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Exactly solvable antiferromagnetic Blume-Capel model on a sawtooth chain
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The geometrically frustrated spin-1 Blume-Capel model on an infinite sawtooth chain is exactly solved by the
transfer matrix method. The magnetization, ground-state phase diagram, magnetocaloric properties, and specific
heat of the system are investigated. The results indicate that: (i) Magnetization plateaus appear at zero temperature.
Their number depends on the sign of the crystal field D. For D � 0 there are two magnetization plateaus; however,
for D < 0 five plateaus exist. At a finite temperature, thermal excitation will destroy these plateaus completely.
(ii) Phase transition between any two long-range-ordered ground states, whose spin configurations are given in
phase diagram, is the first-order one. The macroscopic degeneracy of the ground states described by the entropy
only exists at phase coexistence points. (iii) As temperature approaches zero, magnetocaloric properties and
entropy change sharply near phase coexistence points. (iv) The crossovers of the specific heat from a single-peak
structure to double-peak ones can signal the phase coexistence points in ground-state phase diagram.
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I. INTRODUCTION

Geometrically frustrated spin systems (GFSS) [1] exhibit
many interesting and intriguing phenomena in both experimen-
tal and theoretical investigations (see Ref. [2] and references
therein). An antiferromagnetic model on a regular lattice, in
which all elementary (minimal) closed contours are formed
by odd number of sites, provides a good theoretical platform
to depict and investigate these phenomena of GFSS. A very
simple but nontrivial example is the antiferromagnetic model
on the sawtooth chain with a topology of corner-sharing
triangles (see Fig. 1). The sawtooth chain exists in some
magnetic compounds, such as the delafossite YCuO2.5+x [3,4]
and the olivines ZnL2S4 (L = Er, Tm, Yb) [5]. Despite of
oversimplification to some extent, this model has attracted a
considerable amount of attention [6,7], since it may capture a
number of important features of real systems [8–11], such
as a double-peak structure of the specific heat. Recently,
although some exact solutions of the low-dimensional spin-1/2
GFSS [12–18] have been reported, it is still an open issue to
exactly describe the thermodynamics of the sawtooth chain
with higher spins.

The spin-1 Blume-Capel (BC) model [19,20] plays a
crucial role in both statistical mechanics and condensed matter
physics. Crystal field D (sometimes named as the single-ion
anisotropy parameter) within this model is an important
parameter that may affect the system’s critical properties. As a
typical paradigm in the standard Ising universality class [21],
the BC model has been intensively studied on bipartite
lattices [22–29], in which the sign of the exchange coupling
J is irrelevant to their critical properties in the absence of
the external field. However, an antiferromagnetic BC model
(J < 0) on nonbipartite lattices may display different behaviors
qualitatively [30–36]. The frustrated antiferromagnetic spin-
1 BC model on a triangular lattice has been investigated
by renormalization group method [37] and transfer matrix
method [38], respectively. It is found that finite-temperature
antiferromagnetic long-range order accompanying with mul-
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ticritical phenomena appears within a certain range of the
crystal field D strength. For the frustrated Ising models
with spin-1/2, it takes a long time to investigate whether
long-range-ordered ground states (LROGS) exist in these
systems [39–43]. Besides the frustrated antiferromagnetic
BC model, little work studying on LROGS of spin-1 BC
model has been reported. Thus, to deeply understand the
basic properties of various GFSS, it is worthwhile to find
out the exact solutions of the related systems. Recently, exact
solutions of spin-1/2 antiferromagnetic Ising and Ising-like
models were obtained [44,45]. To the best of our knowledge,
the thermodynamics of the geometrically frustrated BC model
on a sawtooth chain has not been exactly solved.

Therefore, the motivation for the present work was to solve
the geometrically frustrated antiferromagnetic BC model on
a sawtooth chain by the transfer matrix method. We will
mainly focus on the magnetic properties and specific heat of
the system. Our results indicate that the system exhibits several
magnetization plateaus at zero temperature. These plateaus are
associated with different LROGS, which depend on the sign
of the crystal field D. Each phase transition presented on the
ground-state phase diagram is the first-order one. As to the
specific heat, it exhibits a crossover from a double-peak struc-
ture to a single-peak one as the parameters (crystal field and
magnetic field) approach the phase coexistence point (PCP).

The rest of paper is organized as follows. In Sec. II,
the antiferromagnetic BC model on a sawtooth chain is
introduced, and then its exact solution is derived by the transfer
matrix method. In Sec. III, the magnetic properties and the
ground-state phase diagram are analyzed. In Sec. IV, the
magnetocaloric properties and the specific heat are studied
in detail. Conclusion is given in Sec. V.

II. MODEL AND METHOD

The antiferromagnetic spin-1 Blume-Capel model on an
infinite sawtooth chain in an external magnetic field H is
schematically shown in Fig. 1. Obviously, the coordination
numbers of each top site and underline one are 2 and 4,
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FIG. 1. Antiferromagnetic BC model on an infinite sawtooth
chain. Sites that belong to two different sublattices (top and bottom)
are denoted as s1,i and s2,i , respectively.

respectively. Thus, the model’s Hamiltonian reads

H = −J
∑

i

(s1,i s2,i + s1,i s1,i+1 + s2,i s1,i+1)

−D
∑

i

(
s2

1,i + s2
2,i

) − H
∑

i

(s1,i + s2,i), (1)

where J < 0 is the antiferromagnetic exchanging parameter
between two nearest-neighbor spins, D is the crystal field,
s1,i , s2,i = ±1, 0. In Eq. (1), the first sum runs over all the
nearest-neighbor spin pairs, the second and the third sums run
over all the spin sites.

According to the conventional method in statistical physics
to deal with thermodynamics problems, the system’s partition
function should be obtained first. By introducing the free
energy, some thermodynamic parameters, such as magneti-
zation and specific heat, may be expressed by it and its partial
derivatives. The partition function of the model defined by
Eq. (1) reads

Z =
∑
s1

∑
s2

e−βH =
∑
s1

∑
s2

exp

[
K

∑
i

× (s1,i s2,i + s1,i s1,i+1 + s2,i s1,i+1)

+ d
∑

i

(
s2

1,i + s2
2,i

) + h
∑

i

(s1,i + s2,i)

]
, (2)

where β = 1/(kBT ), kB is the Boltzmann constant, T is
the thermodynamics temperature, K = βJ , d = βD, and
h = βH . The sum over s1 and s2 in Eq. (2) means the
summations over all possible spin configurations on the lattice.

As mentioned above, our aim is to investigate the BC
model on an infinite sawtooth chain. To achieve this goal, we
first assume that there are 2N sites on the sawtooth chain.
s1,i , s2,i , and s1,i+1 in a triangle consist of the ith block;
see Fig. 1. Thus, the chain may be divided into N blocks.
In order to ensure that the system obeys the translational
symmetry, we adopt the periodic boundary conditions (cyclic
conditions); i.e., s1,N+i = s1,i and s2,N+i = s2,i . Naturally, the
infinite sawtooth chain may be obtained as N → ∞. Because
Hamiltonians of different blocks are commutative, one can
expand the exponent in Eq. (2) and get the product of the
terms corresponding to different blocks; i.e.,

Z =
∑
s1

N∏
i=1

∑
s2=−1,0,1

exp

[
K(s1,i s2,i + s1,i s1,i+1 + s2,i s1,i+1)

+ d

(
s2

1,i + s2
1,i+1

2
+ s2

2,i

)
+h

(
s1,i + s1,i+1

2
+ s2,i

)]
. (3)

Equation (3) shows that the trace for each block can be
calculated separately. The sum in Eq. (3) over all states of
spin s2 in each block can be obtained independently from the
others. It yields

Z =
∑
s1

N∏
i=1

(z1 + z2 + z3), (4)

where

z1 = exp
[−K(s1,i − s1,i s1,i+1 + s1,i+1)

+d
(
s2

1,i + s2
1,i+1 + 2

)/
2 + h(s1,i + s1,i+1 − 2)/2

]
,

z2 = exp
[
Ks1,is1,i+1+d

(
s2

1,i+s2
1,i+1

)/
2+h(s1,i+s1,i+1)/2

]
,

z3 = exp
[
K(s1,i + s1,i s1,i+1 + s1,i+1)

+d
(
s2

1,i + s2
1,i+1 + 2

)/
2 + h(s1,i + s1,i+1 + 2)/2

]
.

After applying the periodic boundary conditions to Eq. (4),
it can be written in the standard transfer matrix form

Z = TrV N, (5)

where V is the transfer matrix,

V =
⎛
⎝w11 w12 w13

w21 w22 w23

w31 w32 w33

⎞
⎠. (6)

Here,

w11 = exp(−K+2d)+ exp(K+d+h)+ exp(3K+2d+2h),

w12 = exp[−K+(3d−h)/2]+ exp[(d+h)/2]

+ exp[K+3(d+h)/2],

w13 = exp(−K+2d−h)+ exp(−K+d)+ exp(−K+2d+h),

w21 = exp[−K+(3d−h)/2]+ exp[(d+h)/2]

+ exp[K+3(d+h)/2],

w22 = exp(d−h)+1+ exp(d+h),

w23 = exp[K+3(d−h)/2]+ exp[(d−h)/2]

+ exp[−K+(3d+h)/2],

w31 = exp(−K+2d−h)+ exp(−K+d)+ exp(−K+2d+h),

w32 = exp[K+3(d−h)/2]+ exp[(d−h)/2]

+ exp[−K+(3d+h)/2],

w33 = exp(3K+2d−2h)+ exp(K+d−h)+ exp(−K+2d).

Equations (5) and (6) mean that the partition function can
be written in the form of the sum of the N th power of the
eigenvalues λi (i = 1,2,3) of the transfer matrix, namely,

Z =
3∑

i=1

λN
i . (7)

Since the characteristic equation of Eq. (6) is a third-order
polynomial equation, it may have three real eigenvalues, or
one real eigenvalue together with two complex conjugate
eigenvalues. It is easy to obtain their analytical expressions.
Numerical analysis show that the transfer matrix Eq. (6) always
has three real eigenvalues and one is always larger than the
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other two. Let λ1 be the largest eigenvalue and its explicit
expression is

λ1 = a

3
+ 1

3

[(
b + 3

√
3c

2

)1/3

+
(

b − 3
√

3c

2

)1/3]
, (8)

where

b = 2a2 + 9ap + 27q,

c = 4a3q + 18apq + 27q2 − a2p2 − 4p3,

a = w11 + w22 + w33,

p = w12w21 + w13w31 + w23w32 − w11w22

− w22w33 − w33w11,

q = w11w22w33 + w12w23w31 + w13w21w32

− w11w23w32 − w12w21w33 − w13w22w31.

In the limit N → ∞, it can be proved that the partition
function is completely determined by the largest eigenvalue
λ1 itself, namely,

Z = λN
1 , N → ∞. (9)

For further analysis, we introduce the free energy per site
f = − ln Z/(2Nβ). Its expression is

f = − ln λ1

2β
. (10)

Combining Eq. (10) with Eq. (8), one can obtain the
analytical expression of f . As mentioned above, once the
analytical expression of f is derived, one can immediately
use it to investigate the other physical quantities, such as the
magnetization, magnetocaloric properties, and specific heat,
which are defined as the corresponding partial derivatives of
the free energy, respectively. In the following sections, we shall
focus on these properties of the model. From these analytical
expressions, we investigate the magnetic properties and spin
configurations of the ground states of BC model on an infinite
sawtooth chain.

III. MAGNETIZATION AND THE GROUND STATES

A. Magnetization

The magnetization per site is given by the following
relation:

m ≡ −
(

∂f

∂H

)
T

= 1

2λ1

∂λ1

∂h
. (11)

To obtain the second relation in Eq. (11), Eq. (10) and the
relation h = βH were used. Inserting Eq. (8) into Eq. (11), one
can directly obtain the corresponding explicit expression of the
magnetization m. However, its expression is too cumbersome
to be presented here.

For different D/|J |, the total magnetization as a function
of the external magnetic field H for several values of the
reduced temperature kBT /|J | are shown in Fig. 2. Figure 2
exhibits that at low temperature (e.g., kBT /|J | = 0.01),
magnetization shows three typical behaviors for different
values of D/|J |. Moreover, the magnetization curves exhibit
several magnetization plateaus, which are quite reminiscent of
the zero-temperature magnetization plateaus (corresponding

FIG. 2. The total magnetization per site as a function of the
external magnetic field for various values of the reduced temperature.
(a) D/|J | = 1, (b) D/|J | = −0.5, (c) D/|J | = −2.

to LROGS at zero temperature). It is noteworthy that the true
magnetization plateaus and magnetization jumps appear just
at zero temperature (see an example in Fig. 6), while the
magnetization is continuous at any finite temperature even
though low-enough temperature. Figure 2 indicates that, due
to the effect of thermal fluctuation, the magnetization plateaus
vanish quickly as temperature increases.

According to the aforementioned discussion on the magne-
tization plateau, we can get some important properties of the
ground states from low-temperature data. At low temperature,
for D/|J | > 0, there are two magnetization plateaus with m =
±0.5 [see Fig. 2(a)]. Positive D tends to drive the spin locating
at +1 or −1 state. As |H | decreases, effect of antiferromagnetic
interaction becomes evident. That is to say, each fourth spin
reverse, the system exhibits its antiferromagnetic property.
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|m| decreases from 1 to 0.5. However, for D/|J | < 0, there
are five magnetization plateaus with m = 0, ±0.5, ±0.75
[see Figs. 2(b) and 2(c)]. As |H | decreases, negative D and
frustration effect tend to drive part of spins locating at 0
state. The competition among negative D, antiferromagnetic
interaction, and H results in more ground states than those in
the case of D/|J | > 0.

Figure 2 exhibits that the temperature plays an impor-
tant role in affecting the magnetization and existence of
the LROGS. To clearly illustrate its effect, for D/|J | =
1, −0.5, −2, Fig. 3 plots the total magnetization curves
versus kBT /|J | with several different H/|J |. Since m is
an odd function of H/|J | (i.e., m(kBT /|J |,D/|J |,H/|J |) =
−m(kBT /|J |,D/|J |, − H/|J |)), it is sufficient to restrict our
discussion to the positive values of H/|J |. In general, m

decreases with increasing temperature because the thermal
fluctuation weakens the magnetization. However, as T → 0,
all magnetization curves converge to the same asymptotic limit
provided the magnetic field is selected within the stability
range of a given magnetization plateau (LROGS), while the

FIG. 3. The total magnetization per site as a function of the
reduced temperature for various values of the external magnetic field
H/|J |. (a) D/|J | = 1, (b) D/|J | = −0.5, (c) D/|J | = −2.

FIG. 4. Ground-state phase diagram. The phase coexistence
curves divides the phase diagram into ten regions. Each region corre-
sponds with a long-range-ordered ground state, whose corresponding
configuration is given in the inset. The symbol “↑,” “o,” or “↓” on each
lattice point represents the state +1, 0, or −1 of the corresponding
spin, respectively.

special asymptotic limit of exactly one curve corresponds to
a PCP of the first-order phase transition. As mentioned in
the above paragraph, the number of the LROGS depends on
D/|J |. For D/|J | = 1, there are four LROGS and three PCPs.
For D/|J | = −0.5 or −2, there are seven LROGS and six
PCPs. One can also obtain the same results from Fig. 4.

B. Ground-state phase diagram

Having the explicit expression for the total magnetization
per site Eq. (11), it is possible to perform an exact analysis
of the magnetization properties of all ground states, i.e., the
system’s spin configurations at T = 0. The ground-state phase
diagram with spin configurations is shown in Fig. 4.

Figure 4 shows that there are ten jointed regions in the
plane of H/|J | versus D/|J |. These regions indicate that the
system has ten LROGS with the magnetization m = 0, ±0.5,
±0.75, and ±1, respectively. The infinite sawtooth chain can
be divided into lots of periodic element cell with four spins,
as shown in the insets of Fig. 4. The symbol “↑,” “o,” or
“↓” on each lattice point represents the state +1, 0, or −1 of
the corresponding spin, respectively. Figure 4 exhibits that at
T = 0 positive D tends to drive the spin locating at +1 or −1
state; nevertheless, negative D and frustration effect tend to
drive part of spins locating at 0 state, which agrees well with
the results shown in Fig. 2. The lines and their joints (indicated
by triangle, square, pentagon, or circle) represent the phase
coexistence lines and PCPs of the model, respectively. The
horizontal dot lines divide the different spin configurations
with the same m.

According to Eq. (11), all the approximate numerical values
of the PCPs’ magnetization may be calculated. They are shown
in Fig. 5. Take a phase transition line (the dark yellow dash dot
line in Fig. 5) from m = 1 to 0.75 for example, its approximate
numerical value is m ≈ 0.861803, which was obtained by the
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FIG. 5. The values of the magnetization and entropy at PCPs.

following exact expression of the magnetization:

m = (3 + 1/
√

5)/4. (12)

Inserting the relation D/|J | = −H/|J | + 4 into Eq. (11), and
then finding its asymptotic limit as T → 0, one can obtain
Eq. (12). The rest of the exact values of m can be derived by
the same way. To keep the text concise, they are given in the
Appendix.

As expected, the magnetization of PCP is different from its
adjacent LROGS. To clearly illustrate the differences between
the magnetizations of the LROGS and those of the PCPs, we
plot the total magnetization as a function of H for D/|J | = −1
at zero temperature (see Fig. 6). Obviously, the LROGS and
the PCPs have different magnetization. Moreover, from Fig. 6
one may find that the system must undergo a PCP in each phase

FIG. 6. The magnetization of the model as a function of the
external magnetic field for T = 0 and D/|J | = −1. The values of
magnetization at PCPs (H/|J |,D/|J |) = (∓5, −1), (∓3, −1), and
(∓1,−1) are m ≈ ∓0.861803, m ≈ ∓0.620859, and m = ∓0.25,
respectively.

transition from one LROGS to another. Thus, these transitions
are first-order phase transitions.

C. The degeneracy of the ground state

On the one hand, phase coexistence exists at discontinuous
phase transition lines and PCPs. It leads to a nontrivial
macroscopic degeneracy of the ground states. The macroscopic
degeneracy may be described by the entropy S of the entire
system,

S = kB ln �. (13)

On the other hand, from Eq. (10) the entropy of the present
model, which consists of 2N sites, is given as follows:

S = −2N
∂f

∂T
= NkB

[
ln λ1 + T

∂(ln λ1)

∂T

]
. (14)

Inserting Eq. (8) into Eq. (14), one can directly obtain the
analytical expression of the entropy S. However, it is too
cumbersome to be presented here. Employing the expression
of the entropy and the same method used in obtaining
magnetization, one can calculate the entropy S for the PCP.

Figure 5 presents all the numerical values of the entropy S

(in units of NkB) for each PCP. It is found that their values
approach to infinite as N → ∞. Combining these results with
Eq. (13), we know that the degree of degeneracy of each PCP
is infinite. Figure 5 shows that three completely different phase
boundaries with m ≈ 0.861803, 0.723607, and 0.638197
have the same value of the entropy. This phenomenon can
be interpreted as that all those phase boundaries belong to the
universality class of the hard-dimer model and the magnetiza-
tion values are different just because either down or zero spin
state are replaced with the notion of the hard dimers [46,47].
However, there is merely one state configuration for each
LROGS. Thus, there is no degeneracy. Naturally, the system’s
entropy is zero at LROGS.

IV. THERMAL PROPERTIES OF THE MODEL

A. Magnetocaloric properties

Recently, it has been demonstrated that several frustrated
spin systems may exhibit an enhanced magnetocaloric effect
during the adiabatic demagnetization, which might be of
practical importance for low temperature magnetic refrigera-
tion [48–50]. This fact stimulates us to investigate the magne-
tocaloric properties of BC model on an infinite sawtooth chain.
Using Eq. (11) and thermodynamic Maxwell equation, we can
obtain the isothermal magnetic entropy change per spin:

�S =
∫ H

0

(
∂m

∂T

)
H

dH. (15)

To explore the magnetocaloric properties of the model, we
first present response of the magnetization to the change of
temperature in a constant magnetic field. As shown in Fig. 7(a),
the most distinct changes of ( ∂m

∂T
)
H

appear only near the field-
induced phase transitions, while almost no changes can be
seen within the respective plateaus. The phenomenon reflects
that at low temperature the thermal fluctuation cannot destroy
the LROGS far away from the PCPs, but it plays an important
role in varying m from a LROGS to another across a PCP.
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FIG. 7. (a) Field-dependence of the derivative of magnetization
with respect to temperature at constant field for kBT /|J | = 0.1.
(b) Field-dependence of the isothermal entropy change for
kBT /|J | = 0.1.

This behavior of the magnetization response to the change
of temperature may be translated into the magnetic entropy
change �S, as evidenced in Fig. 7(b). Combining Fig. 4
with Fig. 7(b), one can find the physical reason for the
different behaviors of curves with different signs of D/|J |.
For D/|J | � 0, the system is in a state of phase coexistence in
absence of a magnetic field. As the magnetic field H increases,
�S < 0. For D/|J | < 0, the system is in a LROGS when
H = 0. As H increases, �S � 0. Obviously, the most distinct
magnetocaloric effect can be detected only around the PCPs as
H approaches the values of transition magnetic field. With the
external field augmenting, the increase of �S can be explained
in terms of the low-lying thermal excitation arising from a
LROGS without degeneracy to a PCP with infinite degree of
degeneracy, and vice versa. In the former case the system
cools down and in the latter case it heats up when the external
magnetic field is augmented adiabatically.

B. Specific heat

Last but not least, let us explore in detail the specific heat
per site of the model. From the free energy Eq. (10), the

specific heat per site is given directly by the largest eigenvalue
λ1, namely,

c(T )=−T

(
∂2f

∂T 2

)
H

=kBT

2

{
2
∂(ln λ1)

∂T
+T

∂2(ln λ1)

∂T 2

}
. (16)

In fact, the dependency behavior of the specific heat
on the temperature exhibits similar characteristics near
different PCPs. Here we only give two typical examples. For
D/|J | = −2 and 1 the overall characteristics of the specific
heat as a function of the temperature for several magnetic
fields H/|J | are shown in Figs. 8(a)–8(d), respectively.
At PCPs [(D/|J |, H/|J |) = (−2,2), (1,4)] the specific
heat exhibits a broad peak, which is a common feature
of the one-dimensional antiferromagnetic quantum spin
system [51]. When the parameters leave away from the
PCPs in any direction, the specific heat exhibits double-peak
structure. Besides the aforementioned broad peak, a rather
sharp peak at a lower temperature appears. As the parameters
change further, the specific heat broadens and exhibits merely
a single peak. The above analysis indicates that the crossovers
of specific heat from single-peak behavior to double-peak
ones can signal the PCPs in ground-state phase diagram.

Similar double-peak structures of the heat specific have
been discussed on several systems previously [8,11,12]. For
spin-1/2 GFSS on a finite sawtooth chain, both the triplet
and the singlet first excited states converge to the exactly
dispersionless excited states with an identical energy in the
thermodynamic limit [8]. Comparing Fig. 8 in this paper
with Fig. 3 in Ref. [8], one may conjecture that energies of
a higher-energy singlet and a lower-lying doublet split from a
triplet (the lowest excitation of spin-1 antiferromagnetic BC
model with single-ion anisotropy [52,53]) also converge to the
same limiting value as N → ∞. These excited states lead to a
sharp peak of the specific heat at a low temperature [8].

V. CONCLUSION

In this paper, geometrically frustrated BC model on an
infinite sawtooth chain was investigated by the transfer matrix
technique exactly. By deriving the analytical expression of
the largest eigenvalue of the transfer matrix, we studied the
system’s magnetization, ground-state phase diagram, mag-
netocaloric properties, and specific heat, subsequently. Our
results indicate that:

(i) The true magnetization plateaus and magnetization
jumps appear just at zero temperature. The number of the
magnetic plateaus depends on the sign of the single-ion
anisotropy D. When D/|J | � 0, five magnetization plateaus
with m = ±0.75, ±0.5, and 0 appear as a consequence of the
frustration. When D/|J | < 0, only two magnetization plateaus
m = ±0.5 appear. At a very low temperature, magnetization
plateaus are quite reminiscent of the zero-temperature mag-
netization plateaus. As temperature increases further, due to
the effect of thermal fluctuation, the magnetization plateaus
vanish quickly.

(ii) As one of the main results of the present paper, the
spin configurations of all the LROGS and PCPs are shown in
the ground-state phase diagram. All phase transitions are the
first-order ones.
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FIG. 8. Temperature-dependence of the specific heat for several values of the external field H/|J |. (a) D/|J | = 1, H/|J | � 4.0;
(b) D/|J | = 1, H/|J | � 4.0; (c) D/|J | = −2, H/|J | � 2.0; (d) D/|J | = −2, H/|J | � 2.0.

(iii) As temperature approaches zero, magnetocaloric prop-
erties and entropy change sharply near PCPs. The degree of
macroscopic degeneracy of the ground states described by the
entropy merely exists at PCPs.

(iv) When the parameters approaches any PCP, the specific
heat will exhibit a double-peak structure. Besides the broad
peak, a rather sharp peak at a lower temperature appears. At
PCP, only the broad peak exists. Thus, the crossovers of the
specific heat from a single-peak structure to double-peak ones
can signal the PCPs in ground-state phase diagram.

The present investigation only considered the nearest-
neighbor interaction of the model. However, it is also
worthwhile to remark that the exactly solved spin-1 Ising
sawtooth chain can be substantially generalized to account
for the next-nearest-neighbor interaction and the multispin
interaction, etc. Therefore, our future effort will focus on these
aspects.
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APPENDIX: THE EXACT VALUES
OF THE MAGNETIZATION

For the phase transition line between the LROGS with
m = 1 and that with m = 0.5 (the olive line in Fig. 5), the
exact value of the magnetization is

m = (1 + 1/
√

5)/2.

Its approximate value is 0.723607.
For two phase transition lines between the plateau with

m = 0.75 and that with m = 0.5 (the red line and the purple
one in Fig. 5), the magnetization has two typical values for
various values of D/|J |. For −1 < D/|J | < 0, the exact value
of magnetization at any PCPs is

m = 5/8.
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For D/|J | < −1, the exact value of magnetization at any PCPs
is

m = (3 − 1/
√

5)/4.

Its approximate value is 0.638197.
For the phase transition line between the plateau with

m = 0.5 and that with m = 0 (the violet line and the blue
one in Fig. 5), the exact value of the magnetization at any
PCPs is

m = 1/4.

At the PCPs (H/|J |,D/|J |) = (1,−1), (4,0), and (3,−1), the
values of the total magnetization per site are, respectively,

m = 1/4,

m = 3/4,

and

m = 1

2
+ 1√

21
cos(θ/3), θ = π − arctan(

√
3/9).

Its approximate value is 0.620859.
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