
x(0)

cc . The results in Secs. IV and V may be generalized to
arbitrary potential (11).

The relatively slow SWC diffusion on stochastic webs in
the area-preserving map (5) is apparently the two-dimensional
closest analog to the Arnol’d web diffusion in higher dimen-
sional systems. However, while the rate of the latter diffusion
decreases exponentially with the nonintegrability parameter
[10–12], the SWC-diffusion rate is expected to decrease only
algebraically with this parameter.

Maps for kicked systems are usually derived by integrating
over the delta functions in time in Hamilton equations. The
map variables cannot be defined precisely at the kicks (the delta
functions) but only in an infinitesimal vicinity of them, e.g, at
the times sT − 0 in the map (5). By considering the periodic
delta function in Eq. (1) as a limit of a continuous periodic
function with a broad spectrum and by using a method of
canonical transformation of variables [24], one can construct a
“canonical” web map [25] for the system (1) (without electric
field, η = 0) with variables defined precisely at the kicking
times sT . As one could expect, this map was found to differ
significantly from the ordinary web map [Eq. (5) for η = 0]
defined at t = sT − 0. In particular, the stochastic-web width
for the canonical web map can be much smaller than that for
the ordinary one. It would be interesting to investigate to what
extent this phenomenon is similar to the SWC, as defined in
Sec. III A, and to study the KHS (η �= 0) using the canonical-
map approach. It was also found [25] that the stochastic-web
width for the ordinary web map (η = 0) can be quite small
for n = 3 and kicking potential V (x) = − cos(x). Since this
phenomenon occurs for odd n and even V (x), opposite to
the SWC conditions for η = 0 in Sec. III B, it cannot be
identified with SWC and therefore needs a separate detailed
study.

The results in this paper should form the basis for the
study of quantum-chaos phenomena in the quantized KHS.
It is known [18,20] that a quantum manifestation of SWC
for E = 0 [system (1)] is quantum antiresonance; i.e., the
evolution operator for some values of a scaled Planck constant
is identically a phase factor, so that no wave-packet moves.
Since SWC for E = 0 is rare, i.e., it occurs under nongeneric
conditions (see Secs. I and III B), quantum antiresonance for
E = 0 is a rare phenomenon as well. For E �= 0, on the other
hand, quantum antiresonance is expected to emerge under
generic conditions similar to those for SWC in Sec. III C.
The validity of this expectation and other phenomena in the
quantized KHS are planned to be investigated in future works.
Finally, we remark that since the KHS is essentially equivalent
to a modulated kicked harmonic oscillator [see Eq. (3) with
Eq. (4)], the quantized KHS should be experimentally real-
izable using atom-optics methods like the ordinary quantum
kicked harmonic oscillator [26].

APPENDIX A

Consider a lattice a1Z1 + a2Z2 in the complex plane, where
(a1,a2) are all integers and (Z1,Z2) are basic lattice vectors.
We show here that the map (9), for all κ , is invariant in z under
translations on this lattice only if n = 1,2,3,4,6 in Eq. (8).
Since the sum in Eq. (9) involves all the iterates from j = 0
to j = r − 1, this invariance is generally possible only if the
lattice a1Z1 + a2Z2 is invariant under the one-iteration map
(6). Now, in the limit of κ → 0, the map (6) and its inverse
are just rotations exp(±iγ ) by angles ±γ . The invariance of
a1Z1 + a2Z2 under exp(±iγ ) implies, in particular, that the
vector

(eiγ + e−iγ )Z1 = 2 cos(γ )Z1 (A1)

belongs to the lattice above. Therefore, one must have
2 cos(γ ) = a1 (integer). The only solutions of the latter
equation are precisely the values of γ in Eq. (8) with n =
1,2,3,4,6.

We also determine explicitly here basic lattice vectors Z1

and Z2 for the values above of n. Since the function f (x)
in Eq. (6) is 2π -periodic, it is easy to see that for n = 1,2
(γ = 0,π ) one can choose Z1 to be an arbitrary real number
and Z2 = 2πi; for n = 4 (γ = π/2,3π/4), one can choose
Z1 = 2π and Z2 = 2πi. In the triangular case of n = 3 (e.g.,
γ = 2π/3), let us write Z1,2 = ū + iv̄. Then, the invariance
of the second equation of the map (5) under a translation by
Z1,2 implies that

v̄ = 2πa, (
√

3ū + v̄)/2 = 2πā, (A2)

where (a,ā) are integers. Two independent pairs of minimal
values (a,ā) are (1,0) and (0,1). The corresponding pairs (ū,v̄)
from Eq. (A2) give the basic lattice vectors Z1 = 2π (1/

√
3 +

i) and Z2 = 4π/
√

3, both of length 4π/
√

3 and defining a
unit cell of area 8π2/

√
3. Similar results are obtained in the

hexagonal case of n = 6.
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APPENDIX B

We calculate here F in Eq. (20) to first order in κ under the
SWC condition l′ > 1. In particular, the expression (21) for
l′ > 2 is derived.

Since r = 4l′, we write in Eq. (20) j = 4b + w, where
b = 0, . . . ,l′ − 1 and w = 0, . . . ,3:

F = −1

r

3∑
w=0

eiwπ/2
l′−1∑
b=0

sin
[
x(0)

c + (4b + w)η − v4b+w

]
.

(B1)
Let us calculate v4b+w in Eq. (B1) to first order in κ . The map
(5) for f (x) = − sin(x) and γ = π/2 is

us+1 = vs, vs+1 = −us + κ sin
(
x(0)

c + sη − vs

)
. (B2)

By iterating Eqs. (B2), we find that

vs+4 = vs + κ sin
[
x(0)

c + (s + 3)η − us+4
]

− κ sin
[
x(0)

c + (s + 1)η − us+2
]
. (B3)

To get vs+4 to first order in κ , it is sufficient to write us+2 and
us+4 in Eq. (B3) to zero order in κ by using Eqs. (B2) with
κ = 0: us+2 = −us , us+4 = us . Then, Eq. (B3) becomes

vs+4 = vs − κ sin
[
us − x(0)

c − (s + 3)η
]

− κ sin
[
us + x(0)

c + (s + 1)η
]

(B4)

to first order in κ , as all expressions below. By iterating
Eq. (B4), we get for b > 0:

v4b+w = vw − κ

b∑
b′=1

{
sin

[
uw − x(0)

c − (4b′ + w − 1)η
]

+ sin
[
uw + x(0)

c + (4b′ + w − 3)η
]}

. (B5)

Inserting Eq. (B5) into Eq. (B1) and Taylor expanding around
vw up to first order in κ , we obtain

F = − r−1
3∑

w=0

eiwπ/2
l′−1∑
b=0

sin
[
x(0)

c + (4b + w)η − vw

]

− κr−1
3∑

w=0

eiwπ/2
l′−1∑
b=1

cos
[
x(0)

c + (4b + w)η − vw

]

×
b∑

b′=1

{
sin

[
uw − x(0)

c − (4b′ + w − 1)η
]

+ sin
[
uw + x(0)

c + (4b′ + w − 3)η
]}

. (B6)

In the first line of Eq. (B6), the sum over b vanishes
identically like a geometric sum since 4η = 2πn′k/l′, where,
by definition, n′/l′ = 4/l with (n′,l′) coprime integers. Thus,
only the last three lines of Eq. (B6) remain, so that F is of first
order in κ , as expected for l′ > 1 (SWC). Then, after some
trigonometry, Eq. (B6) can be written as follows:

F = −κ

r

3∑
w=0

eiwπ/2 sin(uw − η)(Gw + Qw), (B7)

where

Gw =
l′−1∑
b=1

b∑
b′=1

cos[vw + (4b′ − 4b − 2)η], (B8)

Qw =
l′−1∑
b=1

b∑
b′=1

cos
[
2x(0)

c +2(w+2b+2b′ − 1)η − vw

]
. (B9)

A simple expression for Gw in Eq. (B8) can be derived,

Gw = ei(vw−2η)

2

l′−1∑
b=1

b∑
b′=1

e4i(b′−b)η + c.c. = l′ sin(vw)

2 sin(2η)
, (B10)

after a lengthy but straightforward calculation of the geometric
sums.

Similarly, Qw in Eq. (B9) can be explicitly calculated:

Qw = Aw

l′−1∑
b=1

b∑
b′=1

e4i(b′+b)η + c.c.

= Bw

(
e8il′η − e8iη

e8iη − 1
− e4il′η − e4iη

e4iη − 1

)
+ c.c., (B11)

where

Aw = ei[2x
(0)
c +2(w−1)η−vw]

2
, Bw = e4iηAw

e4iη − 1
. (B12)

Let us show that the expression (B11) vanishes for l′ > 2. Since
4η = 2πn′k/l′, where (n′,l′) are coprime integers (see also
above), one always has exp(4il′η) = exp(8il′η) = 1. However,
for l′ > 2, exp(4iη) �= 1 and also exp(8iη) �= 1. Then the
expression (B11) vanishes.

For l′ = 2, the integer n′k above is necessarily odd, so that
exp(4iη) = −1 and exp(8iη) = 1. Using this in Eq. (B11) with
Eqs. (B12), we get

Qw = cos
[
2x(0)

c + 2(w − 1)η − vw

]
. (B13)

The quantity (B7) for l′ > 2 can now be written in a closed
form by using r = 4l′, Eq. (B10), Qw = 0, and the expressions
of (uw,vw) to zero order in κ , i.e., u1 = −u3 = v0, u2 = −u0,
v1 = −v3 = −u0, and v2 = −v0. We then obtain Eq. (21).

Similarly, using Eqs. (B10) and (B13) in Eq. (B7) for l′ = 2
and η = π/4, we find that

F =
√

2κ

8

[
cos(u0) sin(v0) − i sin(u0) cos(v0)

+ exp
(
2ix(0)

c

)
sin(u0) sin(v0)

+ i exp
( − 2ix(0)

c

)
cos(u0) cos(v0)

]
. (B14)

APPENDIX C

We show here that a stochastic web is associated with the
level set He = 0 for all effective Hamiltonians (22), (24), and
(26).

A stochastic web for the map (17) is a translationally
invariant chaotic region in phase space emerging from het-
eroclinic intersections of the stable and unstable manifolds
of neighboring hyperbolic fixed points of Mγ,η,r . These fixed
points form a lattice in phase space, which is invariant under a
rotation by angle γ = π/2 around z = 0. In the limit of κ → 0,
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Mγ,η,r is described by the integrable effective Hamiltonian
He and the stochastic web reduces to the web skeleton, i.e.,
the union of straight lines connecting the fixed points on the
lattice. Because of the invariance of this lattice under a rotation
by γ = π/2, these lines form two perpendicular sets, each set
consisting of parallel lines in the direction of either the stable
(U−) or unstable (U+) eigenvector of the linear-stability matrix
DMγ,η,r at a fixed point. Therefore, these eigenvectors, which
are the limit κ → 0 of the stable and unstable manifolds, must
be orthogonal. The corresponding eigenvalues have the form
λ± = exp(±σ ), where σ > 0 is a local Lyapunov exponent.

The fixed points (u0,v0) in the κ → 0 limit are determined
from Hamilton equations (19) with u̇ = v̇ = 0:

∂He

∂u

∣∣∣∣
u0,v0

= ∂He

∂v

∣∣∣∣
u0,v0

= 0. (C1)

Denoting R0 = (u0,v0)T, where T stands for transpose, the
linear stability of R0 under small perturbations δR0 is
determined by linearizing Eqs. (19) around R0:

˙δR0 = DHeδR0, (C2)

where DHe is the matrix

DHe =
⎛
⎝

∂2He
∂u0∂v0

∂2He

∂v2
0

− ∂2He

∂u2
0

∂2He
∂u0∂v0

⎞
⎠. (C3)

Assuming the time dependence δR0(t) = U exp(ξ t) in
Eq. (C2), we get the eigenvalue equation

DHeU = ξU. (C4)

Now, as mentioned above, the eigenvectors U±, associated
with hyperbolic fixed points on a stochastic web, must be
orthogonal and the corresponding eigenvalues ξ = ±σ are
real. Therefore, the real matrix (C3) must be symmetric:

∂2He

∂v2
0

= −∂2He

∂u2
0

. (C5)

In what follows, we show that the symmetry condition (C5) is
equivalent to He = 0 in all the cases of Eqs. (22), (24), and (26).

In the case of Eq. (22), condition (C5) is simply −He = He,
implying He = 0.

In the case of Eq. (24), let us first calculate from Eqs. (C1)
the fixed points. Assuming x(0)

c �= 0,π/2, consistent with
Eq. (C6) below, these are given by u0 = π/2 + a1π and v0 =
π/2 + a2π , for all integers (a1,a2). Then, condition (C5) reads

(−1)a1 cos
(
x(0)

c

) = (−1)a2 sin
(
x(0)

c

)
. (C6)

Using Eq. (C6) and the values above of (u0,v0) in Eq. (24),
we find that He = 0. We note that Eq. (C6) also implies that
| tan(x(0)

c )| = 1, i.e., the fixed points are hyperbolic and form
a web skeleton only if x(0)

c = π/4 and a1 + a2 is even or
x(0)

c = 3π/4 and a1 + a2 is odd.
Finally, in the case of Eq. (26), condition (C5) reads again

−He = He, implying He = 0.
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