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Nematic order in a simple-cubic lattice-spin model with full-ranged dipolar interactions
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In a previous paper [Phys. Rev. E 90, 022506 (2014)], we studied the thermodynamic and structural properties
of a three-dimensional simple-cubic lattice model with dipolarlike interaction, truncated at nearest-neighbor
separation, for which the existence of an ordering transition at finite temperature had been proven mathematically;
here we extend our investigation, addressing the full-ranged counterpart of the model, for which the critical
behavior had been investigated theoretically and experimentally. In addition, the existence of an ordering transition
at finite temperature had been proven mathematically as well. Both models exhibited the same continuously
degenerate ground-state configuration, possessing full orientational order with respect to a suitably defined
staggered magnetization (polarization), but no nematic second-rank order; in both cases, thermal fluctuations
remove the degeneracy, so that nematic order does set in at low but finite temperature via a mechanism of order
by disorder. On the other hand, there were recognizable quantitative differences between the two models as for
ground-state energy and critical exponent estimates; the latter were found to agree with early renormalization-
group calculations and with experimental results.
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I. INTRODUCTION

Long-range dipolar interactions [1] between magnetic
moments are ubiquitous in experimentally studied magnetic
systems, although they are often dominated by exchange
couplings (for more details, see Refs. [2–5] and references
therein), and, over the past few decades, a number of theoretical
studies, based on renormalization-group techniques, have
addressed interaction models containing both dipolar and
short-range isotropic or anisotropic exchange interactions (see,
e.g., Refs [2,6–11]); on the other hand, lattice models involving
only the long-range dipolar term have also long been studied
using various approaches, including spin-wave treatments and
simulation (see, e.g., Refs. [12–19], and others quoted in the
following). While the former references have dealt with the
resulting critical behavior, including the crossover between
the isotropic dipolar universality class (when the dipolar
term is dominant) and the Heisenberg one (corresponding
to nearest-neighbor exchange interactions only), the latter
were mostly focused on the ground state of the magnetically
ordered phase; in addition, a survey of relevant rigorous
mathematical results can be found in [20]. In a previous
paper [16], we studied the thermodynamic and structural
properties of a three-dimensional lattice model with dipolarlike
interaction, truncated at nearest-neighbor separation, for which
the existence of an ordering transition at finite temperature
had been proven mathematically [21]. It was found that the
ground state is degenerate and the critical behavior of the
model is consistent with the Heisenberg universality class;
moreover, the model was found to exhibit a nematic order
induced by thermal disorder; the study of an isolated cubic
dipole cluster [17] was published shortly afterward by other
authors, and the degeneracy of the ground state was found in
that case as well.
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Some similar studies have been published only recently in
Refs. [18,19], and they have addressed the ground state of a
model of pure dipolar interaction considering different types
of lattices; the magnetic properties of the ground state were
determined for each lattice structure.

Among the above studies, only Ref. [16], which inves-
tigated a pure dipolar model with interaction restricted to
nearest-neighbor pairs of sites, considered the possibility
of nematic ordering both in the ground state and at finite
temperature. Here we continue to address the full-ranged
counterpart of the model, for which mathematical results
have been produced [20] as well; the treatment was based
on reflection positivity [22], and it proved the existence of
an ordering transition at finite temperature, as predicted by
spin-wave theory.

The interaction model studied here has long-range tails
expected to alter the critical behavior of its counterpart
investigated in Ref. [16]. Our results show a downward shift of
the critical temperature, and, in addition, they lead to different
values of critical exponents, as well as critical amplitudes, thus
pointing to a class of universality beyond the nearest-neighbor
Heisenberg one. We are also revisiting and correcting an earlier
and crude simulation study of the full-ranged model, carried
out by one of us some 30 years ago [23,24].

The rest of our paper is organized as follows: In Sec. II,
results for the ground state of interaction potential (1) are
recalled; the simulation methodology is briefly discussed in
Sec. III; simulation results and finite-size scaling analysis are
used in Sec. IV to extract the critical behavior for the model
under consideration; and the paper is concluded in Sec. V,
where results are summarized.

II. INTERACTION MODEL AND GROUND STATE

In keeping with our previous work [16,25], we are consid-
ering a classical system consisting of n-component magnetic
moments to be denoted by unit vectors {uj }, with orthogonal
Cartesian components uj,ι, defined with respect to lattice axes,
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associated with a d-dimensional lattice Zd (here d = n = 3),
and interacting via a translationally invariant pair potential of
the form

Vij = εf (r)[−3(ui · r̂ij )(uj · r̂ij ) + ui · uj ], (1)

with ε a positive quantity setting energy and temperature scales
(i.e., energies will be expressed in units of ε, and temperatures
defined by T = kBTK/ε, where TK denotes the temperature in
degrees Kelvin), and

rij = xi − xj , r = |rij |, r̂ij = rij

r
, f (r) > 0;

here xj denotes dimensionless lattice site coordinates, and
now f (r) = r−3; in Ref. [16] the interaction was restricted to
nearest-neighbor separations, i.e., f (r) = 1 for r = 1 and 0
otherwise.

Both the full-ranged and the nearest-neighbor counter-
part possess the same continuously degenerate ground-state
configuration (see also below); the ground-state energies (in
units ε per particle) are WGS = −4 for the nearest-neighbor
model [16,25] and WGS = −2.676 for the present full-ranged
counterpart [12,16,25]. Extensive references to Luttinger-
Tisza methodologies for ground-state calculation can also be
found in [19].

For the sake of clarity and completeness, we recall here
some properties of the continuously degenerate ground state
for the three-dimensional case (d = 3), closely following
the corresponding section in our previous paper [16]. Let lattice
site coordinates be expressed as xj = x(h,k,l) = he1 + ke2 +
le3, d = 3, where eα denotes unit vectors along the lattice axes;
here the subscript in hj has been omitted for ease of notation;
let also �h = (−1)h, σhk = �h�k , τhkl = �h�k�l ; the ground
state possesses continuous degeneracy, and the manifold of its
possible configurations is defined by [12]

u0
j = u0(h,k,l) = σklN1e1 + σhlN2e2 + σhkN3e3, (2)

where

N1 = sin � cos 	, (3a)

N2 = sin � sin 	, (3b)

N3 = cos �, (3c)

and 0 � � � π, 0 � 	 � 2π ; we also found it advisable to
use the superscript 0 for various ground-state quantities. The
above configuration will be denoted by D(�,	).

Various structural quantities can be defined, some of which
are found to be zero for all values of � and 	, or to average
to zero upon integration over the angles; for example, when
d = 3,

∑
j∈�

u0
j = 0, (4a)

∑
j∈�

ρhu0
j = 0,

∑
j∈�

ρku0
j = 0,

∑
j∈�

ρlu0
j = 0, (4b)

∑
j∈�

τhklu0
j = 0. (4c)

Here � denotes the d-dimensional unit cell, and � = 2d is
the number of particles in it; other staggered magnetizations
are not averaged to zero upon summing over the unit cell:

B0
1 =

∑
j∈�

σklu0
j = �N1e1, (5a)

B0
2 =

∑
j∈�

σhlu0
j = �N2e2, (5b)

B0
3 =

∑
j∈�

σhku0
j = �N3e3; (5c)

thus, bearing in mind the above formulas, for any unit vector
uj associated with the lattice site xj , one can define another
unit vector wj with Cartesian components wj,κ via

wj,1 = σkluj,1, (6a)

wj,2 = σhluj,2, (6b)

wj,3 = σhkuj,3, (6c)

and hence the staggered magnetization

C =
∑
j∈�

wj ; (7)

when uj = u0
j ,j = 1,2, . . . ,8, i.e., for the ground-state orien-

tations, Eqs. (2) and (7) lead to

C0 =
∑
j∈�

w0
j = B0

1 + B0
2 + B0

3 = �(N1e1 + N2e2 + N3e3);

(8)
in this case,

w0
j = N1e1 + N2e2 + N3e3, j = 1,2, . . . ,8. (9)

The ground-state order parameter is defined by

1

�

√
C0 · C0 = 1. (10)

Equations (3), (8), and (9) show that in all D(�,	) config-
urations, the vector C0 has the same modulus, and that each
D(�,	) defines its possible orientation, or, in other words,
the ground state exhibits full order and continuous degeneracy
with respect to the above C0 vector. Notice also that the above
transformation from uj to wj unit vectors [Eq. (6)] can, and
will, be used in the following for arbitrary configurations of
unit vectors uj to calculate C [Eqs. (7)] and related quantities.

As for nematic ordering in the ground state, for a generic
configuration D(�,	), the nematic second-rank ordering
tensor Q0 is defined by [26–28]

Q0
ικ = 3

2�

∑
j∈�

(
u0

j,ιu
0
j,κ

) − δικ

2
; (11)

the above tensor turns out to be diagonal, i.e.,

Q0
ικ = δικqκ, qκ = P2(Nκ ). (12)

The eigenvalue with the largest magnitude (to be denoted by q)
ranges between − 1

2 and +1, it defines the nematic second-rank
order parameter, and its corresponding eigenvector defines the
nematic director n [26–28].
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Some specific configurations and their corresponding q

quantities are

D1 = D(0,	),∀ 	, q = +1, (13a)

D2 = D

(
π

2
,
π

4

)
, q = −1

2
, (13b)

D3 = D

(
arccos

(
1√
3

)
,
π

4

)
, q = 0; (13c)

other equivalent cases can be obtained from Eqs. (13) by
appropriate choices of the two angles, corresponding to
a suitable relabeling of lattice axes; for example, there
are six possible D1-type configurations, corresponding to
u0(0,0,0) being oriented in opposite senses along a lattice axis
[i.e., u0(0,0,0) = ±eα, α = 1,2,3].

As for geometric aspects of Eq. (13), in D1-type configura-
tions, all unit vectors u0

j are oriented along a lattice axis, with
appropriate signs of the corresponding components, i.e., a spin
sitting at a lattice site and, say, its vertical neighbors point in
the same sense, its horizontal nearest neighbors point in the
opposite way, and then its horizontal next-nearest neighbors
point in the same way, etc., and here full nematic order is
realized. On the other hand, in D2-type configurations, all unit
vectors u0

j lie on a lattice plane, and their components along

the corresponding axes are (±√
2/2, ±√

2/2), with the four
combinations of signs, producing antinematic order; finally, in
D3-type configurations, the unit vectors u0

j have components

along lattice axes given by (±√
3/3, ± √

3/3, ±√
3/3), with

all possible combinations of signs; in the latter case, magnetic
order of the unit vectors w0

j is accompanied by no nematic
order; the three named ground-state configurations can be seen
in Fig. 1 of Ref. [16]. Notice also that, upon integrating over
the two angles, the three quantities qκ are averaged to zero; in
other words, the ground-state possesses ferromagnetic order
with respect to the C0 vectors, but its degeneracy destroys
overall nematic order.

According to available mathematical results [20,21], overall
magnetic order (in terms of C vector) survives at suitably
low but finite temperatures; on the other hand, different D

configurations might be affected by fluctuations to different
extents, possibly to the extreme situation in which only some of
them are thermally selected (“survive”); this behavior, studied
in a few cases after 1980, is known as ordering by disorder;
see, e.g. Refs. [29–35].

Actually, our additional simulations, presented in Sec. IV,
showed evidence of nematic order by disorder: it was observed
that simulations starting at low temperature from different
configurations D(�,	) quickly resulted in configurations
remaining close to the above D1 type, i.e., the C vector
remained aligned with a lattice axis; this caused the onset
of second-rank nematic order, as shown by sizable values of
the corresponding order parameters P 2 and P 4; in turn, the
nematic director remained aligned with the above C vector (see
the following sections); thus simulation results will suggest
that, in the low-temperature regime, the above six D1-type
configurations correspond to pure Gibbs states.

III. COMPUTATIONAL ASPECTS

Calculations were carried out using periodic boundary
conditions, and on samples consisting of N = L3 particles,
with L = 10, 12, 16, 20, and 24. Simulations, based on the
standard METROPOLIS updating algorithm, were carried out
in cascade, in order of increasing temperature T , starting at
T = 0.01; equilibration runs took between 25 000 and 50 000
cycles (where one cycle corresponds to N attempted Monte
Carlo steps), and production runs took between 500 000
and 2 000 000; the Ewald-Kornfeld method with tin-foil
(conducting) boundary conditions was used for calculating
configuration potential energy [15,36,37].

Individual attempts were carried out by first randomly
selecting a lattice site, followed by a selection of a lattice
axis, and finally carrying out a random rotation of the selected
particle around it; this algorithm was introduced by Barker and
Watts some time ago [36,38].

The Ewald-Kornfeld formulas for the potential energy
of a given configuration of dipoles contain both a pairwise
summation over the direct lattice (usually truncated by the
nearest-image convention) and a sum over reciprocal-lattice
vectors (whose number is independent of N ), essentially based
on single-particle terms [15,36,37]; evaluating the energy
variation resulting from the attempted random rotation of a
selected particle requires considering interactions with the
remaining (N − 1) particles, as well as a sum over the named
reciprocal-lattice vectors: additional tests had shown that the
computational effort requested by our program for attempting
some large number of cycles (the same for different values of
N ) scaled with N like a linear combination (a1N + a2N

2).
As for calculated thermodynamic and structural properties,

as well as finite-size scaling (FSS) analysis, we closely
followed Ref. [16]; the procedure for characterizing nematic
orientational order is also reported in the Appendix.

Calculated quantities include the potential energy U in units
ε per particle, and configurational specific heat CV /kB ; as in
Ref. [16], we use C to denote the staggered magnetization
vector of a configuration, m for the corresponding unit
vector, M for mean staggered magnetization, and χ for the
corresponding susceptibility [39,40].

We also calculated the fourth-order Binder cumulant UL

of the staggered magnetization [16], as well as second- and
fourth-rank nematic order parameters P 2 and P 4 [26–28], by
analyzing one configuration every cycle (see also the Appendix
for their definitions); the fourth-order cumulant, also known
as the Binder cumulant [41], is defined by

UL = 1 − 〈(C · C)2〉
3〈C · C〉2

. (14)

Correlation between staggered magnetization and even-
rank orientational order [16] was also investigated; for a given
configuration, let n denote the nematic director [26–28], and
let m be the unit vector defined by C; thus we calculated the
quantity

φ = 〈|m · n|〉, (15)

where φ ranges between 1
2 for random mutual orientation of

the two unit vectors, and 1 when they are strictly parallel or
antiparallel [16].
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IV. RESULTS

Simulation estimates of the potential energy per spin
(not shown here) were found to vary in a gradual and
continuous fashion against temperature and seemed to be
largely unaffected by sample size to within statistical errors
ranging up to 0.5%. In addition, they exhibited a smooth
change of slope at about T ≈ 0.65. This change is reflected
on the behavior of the specific heat, whose fluctuation results
showed a recognizably size-dependent maximum around the
same temperature; the height of the maximum increases, and
the full width at half-maximum decreases as the system size
increases (Fig. 1); this behavior seems to develop into a
singularity in the infinite-sample limit.

As in our previous paper [16], and as anticipated in
Sec. II, analysis of simulation results showed that, in the
ordered region, the staggered magnetization vector C remains
aligned to a lattice main axis: for example, at T � 0.05,
the component of m largest in magnitude was found to
be �0.95. As mentioned in the Introduction, a spin-wave
treatment predicts orientational order at finite temperature,
and the prediction was later mathematically justified in [20]:
the present simulation results are consistent with a spin-wave
picture of low-temperature excitations.

Results for the mean staggered magnetization M , plotted
in Fig. 2, were found to decrease with temperature at fixed
sample size. For temperatures below 0.5, the data for different
sample sizes practically coincide, while for larger temperatures
the magnetization decreases significantly as the system size
increases. The fluctuations of M versus temperature are
investigated through the susceptibility χ , shown in Fig. 3. We
observed a pronounced growth of this quantity with the system
size at about T = 0.65. This is manifested by a significant
increase in the maximum height, as well as a shrinking of the
full width at half-maximum, suggesting that the susceptibility
will show a singularity as the system size goes to infinity.
This behavior is evidence of the onset of a second-order phase
transition.
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FIG. 1. Simulation results for the configurational specific heat,
obtained with different sample sizes L; the statistical errors (not
shown) range between 1% and 5%. Red crosses, L = 10; green
squares, L = 12; blue circles, L = 16; magenta triangles, L = 20;
and red diamonds, L = 24.
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FIG. 2. Simulation estimates for the mean staggered magnetiza-
tion M , obtained with different sample sizes; here and in the following
figures, the errors fall within symbol size; same meaning of symbols
as in Fig. 1.

To extract the critical behavior of our model, a detailed FSS
analysis was applied first to the simulation data obtained for
the staggered magnetization M (Fig. 2). This was an attempt
to collapse all simulation measurements into a single curve
describing the behavior of the corresponding scaling function
according to the scaling law

M = L−β/ν�M (tL1/ν); (16)

here t = 1 − T
Tc

� 1 denotes the distance from the bulk critical
temperature Tc, β > 0 is the critical exponent related to M

in the bulk limit, i.e., limL→∞ M ∼ tβ , and ν is the critical
exponent for the correlation length ξ , i.e., ξ ∼ t−ν ; the function
�M (x) is a universal function depending on the gross features
of the system, but not on its microscopic details.

To get the best estimates for the critical exponents, several
attempts have been made on different sets of sample sizes
following closely the procedure explained in Ref. [16], which

0
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0.50 0.55 0.60 0.65 0.70 0.75

χ

T

L = 10
L = 12
L = 16
L = 20
L = 24

FIG. 3. Simulation estimates for the susceptibility χ associated
with the staggered magnetization M , obtained with different sample
sizes; same meaning of symbols as in Fig. 1.
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FIG. 4. Scaling behavior of the staggered magnetization M; same
meaning of symbols as in Fig. 1.

is based on the minimization approach of Ref. [42]. The quality
of the fit was controlled by a parameter S that was found to
range between the values 1 and 2 for all quantities considered
below. The behavior of the resulting scaling function for
the staggered magnetization is reported in Fig. 4 with the
critical temperature Tc = 0.655 ± 0.001 and critical exponents
β = 0.38 ± 0.03 and ν = 0.69 ± 0.03.

A similar analysis was performed on the simulation data for
the susceptibility χ leading to Tc = 0.655 ± 0.001 and critical
exponents γ = 1.31 ± 0.05 and ν = 0.74 ± 0.01. Here we
anticipate that, due to the large fluctuations of the susceptibility
in the vicinity of the critical temperature (see, e.g., Fig. 3), this
result may be incorrect. The fitting procedure was attempted
on the specific heat as well, resulting in Tc = 0.652 ± 0.003,
α = 0.13 ± 0.02, and ν = 0.69 ± 0.03. These results indicate
that accounting for the dipolar full-range interaction affects
both nonuniversal quantities, such as the critical temperature,
and universal features, i.e., critical exponents of various
thermodynamic quantities. It is worth mentioning that a similar
behavior is found in spin systems with algebraically decaying
long-range interactions of ferromagnetic type (see, e.g.,
Ref. [43] and references therein also covering the bulk case).

Simulation estimates for the fourth-order Binder cumulant
UL are shown in Fig. 5. The plots for the different curves are
found to decrease against the temperature and to intersect at
about T = 0.65. A FSS of this quantity yields the critical
temperature to a very good approximation, since a data
collapse leads a scaling function that is independent on the
sample size. This is found to be Tc = 0.656 ± 0.002 and the
critical exponent ν = 0.69 ± 0.08. At the critical temperature,
we obtain the critical amplitude U ∗

L ≈ 0.54.
At all investigated temperatures, simulation results for

the nematic order parameters P 2 and P 4 (Figs. 6 and 7)
exhibited a gradual and monotonic decrease with temperature,
vanishing above Tc, and they appeared to be mildly affected by
sample sizes; results for P 4 became negligible in the transition
region, T � 0.55 (not shown); in the low-temperature region,
simulation results for both observables tended to saturate to 1
as T → 0+.

0.45

0.50

0.55

0.60

0.65

0.50 0.55 0.60 0.65 0.70 0.75

U
L

T

L = 10
L = 12
L = 16
L = 20
L = 24

FIG. 5. Simulation results for the fourth-order Binder cumulant
of the staggered magnetization [16] obtained with different sample
sizes; same meaning of symbols as in Fig. 1.

According to the FSS approach, the nematic order param-
eter is expected to scale like

P 2 = L−2β/ν�(tL1/ν). (17)

Applying the above-mentioned minimization procedure, we
get Tc = 0.655 ± 0.002, β = 0.37 ± 0.02, and ν = 0.69 ± 0.03,
in very good agreement with the above finding for the
staggered magnetization.

Simulation data for φ [Eq. (15)] are plotted in Fig. 8; for all
investigated sample sizes, they appear to decrease with increas-
ing temperature; moreover, the results exhibit a recognizable
increase of φ with increasing sample size for T � T1 = 0.64,
and its recognizable decrease with increasing sample size
for T � T2 = 0.68, so that the seemingly continuous change
across the transition region becomes steeper and steeper as
sample size increases. In the crossover temperature range
between T1 and T2, the sample-size dependence of results
becomes rather weak, and the various curves come close to
coincidence at T ≈ 0.66 ± 0.01, with φ ≈ 0.54; notice that

0.0

0.1

0.2

0.3

0.50 0.55 0.60 0.65 0.70 0.75

P− 2

T

L = 10
L = 12
L = 16
L = 20
L = 24

FIG. 6. Simulation results for the nematic second-rank order
parameter P 2, obtained with different sample sizes: same meaning of
symbols as in Fig. 1.
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FIG. 7. Comparison between simulation results for nematic
second- and fourth-rank order parameters, in the low-temperature
region, and obtained with the largest investigated sample size L = 24.
Red circles, P 2; blue squares, P 4.

this temperature value is in reasonable agreement with Tc as
independently estimated via the above FSS treatment.

Let us recall that, by construction, the quantity φ should be
size-independent at the critical temperature and thus all curves
should coincide there, as is the case for the Binder cumulant.
A FSS analysis was carried out and found to support this
conjecture, giving results consistent with those for UL.

To summarize, we propose for the critical temperature
the value Tc = 0.655 ± 0.005 versus the corresponding value
1.877 ± 0.001 in Ref. [16], thus the ratio ρ = Tc/|WGS| drops
to roughly one-half of its short-range counterpart (≈0.24
versus ≈0.470), and this suggests that the long-range tail of the
interaction reduces the stability range of the ordered phase in
comparison with the nearest-neighbor case. Comparison with
the short-range counterpart was also realized in Figs. 9 and 10,
where simulation results for M and P 2, obtained with the
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0.9

1.0

0.50 0.55 0.60 0.65 0.70 0.75

φ

T

L = 10
L = 12
L = 16
L = 20
L = 24

FIG. 8. Simulation results for the quantity φ, as defined in the
text [Eq. (15)], obtained with different sample sizes; same meaning
of symbols as in Fig. 1.
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M

T/Tc
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FIG. 9. Plots of M vs T/Tc for the present model and its nearest-
neighbor counterpart [16]. Blue circles, present full-range model; red
squares, nearest-neighbor counterpart. Both here and in Fig. 10, the
plotted simulation results were obtained for L = 24.

largest sample size used in both studies (L = 24), are plotted
versus T/Tc; the figures show a pronounced similarity, as well
as a mild but recognizable strengthening of orientational order
in the low-temperature region.

On the other hand, the critical behavior was found to
be governed by the critical exponents ν = 0.69 ± 0.08, β =
0.38 ± 0.03, and α = 0.13 ± 0.02. Except for the above result
γ = 1.31 ± 0.05, these values are in agreement with previous
renormalization-group (RG) calculations for isotropic dipolar
criticality (Table I in Ref. [6]), as well as the experimental
measurements of Ref. [5] on Cr70Fe30, obtained on films
of appropriate thickness. Since the value of γ is highly
affected by large fluctuations in the critical region, in order
to get a meaningful result we employed the hyperscaling
relations to obtain γ ≈ 1.37. Thus the model investigated
here is consistent with the isotropic dipolar universality class;
comparison between transitional properties for the present

0.0

0.2

0.4

0.6 0.7 0.8 0.9 1.0 1.1 1.2

P− 2

T/Tc

Short range

Full range

FIG. 10. Plots of P 2 vs T/Tc for the present model and its nearest-
neighbor counterpart [16]; same meaning of symbols as in Fig. 9.
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TABLE I. Comparison between transitional properties for the
present model and its nearest-neighbor counterpart [16].

Present model Ref. [16]

WGS −2.676 −4
Tc 0.655 ± 0.005 1.877 ± 0.001
ρ = Tc

|WGS| ≈0.24 ≈0.470
α 0.13 ± 0.02 0.13 ± 0.02
β 0.38 ± 0.03 0.358 ± 0.006
γ ≈1.37 1.4 ± 0.1
ν 0.69 ± 0.08 0.713 ± 0.001

model and for its nearest-neighbor counterpart is summarized
in Table I.

As for comparison with other treatments, let us first mention
that a Weiss-type molecular field approach predicts a transition
temperature Tc,MF = 2

3 |WGS|, i.e., 8
3 ≈ 2.667 for the nearest-

neighbor counterpart and 1.784 in the present case [19,23],
hence the ratio Tc/Tc,MF = 3

2ρ has dropped by the same
numerical factor (nearly 2) as above.

Both the nearest-neighbor and full-ranged cases of the
model investigated here were studied some 60 years ago
using the spherical model (SM) approach [44–48]; as for the
nearest-neighbor case, the estimated transition temperature can
be obtained from Eq. (32) in [46] by evaluating a multiple
integral numerically, i.e., Tc,SM = 1.693. In the full-ranged
case, as far as we could check, Ref. [45] did not report any
explicit numerical estimate of the transition temperature in
their Eq. (6.1); on the other hand, some results are available
in Ref. [48], via their Eq. (1.3) (with their α set to 0) and
following treatment (see also their Figs. 1 and 2); these results
read F (λM ) ≈ 0.73, and hence Tc,SM ≈ 0.457.

The critical exponents reported in the above papers were
β = 1

2 and α = 0 for both cases: in both cases, the config-
urational specific heat CV /kB was found to remain constant
at 3

2 for T � Tc,SM, and to change continuously but with a
discontinuous slope at T = Tc,SM.

An interaction model defined by an extension of (1) was
later studied in [49] by RG; the interaction potential was
defined by

Wij = ε[−(1 + 2σ )(3 + 2σ )(ui · r̂ij )(uj · r̂ij )

+(1 + 2σ )(ui · uj )]/r3+σ , (18)

where σ � 0 is a real parameter: all critical exponents with the
exception of β were found to depend on σ , and the limiting
case σ = 0 corresponded to the model studied here, for which
Eqs. (47) in the named paper [49] yield α = 1, β = 1

2 , ν = 1,
η = 2, and γ = 0.

V. CONCLUSIONS

We have studied here the transitional behavior resulting
from the full-ranged counterpart of the lattice-spin model in
Refs. [16,25] by means of simulation as well as a detailed
analysis of the results. FSS basically suggests a univer-
sality class with critical exponents ν = 0.69 ± 0.08, β =
0.38 ± 0.03, and α = 0.13 ± 0.02, and a critical temperature
Tc = 0.655 ± 0.005, i.e., consistent with an isotropic dipolar

critical point [5,6] and different from the nearest-neighbor
ferromagnetic Heisenberg one. Analysis of second-rank prop-
erties has revealed the existence of secondary nematic order,
destroyed by ground-state degeneracy but restored in the
low-temperature phase, through a mechanism of order by
disorder (see Ref. [16] and others quoted therein).

The ratio ρ = Tc/|WGS| drops to roughly one-half of
its short-range counterpart (≈0.24 versus ≈0.470), and this
suggests that the long-range tail of the interaction reduces the
stability range of the ordered phase in comparison with the
nearest-neighbor case.
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APPENDIX: NEMATIC SECOND- AND FOURTH-RANK
ORDER PARAMETERS

Both second- and fourth-rank nematic order parame-
ters [26–28] were calculated by analyzing one configuration
every cycle; in other words, for a generic examined configura-
tion, the Q tensor is defined by the appropriate generalization
of Eq. (11), now involving all the spins in the sample, i.e.,

Qικ = 1
2 (3Fικ − δικ ), (A1)

with

Fικ = 〈uιuκ〉loc = 1

N

N∑
j=1

(uj,ιuj,κ ), (A2)

where 〈· · · 〉loc denotes the average over the current configura-
tion. The fourth-rank order parameter was determined via the
analogous quantity [50]

Bικλμ = 1
8 [35Gικλμ − 5(δικFλμ + διλFκμ + διμFκλ

+ δκλFιμ + δκλFιμ + δλμFικ )

+ (δικδλμ + διλδκμ + διμδκλ)], (A3)

where

Gικλμ = 〈uιuκuλuμ〉loc = 1

N

N∑
j=1

uj,ιuj,κuj,λuj,μ. (A4)

The calculated tensor Q was diagonalized; let ωk denote
its three eigenvalues, and let vk denote the corresponding
eigenvectors. The eigenvalue with the largest magnitude
(usually a positive number, thus the maximum eigenvalue)
can be identified, and its average over the simulation chain
defines the nematic second-rank order parameter P 2. The
corresponding eigenvector defines the local (fluctuating or
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“instantaneous”) configuration director n [26–28], evolving
along the simulation. Moreover, a suitable reordering of
eigenvalues (and hence of the corresponding eigenvectors) is
needed to evaluate P 4; let the eigenvalues ωk be reordered
(permuted according to some rule) to yield the values ω′

k . The
procedure used here as well as in other previous papers (e.g.
Refs. [51,52]) involves a permutation such that

|ω′
3| � |ω′

1|, |ω′
3| � |ω′

2|; (A5a)

actually there exist two such possible permutations, an odd
and an even one; we consistently chose permutations of the
same parity (say even ones; see also below) for all examined
configurations. Recall that eigenvalue reordering also induces
the corresponding permutation of the associated eigenvectors.
Notice also that, in most cases, ω′

3 > 0, so that the condition
in Eq. (A5a) reduces to

ω′
3 � ω′

1, ω′
3 � ω′

2; (A5b)

this latter procedure was considered in earlier treatments of
the method. As already mentioned, the second-rank order

parameter P 2 is defined by the average of ω′
3 over the

simulation chain; on the other hand, the quantity (ω′
2 − ω′

1),
and hence its average over the chain, measure possible phase
biaxiality, found here to be zero within statistical errors, as
it should. The procedure outlined here was previously used
elsewhere [51–56], in cases in which some amount of biaxial
order might exist; the consistent choice of permutations of
the same parity was found to avoid both artificially enforcing
a spurious phase biaxiality (as would result by imposing
an additional condition such as |ω′

1| � |ω′
2|), and artificially

reducing or even quenching it (as would result by ordering ω′
1

and ω′
2 at random).

The fourth-rank order parameter was evaluated from the
B tensor in the following way [50]: for each analyzed
configuration, the suitably reordered eigenvectors of Q define
the director frame and build the column vectors of an orthog-
onal matrix R, in turn employed for transforming B to the
director frame; the diagonal element B ′

3333 of the transformed
tensor was averaged over the production run, and identified
with P 4.
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[49] S. Fakioǧlu, Renormalization group and critical exponents for
classical Heisenberg ferromagnet with dipole-dipole interac-
tions, Phys. Status Solidi B 98, 307 (1980).

[50] C. Chiccoli, P. Pasini, F. Biscarini, and C. Zannoni, The P4

model and its orientational phase transition, Mol. Phys. 65, 1505
(1988).

[51] R. Hashim, G. R. Luckhurst, F. Prata, and S. Romano, Computer
simulation studies of anisotropic systems. XXII. An equimolar
mixture of rods and discs: A biaxial nematic? Liq. Cryst. 15,
283 (1993).

[52] S. Romano, Computer simulation study of a three-dimensional
lattice spin model with anti-nematic interactions, Int. J. Mod.
Phys. B 08, 3389 (1994).

[53] S. Romano, Computer simulation study of a two-dimensional
nematogenic lattice model based on the Gruhn-Hess interaction
potential, Phys. Lett. A 302, 203 (2002).

[54] S. Romano, Computer simulation study of a two-dimensional
nematogenic lattice model based on the Nehring-Saupe interac-
tion potential, Phys. Lett. A 305, 196 (2002).

[55] S. Romano, Computer simulation study of two-dimensional
nematogenic lattice models based on dispersion interactions,
Physica A 322, 432 (2003).

[56] S Romano, Computer simulation study of a two-dimensional
nematogenic lattice model based on a mapping from elastic
free-energy density, Phys. Lett. A 310, 465 (2003).

052147-9

http://dx.doi.org/10.1051/jphys:0198000410110126300
http://dx.doi.org/10.1051/jphys:0198000410110126300
http://dx.doi.org/10.1051/jphys:0198000410110126300
http://dx.doi.org/10.1051/jphys:0198000410110126300
http://dx.doi.org/10.1103/PhysRevLett.62.2056
http://dx.doi.org/10.1103/PhysRevLett.62.2056
http://dx.doi.org/10.1103/PhysRevLett.62.2056
http://dx.doi.org/10.1103/PhysRevLett.62.2056
http://dx.doi.org/10.1103/PhysRevB.42.6574
http://dx.doi.org/10.1103/PhysRevB.42.6574
http://dx.doi.org/10.1103/PhysRevB.42.6574
http://dx.doi.org/10.1103/PhysRevB.42.6574
http://dx.doi.org/10.1088/0031-8949/50/4/002
http://dx.doi.org/10.1088/0031-8949/50/4/002
http://dx.doi.org/10.1088/0031-8949/50/4/002
http://dx.doi.org/10.1088/0031-8949/50/4/002
http://dx.doi.org/10.1088/0305-4470/34/42/305
http://dx.doi.org/10.1088/0305-4470/34/42/305
http://dx.doi.org/10.1088/0305-4470/34/42/305
http://dx.doi.org/10.1088/0305-4470/34/42/305
http://dx.doi.org/10.1103/PhysRevE.84.011703
http://dx.doi.org/10.1103/PhysRevE.84.011703
http://dx.doi.org/10.1103/PhysRevE.84.011703
http://dx.doi.org/10.1103/PhysRevE.84.011703
http://dx.doi.org/10.1007/s00023-004-0196-2
http://dx.doi.org/10.1007/s00023-004-0196-2
http://dx.doi.org/10.1007/s00023-004-0196-2
http://dx.doi.org/10.1007/s00023-004-0196-2
http://dx.doi.org/10.1016/0009-2614(69)80119-3
http://dx.doi.org/10.1016/0009-2614(69)80119-3
http://dx.doi.org/10.1016/0009-2614(69)80119-3
http://dx.doi.org/10.1016/0009-2614(69)80119-3
http://dx.doi.org/10.1016/0378-4371(75)90084-9
http://dx.doi.org/10.1016/0378-4371(75)90084-9
http://dx.doi.org/10.1016/0378-4371(75)90084-9
http://dx.doi.org/10.1016/0378-4371(75)90084-9
http://dx.doi.org/10.1103/PhysRevB.43.6087
http://dx.doi.org/10.1103/PhysRevB.43.6087
http://dx.doi.org/10.1103/PhysRevB.43.6087
http://dx.doi.org/10.1103/PhysRevB.43.6087
http://dx.doi.org/10.1007/BF01293604
http://dx.doi.org/10.1007/BF01293604
http://dx.doi.org/10.1007/BF01293604
http://dx.doi.org/10.1007/BF01293604
http://arxiv.org/abs/arXiv:0910.5403
http://dx.doi.org/10.1142/S0217984903006232
http://dx.doi.org/10.1142/S0217984903006232
http://dx.doi.org/10.1142/S0217984903006232
http://dx.doi.org/10.1142/S0217984903006232
http://dx.doi.org/10.1103/PhysRev.86.821
http://dx.doi.org/10.1103/PhysRev.86.821
http://dx.doi.org/10.1103/PhysRev.86.821
http://dx.doi.org/10.1103/PhysRev.86.821
http://dx.doi.org/10.1063/1.1700762
http://dx.doi.org/10.1063/1.1700762
http://dx.doi.org/10.1063/1.1700762
http://dx.doi.org/10.1063/1.1700762
http://dx.doi.org/10.1063/1.1700764
http://dx.doi.org/10.1063/1.1700764
http://dx.doi.org/10.1063/1.1700764
http://dx.doi.org/10.1063/1.1700764
http://dx.doi.org/10.1063/1.1698924
http://dx.doi.org/10.1063/1.1698924
http://dx.doi.org/10.1063/1.1698924
http://dx.doi.org/10.1063/1.1698924
http://dx.doi.org/10.1063/1.1743746
http://dx.doi.org/10.1063/1.1743746
http://dx.doi.org/10.1063/1.1743746
http://dx.doi.org/10.1063/1.1743746
http://dx.doi.org/10.1002/pssb.2220980132
http://dx.doi.org/10.1002/pssb.2220980132
http://dx.doi.org/10.1002/pssb.2220980132
http://dx.doi.org/10.1002/pssb.2220980132
http://dx.doi.org/10.1080/00268978800101951
http://dx.doi.org/10.1080/00268978800101951
http://dx.doi.org/10.1080/00268978800101951
http://dx.doi.org/10.1080/00268978800101951
http://dx.doi.org/10.1080/02678299308029133
http://dx.doi.org/10.1080/02678299308029133
http://dx.doi.org/10.1080/02678299308029133
http://dx.doi.org/10.1080/02678299308029133
http://dx.doi.org/10.1142/S021797929400141X
http://dx.doi.org/10.1142/S021797929400141X
http://dx.doi.org/10.1142/S021797929400141X
http://dx.doi.org/10.1142/S021797929400141X
http://dx.doi.org/10.1016/S0375-9601(02)01042-3
http://dx.doi.org/10.1016/S0375-9601(02)01042-3
http://dx.doi.org/10.1016/S0375-9601(02)01042-3
http://dx.doi.org/10.1016/S0375-9601(02)01042-3
http://dx.doi.org/10.1016/S0375-9601(02)01352-X
http://dx.doi.org/10.1016/S0375-9601(02)01352-X
http://dx.doi.org/10.1016/S0375-9601(02)01352-X
http://dx.doi.org/10.1016/S0375-9601(02)01352-X
http://dx.doi.org/10.1016/S0378-4371(02)01824-1
http://dx.doi.org/10.1016/S0378-4371(02)01824-1
http://dx.doi.org/10.1016/S0378-4371(02)01824-1
http://dx.doi.org/10.1016/S0378-4371(02)01824-1
http://dx.doi.org/10.1016/S0375-9601(03)00383-9
http://dx.doi.org/10.1016/S0375-9601(03)00383-9
http://dx.doi.org/10.1016/S0375-9601(03)00383-9
http://dx.doi.org/10.1016/S0375-9601(03)00383-9



