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Analytical stability boundaries for quantum cascade lasers subject to optical feedback
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We consider nonlinear rate equations appropriate for a quantum cascade laser subject to optical feedback.
We analyze the conditions for a Hopf bifurcation in the limit of large values of the delay. We obtain a simple
expression for the critical feedback rate that highlights the effects of key parameters such as the linewidth
enhancement factor and the pump. All our asymptotic approximations are validated numerically by using a path
continuation technique that allows us to follow Hopf bifurcation points in parameter space.
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I. INTRODUCTION

Since the original demonstration of terahertz quantum-
cascade lasers (QCLs) in 2002 [1], the performance of
these devices has shown rapid improvement. QCLs can
now deliver milliwatts or more of continuous-wave radiation
throughout the terahertz frequency range (300 GHz to 10 THz)
[2]. Therefore, QCLs have become widely used in various
applications such as spectroscopy, metrology, or free-space
telecommunications [3]. In a QCL, the light originates from
intersubband transitions rather than from electron-hole recom-
binations. Electron equilibration between energy subbands
is dominated by phonon-assisted processes that occur on a
fast picosecond timescale that contrasts to the nanosecond
timescale of the carrier lifetime in conventional semiconductor
lasers (SLs). As a consequence, QCLs exhibit no damped
relaxation oscillations and tolerate strong optical feedback [4].
This is of particular interest because the first Hopf bifurcation
instability for conventional SLs is known to exhibit sustained
relaxation oscillations [5,6]. Another feature of QCLs is the
fact that they exhibit low values of the linewidth enhancement
factor (LEF). The LEF expresses a coupling between the
amplitude and the phase of the electrical field and has a
destabilizing effect for conventional SLs if its value surpasses
1 [7].

The effect of optical feedback on QCLs has recently
been examined experimentally [4,8] and numerically [9,10]
with the aim to determine if an oscillatory instability was
possible. Results indicate that QCLs exhibit strong tolerance
to optical feedback and have led to new applications such as
displacement sensors [11] or terahertz imaging [12,13].

As QCLs operate out of equilibrium, a rigorous model-
ing requires nonequilibrium methods. Specifically, different
approaches have been developed to simulate carrier transport
in the nanostructured gain medium. Density matrix, Monte
Carlo, and nonequilibrium Green’s functions methods have
led to predictive models (see review in Ref. [14]) and have
achieved good agreement with experiments [15]. However,
they are often too complex to detect dynamical instabilities and
to explore their dependence in parameter space. Rate equations
models have proven to be very efficient for semiconductor laser
dynamics [16]. A three-level model developed for QCLs has
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been widely used by different groups (see review in Ref. [17])
and successfully describes experimental results under optical
feedback [8]. It is worth noting that the parameters of such a
model are sensitive to the specific design of the laser structure
and may then vary for different designs in a relatively wide
range of values. We have identified several sets of parameters
used in the literature and verified that our conclusions on the
dynamical stability of QCL subject to optical feedback remain
valid for all these parameters ranges.

We propose to determine an analytical approximation of
the first Hopf bifurcation that delimits the domain of stability
in parameter space. All our results are validated numerically
by using a path continuation technique that allows us to
follow Hopf bifurcation points. Our expression for the critical
feedback is simple and permits us to identify the role of the
LEF and the pump current.

We consider a three-level model and we show how these rate
equations can be reduced to the standard Lang and Kobayashi
(LK) delay differential equations [18] for conventional SLs. In
this way, we provide a link to previous analytical and numerical
studies of QCLs subject to optical feedback where the LK
equations have been investigated in the limit of large ratios
of the photon to carrier lifetimes (γ = τp/τc) [4,9]. We then
analyze the limit of large delay of these equations.

The plan of the paper is as follows. In Sec. II, we formulate
the rate equations for two carrier populations coupled to
the electrical field. Time constants for the solitary laser are
well documented for this model and we show how the three
equations can be reduced to the standard LK equations.
We then analyze the conditions for a Hopf bifurcation and
determine an asymptotic expression for the critical feedback
rate. As expected, its value is significantly larger than the
one for conventional SLs but could be reduced if the laser is
operated close to threshold. In Sec. III, we perform systematic
simulations of the original three rate equations that validate
our approximations. Last, in Sec. IV, we discuss our main
results. Mathematical details are relegated in the Appendix.

II. ASYMPTOTIC ANALYSIS

A. Formulation

The response of a QCL subject to a delayed feedback is an-
alyzed using the rate equations formulated in Refs. [17,19,20]
on the basis of a three level model with an extra term describing
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the feedback. These equations consist of a complex equation
for the electric field E coupled to two real equations for carrier
populations N2 and N3. They are given by

dN3

dt
= Iin

q
−

(
1

τ32
+ 1

τ31

)
N3 − g(N3 − N2)|E|2, (1)

dN2

dt
= N3

τ32
− N2

τ21
+ g(N3 − N2)|E|2, (2)

dE

dt
= 1

2
(1 + iα)

[
Npg(N3 − N2) − 1

τp

]
E

+ η′ exp(−i�0θ )E(t − θ ). (3)

In Eqs. (1)–(3), Iin is the injected current into level 3, q is
the electron charge, and g is the gain coefficient. The phonon
scattering times between level 3 and level 2, between level 3
and level 1, and between level 2 and level 1 are denoted by
τ32, τ31, and τ21, respectively. τp is the photon lifetime and α

is the LEF. η′ is the feedback strength, θ is the delay of the
feedback, and �0θ is the feedback phase. From Eqs. (1)–(3)
we formulate in the Appendix dimensionless equations for the
dimensionless electric field Y ′ and carriers V and Z. They are
given by Eqs. (A16)–(A18) in the Appendix and are of the
form

dZ

ds
= γ1[P − γ4Z + γ3V − (1 + 2Z)2|Y ′|2], (4)

dV

ds
= γ2[2Z − V + (1 + 2Z)2|Y ′|2], (5)

dY ′

ds
= (1 + iα)ZY ′ + η exp(−iω0τ )Y ′(s − τ ), (6)

where time s is measured in units of the photon lifetime. P

is the renormalized pump parameter above threshold, τ is the
delay, and γ1, γ2, γ3, and γ4 are dimensionless combinations
of phonon scattering times defined in the Appendix. Based
on typical values of the time constants, it was shown in
Ref. [17] that we may eliminate adiabatically one variable from
Eqs. (4)–(6). We follow the same approach and explain the
adiabatic elimination in the Appendix.

Introducing then Z = 1
2 (N − 1) into Eqs. (A25) and (A26)

to be consistent with the notation of Ref. [9] leads to the
following LK equations [16,18]:

dY

ds
= 1

2
(1 + iα)(N − 1)Y + η exp(−iω0τ )Y (s − τ ), (7)

dN

ds
= γ [I − N (1 + |Y |2)], (8)

where I ≡ P/A + 1, γ ≡ 2γ1A and A ≡ 1
2 (γ4 − 2γ3). We

note from the last column of Table II in Ref. [17] that
A is ranging from 0.6 to 1.1. The parameters of the full
model associated with the intersubband transitions now appear
through this parameter A. γ is an O(1) fixed parameter ranging
from 0.8 to 19 (see Table II in Ref. [17]). It marks the main
difference with the conventional SL where γ is typically an
O(10−3) small quantity. The linear stability analysis of the
nonzero intensity solution (|Y |,N ) = (

√
I − 1,1) indicates

a purely exponential decay if γ > γth ≡ 4(I − 1)I−2. Since
I > 1, γth has its maximal value at I = 2 and is given

by γth = 1. Damped relaxation oscillations are therefore not
possible if γ > 1.

In Ref. [9], θ � 1 ns and τp = 37.4 ps give τ � 30; in
Ref. [10], τp = 4.74 ps and θ = 1 − 6.3 ns lead to τ =
200–1300. Both estimates motivate exploring the limit of large
delay. To this end, we first determine the external cavity modes
(ECMs) and then the conditions for a Hopf bifurcation. These
conditions are transcendental equations which we analyze in
the limit τ → ∞.

Recent studies [4] have shown that the first dynamical
instabilities in QCLs appear at relatively high feedback rate.
The LK equations with a unique feedback term are valid in
the limit of small rates [18], although they have shown to
provide good qualitative agreement with experiments at higher
feedback rates [16]. Several strategies have been developed
to improve the LK model, for example, by adding multiple
reflection terms in the field equation [21]. For QCLs subject
to optical feedback, recent experiments have shown that the
LK equations correctly predict the first oscillatory instability
[4,8,22]. Nevertheless, we may check that our model remains
consistent. It has indeed been pointed out that the LK equations
lose their consistency when the external reflectivity exceeds
the Fresnel reflectivity of the laser facets [23,24]. Following
the strategy of [24], we can estimate this validity limit around
η = 0.5 in our dimensionless units. The values of η considered
in the next sections are below this limit.

B. ECMs and Hopf bifurcation

Introducing the decomposition Y = R exp(−iω0s + iφ),
we reformulate Eqs. (7) and (8) as

dR

ds
= 1

2
(N − 1)R + ηR(s − τ ) cos[φ(s − τ ) − φ], (9)

dφ

ds
= ω0 + 1

2
(N − 1)α + η

R(s − τ )

R
sin[φ(s − τ ) − φ],

(10)

dN

ds
= γ [I − N (1 + R2)]. (11)

The basic solutions are the ECMs with φ = ωs and R and N

constants. With the feedback rate η as the control parameter,
they are given by (in parametric form)

η = − ω − ω0

[α cos(ωτ ) + sin(ωτ )]
, (12)

R2 = I [1 − 2η cos(ωτ )]−1 − 1 � 0, (13)

N = I

1 + R2
. (14)

A necessary condition for stability is [25]

ητF + 1 > 0, (15)

where

F ≡ cos(ωτ ) − α sin(ωτ ). (16)

Condition Eq. (15) was derived in Ref. [25] in the limit of
small values of η [more precisely, η = O(τ−1) as τ → ∞]
when the response of the laser can be described by its phase

052201-2



ANALYTICAL STABILITY BOUNDARIES FOR QUANTUM . . . PHYSICAL REVIEW E 93, 052201 (2016)

only. The unstable branches of ECMs for which Eq. (15) is
not satisfied, are called “antimodes.” The branches of ECMs
satisfying Eq. (15) are called “modes.”

To find if a Hopf bifurcation may destabilize a stable
ECM, we determine the characteristic equation for the growth
rate λ. By inserting λ = iσ and separating the real and
imaginary parts, we obtain the following conditions for a Hopf
bifurcation:

−σ 2[γ (1 + R2) − 2η cos(ωτ )(cos(στ ) − 1)]

+σ

[
η22(cos(στ ) − 1) sin(στ )

−γ (1 + R2)2η cos(ωτ ) sin(στ )

]

+γ (1 + R2)η2[(cos(στ ) − 1)2 − sin2(στ )]

−γ
IR2

1 + R2
η(cos(στ ) − 1)F = 0 (17)

−σ 3 − σ 22η cos(ωτ ) sin(στ )

+σ

[
η2[(cos(στ ) − 1)2 − sin2(στ )]

−γ (1 + R2)2η cos(ωτ )(cos(στ ) − 1) + γ IR2

1+R2

]

−γ (1 + R2)η22(cos(στ ) − 1) sin(στ )

+γ
IR2

1 + R2
η sin(στ )F = 0. (18)

Together with Eqs. (12) and (13), they provide the values of ωτ

and σ at a Hopf bifurcation point. We have verified that these
equations correctly match the conditions derived in Ref. [9]
in the limit γ large. However, we are interested in solutions
of these equations for O(1) values of γ . In order to progress
analytically, we propose an asymptotic solution based on the
limit τ → ∞. A preliminary analysis assuming ωτ , στ , and
ητ as O(1) quantities indicate that a solution is possible only
if σ = 0. This means that a Hopf bifurcation is not possible
if η is O(τ−1) small and that we need to consider the case η

as an O(1) quantity. Assuming now ωτ , στ , and η as O(1)
quantities, we note from Eqs. (17) and (18) that the leading
terms require sin(στ ) = 0 and cos(στ ) − 1 = 0. They imply
that στ = 2nπ where n is an integer. To determine the critical
feedback rate for a Hopf bifurcation, we seek a solution of
Eqs. (17) and (18) of the form

στ = 2nπ + τ−1x1 + τ−2x2 + · · · . (19)

The leading equations are O(τ−2) for Eq. (17) and O(τ−1) for
Eq. (18). They are given by

−(2nπ )2 − 4nπη cos(ωτ )x1 − η2x2
1 + IR2

(1 + R2)2
η
x2

1

2
F = 0,

(20)

2nπ + ηx1F = 0. (21)

A first observation is that γ does not appear in the leading
Hopf condition Eqs. (20) and (21). To determine its effect, we
need the scaling γ = O(τ−2) << 1, which is not physical for
the QCL. This is consistent with the results of Ref. [4], where
it is numerically anticipated that the critical feedback rate is
essentially independent of γ for γ > 1. Solving Eq. (21) for

x1, we obtain

x1 = −2nπ

ηF
. (22)

Introducing then Eq. (22) into Eq. (20), we find

−1 + 2 cos(ωτ )

F
− 1

F 2
+ IR2

(1 + R2)2

1

2ηF
= 0, (23)

where we note that n has disappeared. This means that all the
Hopf bifurcations for a given ECM collapses to the first one
(n = 1), in first approximation as τ → ∞.

The assumption that ωτ and η are O(1) quantities leads to
another important simplification. From Eq. (12), the scalings
of ωτ and η imply that the denominator is O(τ−1) small, or
equivalently, α cos(ωτ ) + sin(ωτ ) = 0. The ECM frequencies
ωτ thus satisfy

tan(ωτ ) = −α. (24)

Two solutions are possible but only one satisfies Eq. (15). The
expressions of sin(ωτ ) and cos(ωτ ) are needed for evaluating
the coefficients in Eq. (23). By using Eq. (24), we find

sin(ωτ ) = − α√
1 + α2

and cos(ωτ ) = 1√
1 + α2

. (25)

Using Eq. (13), we may eliminate R2 in Eq. (23) and
reformulate the Hopf condition as a linear equation for I.

Using Eq. (25) and simplifying, we obtain I = I (η) as

I = 1

1 − 2η
√

α2 + 1

(
1 − 2η√

1 + α2

)2

, (26)

where we recall that I = P/A + 1. The function η = η(I )
increases from I = 1 and saturates at η = ηmax as I → ∞,
where

ηmax = 1

2
√

α2 + 1
. (27)

We may also determine an expression for η as a function of α

(I fixed). Specifically, we formulate from Eq. (23) a quadratic
equation for η, which we solve. The solution is

η± =
√

1 + α2

4
[2 − (1 + α2)I ±

√
(1 + α2)2I 2 − 4Iα2].

(28)
If I < 1 and α < 1, both solutions are real and positive in
a fixed interval Ic � I � 1. If I > 1, η+ is the only positive
solution. It approaches η = 1/2 as α → 0, whatever the value
of I > 1.

We illustrate and discuss our results in the next section.

III. NUMERICAL SIMULATIONS

In order to discuss the validity of our asymptotic ap-
proximations, we have determined numerically the Hopf
bifurcation points from the original equations. Specifically
we consider the dimensionless Eqs. (4)–(6). We progressively
increase the feedback level to detect the first Hopf bifurcation
destabilizing the continuous wave output of the laser. We
then use a path continuation technique to follow this Hopf
bifurcation in parameter space. Although our analysis is valid
for arbitrary values of the feedback phase, we limit our

052201-3



FRIART, VAN DER SANDE, VERSCHAFFELT, AND ERNEUX PHYSICAL REVIEW E 93, 052201 (2016)

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100

fe
ed

ba
ck

st
re

ng
th

η

delay time τ

α = 5.0, P = 0.5

α = 1.0, P = 0.5

α = 5.0, P = 1.5

α = 1.0, P = 1.5

FIG. 1. Critical feedback strength ηHopf as a function of the
delay τ obtained by path continuation of Eqs. (4)–(6) for different
values of the LEF α and the pump P . The values of the fixed
parameters are γ1 = 2.75, γ2 = 16.49, γ3 = 0.35, γ4 = 2.81, and
ω0τ = 0 (mod 2π ). When the delay increases, ηHopf decreases and
progressively reaches a constant plateau. The analytical approxima-
tion Eq. (28) of the Hopf bifurcation point (indicated by the arrows)
in the large delay limit provides the value of this plateau.

numerical investigations to the case ω0τ = 0 because it has
little effects if the delay is large (see Sec. II.D.1. in Ref. [26]).

We first analyze how the critical feedback strength ηHopf,
given by η in Eq. (26) or η+ in Eq. (28), depends on the
delay τ of the feedback; see Fig. 1. At small delay times, the
Hopf bifurcation appears at high feedback rates, for which
the rate equations considering only a single reflection are no
more valid. Moreover these high feedback rates are hard to
reach experimentally. The laser output is consequently stable
for small delays and a broad range of feedback strength.
When the delay increases, ηHopf decreases and progressively
reaches a constant plateau. The asymptotic Eq. (28) of the
Hopf bifurcation in the large delay limit provides this constant
plateau, indicated by the arrows in Fig. 1. Depending on the
particular values of P and α, the asymptotic approximation
becomes good for values of the delay between 100 and 500. A
dimensionless delay of 100 corresponds to an external cavity
length of a few centimeters.

We compare our Eq. (26) of ηHopf as a function of the pump
with the numerical results obtained by the path continuation
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FIG. 2. Critical feedback strength ηHopf as a function of the pump
parameter P for α = 1 and α = 5 (τ = 100). The continuous lines
are the numerical continuations of the bifurcation point while the
dashed lines correspond to the asymptotic Eq. (26). Same values of
the fixed parameters as described in the caption of Fig. 1.
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FIG. 3. Critical feedback strength ηHopf as a function of the LEF
α for P = 0.5 and P = 1.5 (τ = 500). The continuous lines are the
numerical results obtained by the path continuation of the bifurcation
point while the marks denote the asymptotic values obtained from
Eq. (28). Quantitative agreement is observed for τ = 500.

method in Fig. 2. The figure shows that, already for τ = 100,
Eq. (26) reproduces well the main trend of the curve and is
in good quantitative agreement for large values of α. Only as
P → 0, the approximation of the Hopf bifurcation point in
terms of the feedback rate progressively fails because η → 0
contradicts our basic assumption η = O(1).

In Fig. 2, the exact numerical bifurcation lines (continuous
lines) continue to small negative values of the pump. This is
possible because the feedback reduces the threshold. From
Eq. (13) with R = 0 and using Eq. (25), we find that the
threshold current is given by

Ith = 1 − 2η√
1 + α2

. (29)

This reduction was verified experimentally in [10].
Moreover, Eq. (28) indicates that two Hopf bifurcations are

possible below P = 0 if α2 < 1. To further study this case a
new analysis where both η and I − 1 are scaled with respect
to τ−1 will be needed.

Finally, we discuss the influence of the linewidth
enhancement factor α on the stability of the laser output.
Figure 3 shows ηHopf as a function of α for a large delay
(τ = 500). Our asymptotic approximation is in good
agreement with the numerical results. As expected, α has a
destabilizing effect. This corroborates the similar conclusions
obtained using the conventional LK model for the QCL in
Ref. [9].

IV. CONCLUSION

In this paper, we show how the three level rate equations
for a QCL subject to feedback reduce to the LK equations.
We derive an asymptotic expression of the Hopf bifurcation
point destabilizing the steady intensity valid in the limit of
large delay. Using the full three level model, we determine
numerically the Hopf bifurcation point in parameter space by
using a continuation technique. As the delay is increased, the
critical feedback rate progressively reaches a constant value,
which substantiates our asymptotic results. A QCL laser with
small LEF is more tolerant to optical feedback. Moreover,
increasing the pump current increases the critical feedback
strength. For a conventional semiconductor laser, ηHopf is
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generally an O(10−3) quantity [16]. For a QCL ηHopf is an
O(10−1) quantity but could be reduced if the laser is closed
to threshold (P small). This is indeed the strategy followed
in Ref. [22] to find experimental evidence of pulsating insta-
bilities. The scaling law between the critical feedback and the
pump parameter can be found by expanding Eq. (26) for small
η. We find that η is proportional to P for small P and α > 1.
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APPENDIX

Starting from Eqs. (1)–(3), we first introduce the new
time s ≡ t/τp and the new variable N ≡ N3 − N2. The later
is motivated by the fact that N3 − N2 appears in all three
equations. We rewrite Eqs. (1)–(3) in terms of s, N , N2, and φ

and obtain

1

τp

dN

ds
= Iin

q
−

(
2

τ32
+ 1

τ31

)
N − 2gN |E|2

+
[

1

τ21
−

(
2

τ32
+ 1

τ31

)]
N2, (A1)

1

τp

dN2

ds
= N

τ32
−

(
1

τ21
− 1

τ32

)
N2 + gN |E|2, (A2)

dE

ds
= 1

2
(1 + iα)[τpNpgN − 1]E

+ η′τp exp(−i�0θ )E(s − θ/τp). (A3)

Second, the expression in brackets in Eq. (A3) motivates us to
rename N so that this expression can be reduced to a single
term. Specifically, we introduce the new variable Z as

N = 1 + 2Z

Npgτp

. (A4)

We then obtain

2τ32

Npgτ 2
p

dZ

ds
= Iinτ32

q
−

(
2 + τ32

τ31

)
1 + 2Z

Npgτp

+
[
τ32

τ21
−

(
2 + τ32

τ31

)]
N2

− 2gτ32
1 + 2Z

Npgτp

|E|2, (A5)

τ32

τp

dN2

ds
= 1 + 2Z

Npgτp

−
(

τ32

τ21
− 1

)
N2 + τ32g

1 + 2Z

Npgτp

|E|2,

(A6)

dE

ds
= (1 + iα)ZE + η′τp exp(−i�0θ )E(s − θ/τp).

(A7)

Third, the laser threshold of the solitary laser corresponds to
Z = |E| = 0. From Eq. (A6) at steady state, this then implies
that N2 = [Npgτp( τ32

τ21
− 1)]−1. This expression motivates in-

troducing the new variable V as

N2 = 1

NpgτP

1 + V(
τ32
τ21

− 1
) . (A8)

Inserting Eq. (A8) into Eqs. (A5)–(A7), we obtain

2τ32

Npgτ 2
p

dZ

ds
= Iinτ32

q
−

(
2 + τ32

τ31

)
1 + 2Z

Npgτp

+
[

τ32

τ21
−

(
2 + τ32

τ31

)]
1

NpgτP

1 + V(
τ32
τ21

− 1
)

− 2gτ32
1 + 2Z

Npgτp

|E|2, (A9)

τ32
(

τ32
τ21

− 1
)−1

Npgτ 2
P

dV

ds
= 1 + 2Z

Npgτp

+ τ32g
1 + 2Z

Npgτp

|E|2

−
(

τ32

τ21
− 1

)
1

NpgτP

1 + V(
τ32
τ21

− 1
) ,

(A10)

dE

ds
= (1 + iα)ZE + η′τp exp(−i�0θ )E(s − θ/τp).

(A11)

Simplifying,

dZ

ds
= τp

τ32

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Npgτp

2
Iinτ32

q

−(
2 + τ32

τ31

)
1
2 − (

2 + τ32
τ31

)
Z

+[
τ32
τ21

− (
2 + τ32

τ31

)]
1
2

1(
τ32
τ21

−1
)

+[
τ32

2τ21
− (

1 + τ32
2τ31

)]
V(

τ32
τ21

−1
)

−gτ32(1 + 2Z)|E|2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (A12)

dV

ds
= τp

τ32

(
τ32

τ21
− 1

)[
2Z − V

+τ32g(1 + 2Z)|E|2
]
, (A13)

dE

ds
= (1 + iα)ZE + η′τp exp(−i�0θ )E(s − θ/τp),

(A14)

and introducing

Y ′ =
√

gτ32

2
E, (A15)

we obtain

dZ

ds
= γ1[P − γ4Z + γ3V − (1 + 2Z)2|Y ′|2], (A16)

dV

ds
= γ2[2Z − V + (1 + 2Z)2|Y ′|2], (A17)

dY ′

ds
= (1 + iα)ZY ′ + η exp(−iω0τ )Y ′(s − τ ). (A18)
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The parameters γ1, γ2, γ3, γ4, P , η, τ , and ω0 are defined by

γ1 = τp

τ32
, γ2 =

(
τ32

τ21
− 1

)
τp

τ32
, (A19)

γ3 =
(

τ32

2τ21
− 1 − τ32

2τ31

)
1(

τ32
τ21

− 1
) , (A20)

γ4 = 2

(
1 + τ32

2τ31

)
, P ≡ Npgτpτ32

2

Iin − Ith

q
, (A21)

η = η′τp, τ = θ/τp, ω0 = �0τp. (A22)

The threshold current satisfies

Npgτpτ32

2

Ith

q
−

(
1 + τ32

2τ31

)

+
(

τ32

2τ21
− 1 − τ32

2τ31

)
1(

τ32
τ21

− 1
) = 0. (A23)

The large value of γ2 [17] suggests to eliminate V by a quasi-
steady-state approximation. Equation (A17) then gives

V = 2Z + 2(1 + 2Z)|Y ′|2. (A24)

The remaining equations are now of the form

dZ

ds
= 1

2
γ1(γ4 − 2γ3)[P ′ − 2Z − (1 + 2Z)|Y |2], (A25)

dY

ds
= (1 + iα)ZY + η exp(−iω0τ )Y (s − τ ), (A26)

where Y = 2
√

1−γ3

γ4−2γ3
Y ′ and P ′ = 2P

γ4−2γ3
.
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