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Presence of quantum correlations results in a nonvanishing ergotropic gap
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The paradigm of extracting work from an isolated quantum system through a cyclic Hamiltonian process
is a topic of immense research interest. The optimal work extracted under such a process is termed ergotropy
[Europhys. Lett. 67, 565 (2004)]. Here, in a multiparty scenario, we consider only a class of such cyclic processes
that can be implemented locally, giving rise to the concept of local ergotropy. Eventually, the presence of
quantum correlations results in a nonvanishing thermodynamic quantity called an ergotropic gap, measured
by the difference between global and local ergotropy. However, the converse does not hold in general, i.e., its
nonzero value does not necessarily imply the presence of quantum correlations. For arbitrary multiparty states,
we quantify this gap. We also evaluate the difference between maximum global and local extractable work for
arbitrary states when the system is no longer isolated but put in contact with a bath of the same local temperature.

DOI: 10.1103/PhysRevE.93.052140

I. INTRODUCTION

The idea of information is deeply connected with physics,
especially thermodynamics [1-3]. Considerable efforts have
been devoted to ameliorating this connection in the quantum
regime [4,5]. As a consequence, resource-theoretic aspects of
quantum thermodynamics have flourished [6-9]. Although the
importance of quantum correlations in the context of quantum
thermodynamics is not yet understood in full, a substantial
amount of progress has been made in this direction in the
recent past [10-12].

The presence of correlations that have no classical coun-
terpart is one of the striking features of multiparty quantum
systems. One much studied way to capture the notion of
quantumness present in a correlation is entanglement [13].
However, there exist several tasks in which a multiparty
quantum state, not being entangled at all, can be more
advantageous than classical correlations. In a bipartite sce-
nario, the quantumness present in a correlation has been
quantified by a quantity known as quantum discord [14-16].
Quantum discord has been found to be a useful resource
for various information-theoretic tasks viz. extended-state
merging [17,18] and remote-state preparation [19], although in
a restricted sense. Thus, there is a practical motivation for the
study of quantumness in a more general framework than entan-
glement. In this work, we investigate whether quantumness in
correlations has any implications in quantum thermodynamics.
Interestingly, we show that there exists a thermodynamic
quantity, namely an ergotropic gap. This gap, which represents
the difference between the maximum extractable work under
global and local cyclic Hamiltonian processes, is nonvanishing
whenever the multiparty quantum state is not classically
correlated.

Extracting work from a quantum system is one of the
important areas of study in quantum thermodynamics [20,21].
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The study of optimal work extraction from an isolated quantum
system under a cyclic Hamiltonian process was first performed
in the mathematical framework of C* algebra [22], which was
later explored in the well-known Hilbert space formalism [23].
The aim is to transform a quantum system from a higher to a
lower internal energy state, extracting the difference in internal
energy as work. It has been shown that the optimal amount of
work is extracted under a cyclic Hamiltonian process whenever
the system evolves into a state from which no further work can
be extracted. Such a state is called a passive state [22-24].
The authors of Ref. [24] coined the term ergotropy for optimal
extractable work.

In the recent past, the topic of extracting work from a
quantum system gained renewed interest [25-30]. In Ref. [30],
the authors designed a scenario in which correlations in
multiparty quantum systems enable work extraction. Given
a noninteracting Hamiltonian of a multiparty system, any
cyclic unitary process can be realized by switching on a
suitable external interaction field. Here we consider a situation
in which subsystems are spatially separated and no global
external interacting field can be implemented on the total
system. Each subsystem can only be acted upon by a local
field. We call the optimal extractable work local ergotropy.
We find that there exist classically correlated states for which
the ergotropic gap, i.e., the difference between global and local
ergotropy, can be nonzero. However, this does not lead to the
conclusion that classical correlations always possess a nonzero
ergotropic gap because there exist classically correlated states
for which this gap turns out to be zero. Interestingly, we
find that whenever the multiparty system is not classically
correlated, the optimal amount of extractable work under
cyclic local interaction is strictly less than that obtained under
global interaction, i.e., the presence of quantum correlations
always results in a nonvanishing ergotropic gap. Given a
noninteracting Hamiltonian and an arbitrary initial state of
a multiparty system, we quantify this gap. We also consider
the scenario in which the system is no longer isolated but put
in contact with a bath of the same local temperature, and we
evaluate the difference between maximum global and local
extractable work for an arbitrary state.
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II. FRAMEWORK FOR WORK EXTRACTION

Consider a quantum system, composed of N subsystems,
denotes the Hilbert spac‘é‘corresponding to the ith subsystem,
and D(X) denotes the set of density operators acting on Hilbert
space A'. Consider that the local Hamiltonian for the ith party
is given by H; = Zj ei’ |ji)(ji|, where |j;) denotes the jth
energy eigenstate of the ith particle with energy eigenvalue eij .
No interactions are considered among the various subsystems.
Therefore, the total Hamiltonian of the composite system takes
the form

N N
H=) HEL=) H. (1)
i=1 i=1

kei

where H; Qi Li=1Li® - QL1 @ H @111 ®--- Qly,
with I; denoting an identity operator acting on the Hilbert
space H;.

In the paradigm of work extraction from an isolated system
under a cyclic unitary process, the protocol is to transform
the state from ¢, , tosome o, ., by using some time-
dependent unitary operation U(t) such that o, , has less
internal energy than ¢, , . Note that, since only unitary
operations are used, the entropy of the final state is the same as
that of the initial state. Any such unitary can be generated
by applying a time-dependent interaction V() among the
N subsystems, such that V(¢) is nonvanishing only when
0 < ¢ < 7. The corresponding evolution can be described by
the unitary operator U(t) = e_xf)(—c for dt[H + V(¢)]), where
eﬁ)) denotes the time-ordered exponential. In this setup, the
optimally extractable work is therefore

Wo =maxTr{[o, , —U(e, ., U'®]H}

=Tro, ., H]- I[I]l(lrl;l Ti[U(x)e,, ., UN(DH],

where optimization is done over all unitaries. It has been
shown that this optimization causes the system to evolve into a
state QE‘?WXi, called a passive state [22—24]. Thus the optimal
amount of extractable work, namely ergotropy [24], amounts
to

Wl = Tr[Q A

opt — THL&a Ayt L&Y A

assive

H] = Tr[o"™"¢ H]. )
Among the passive states there is a special one, called the
thermal or Gibbs state. Given many copies of the system, it
may be possible that work can be extracted even from passive
states. However, no such work extraction is possible from the
thermal states, so it is called a completely passive state [24,31].

Consider a situation in which each subsystem of the joint
system ¢, , is spatially separated, and implementation of
any global interaction field is not allowed. Each party can only
apply a time-dependent local field on its respective subsystem.
Hence the interaction on the composite system reads

N N
Vi =) Vit @Li= ) Vi) 3)
i=1 i=1

kei

PHYSICAL REVIEW E 93, 052140 (2016)

The class of unitaries generated from such interactions is
therefore

T N
Ur) = eTqé(—L/ dty (H; + V,-(t)))
0

i=1

— [+ vy @
0

i=1 kel
N T

=11 &T)(—L/ dr {H; + V,-(t)}> QL
i=1 0 ke

where U;(7) is the unitary on the ith particle. Here we ignore
the global constant factor, which is not relevant. Let us denote
this class of unitaries as

N
LU = {U(r)lU(t) = Ui(r)}. @
i=1

The optimal work that can be extracted under such local
interactions is thus
WL

opt

L= 1522}:)1(4 Tr[(QA1 .....

= TI‘[QA]”_‘A” H| - (}IeliﬁrbTr[UQA,,...,A”UTH]- 5)

In this scenario, since work is extracted by applying local
unitaries, we call the optimal extractable work the local
ergotropy of the state o given the Hamiltonian H. In the
above notation, superscript L is introduced to distinguish this
quantity from the one defined in Eq. (2), where the superscript
G has been used to indicate that global unitaries are allowed.
At this point, we define a quantity that is the difference of
the global and local ergotropy, called the ergotropic gap (EG),

Weg = ngt - Wk 6)

Replacing Wg)t and WOLpt from Egs. (2) and (5), respectively,
we have

Weg = min T{Uo,, , U'H] ~Te[o™ " H]. (1)
It is easy to see that Wgg cannot be negative. This is
because local operations are restricted to extract energy from
subsystems only, whereas the global unitary has the power to
extract energy from subsystems as well as from correlations.
In the following, we study this quantity in the presence of
correlations between the subsystems of multiparty systems.

III. CORRELATIONS AND THE ERGOTROPIC GAP

In physics, the study of correlations is quite important as it
is the most significant feature to characterize multiparticle
systems. However, its characterization and quantification
become notoriously difficult when one shifts from the classical
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realm to the quantum realm. The core focus of quantum-
information theory is to study these correlations, which are
also important from a foundational perspective. Depending
on the situation, correlations can be characterized in different
ways, e.g., nonlocal [32], steerable [33], entanglement [13],
quantum correlation (discord) [16], etc., and there are a
number of practical applications [17-19,34—45]. They also
play an important role in quantum thermodynamics [30].
Here we are interested in the role of quantum correlations
in ergotropy.

An N-particle quantum state, with d levels for each particle
(©4,..4,)s has dV eigenvalues (possibly degenerate) forming
a normalized probability vector ", represented in a row.
Rearranging the eigenvalues lets us form a vector A= (Ag )Zil ,
where Ay > Aq11V «. The dV energy eigenstates of the
Hamiltonian of Eq. (1) are denoted as Hfa”ii], with energy
eigenvalues &, < £,V o (there may be degeneracy). In this
notation, the passive state QETSMZS reads [22-24]

P = 3 ) . ®)

QE‘:NZC commutes with the Hamiltonian that is diagonalizable
in the orthonormal product basis (ONPB) {®); | i)}, where
{lji)}; forms an orthonormal basis (ONB) (energy eigenbasis)
of the ith party Hilbert space H;.

If the multiparticle system is in a pure product state, then
the EG is always zero. Consider an arbitrary pure product state,

PN = [ a (W @ 1Y) ay (W] - ® 1¥)a, (W] (9

where |/) 4, € C4.V i. Let the ground energy state of the ith
particle be |0)4,. Applying local unitaries, the state of each
subsystem can be transformed from [y) 4, to |0)4,, changing
the global state into its passive form QE:‘*“ZE = ); 10)4,(0].
It readily follows that the EGs for pure product states are
vanishing. Now we ask whether the EGs of correlated states
are vanishing. We first start with CC states.

An N-particle state is called classically correlated (CC) if
it can be written as [46]

N
0c = D Ppisn @QIBIBIL (10)
i=1

{Bi}€ONB[H;]

where {|B;)}p is an ONB for the ith particle Hilbert space H;,
and (pg, ... gy )CllN is a probability vector. Clearly the state o
is diagonalized in the ONPB {(), |8:)}4,. Consider such a
two-qubit CC state of the following form:

Cupa, = 211004, (0] ® 10) 4, (0] + 22| 1) 4, (1] ® [1) 4, (1], (11)

where 0 < Ay < Ap <1, Ay + A, =1, and |0)4,(|1)4,) rep-
resents the ground (excited) energy eigenstate of the ith
particle Hamiltonian H; = €°|0)4, (0] +e'|1)4 (1], with ¢°
and e' denoting ground and excited energy eigenvalues,
respectively. Here the Hamiltonian for the composite system
is H=H ®I, +1; ® H,. The corresponding passive state
reads

QU = 3110) 4,01 @ [0) 4, €01 + A210) 4,01 ® 1) 1,11.
(12)
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To evolve the state g, ,, into Qfaffive, one needs to apply the
142
following unitary:

10)4, ® [0)4, = 10)4, ® [0)a,,
114, @ [1)a, > 10)4, ® [1)4,, (13)

which is the inverse of the CNOT operation and hence an
entangling unitary and cannot be realized by unitaries of the
form Uy, Q Ua,.

Naturally, the question arises whether all CC states possess
a nonvanishing EG. However, the following example shows
that this is not the case in general. Consider the class of CC
states of the form

paB = Pol0)4, (0] & [0)4,(0] + p1]0)4, (0] & [1)4, (1]
+ p2I1)a, (1] ® [0) 4, (0]
+ p3lD)a, (1 & [1) 4, (11, (14)

where py < p1 < p2 < p3,0< pr < 1,V k, and 22:0 Dk =
1. The corresponding passive state reads

PRE™ = p310).a, (01 ® 10}, (0] + 210}, (01 @ 1), (1]
+ 1l 4, (1] @ [0) 4, (0]
+ poll)a, (11 & [1)a, (1]. 15)

Given such CC states, they can be transformed into passive
form by applying the o, operation on each site locally, which
thus implies a vanishing EG. Thus for CC states, the EG can
be zero as well as nonzero. Here we ask whether there exists
any correlation that always possesses a nonzero EG. In the
following proposition, we answer this question.

Proposition 1. The ergotropic gap is always nonvanishing
in the presence of quantum correlations.

Proof. A quantum state is said to contain quantumness in
the correlation if it is not CC, i.e., there is no ONPB that
diagonalized the state, and such states are called quantum
correlated. In the bipartite case, quantumness is quantified by
a quantity called discord [16], which has attracted a great deal
of research interest recently.

It is clear that a quantum-correlated state must contain
entangled state(s) in its spectrum. However, the passive state
corresponding to such a state is diagonal in the product basis
(ONPB of the Hamiltonian). The fact that it is impossible to
arrive at some product basis starting from a basis containing
entangled state(s) by implementing only local unitaries implies
that WOGpt > W(f;,l, i.e., not all the ergotropy of the system is
locally accessible for quantum-correlated states. ]

The converse of the above proposition does not hold, i.e.,
a nonzero ergotropic gap does not imply the presence of
quantum correlations, which we have already shown in the
previous example.

IV. ERGOTROPIC GAP FOR ARBITRARY STATES

Given the Hamiltonian H of the form of Eq. (1) and an
arbitrary state, it is possible to quantify Wgg in terms of the
parameters of the Hamiltonian and the state. First we consider
two two-level systems and discuss a few special subclasses
of states of this system, and then we consider multiparty-
multilevel systems.

052140-3



MUKHERIEE, ROY, BHATTACHARYA, AND BANIK

ZA\

FIG. 1. Bloch sphere for a qubit system. e; /2; represents the Bloch
vector of the Hamiltonian of Eq. (16). To optimize the second term in
Eq. (5), each party apphes local unitary U;, which rotates the reduced
Bloch vector 7; along —h;.

A. Two-particle-two-level system
Consider an arbitrary two-particle—two-level system with
the Hamiltonian
H; = €}10:){0i] + ¢/ [1:) (1]
=T +e hi-o), iel2, (16)
where el.i = ei1 + e?, fzi is a vector in the Bloch sphere (see
Fig. 1) and 6 = (0y,0y,0;), with 0,,0,,0, denoting the Pauli
matrices. The total Hamiltonian of the composite system is
thus

H=H QI+1Q H,. (17)

An arbitrary two-qubit state can be expressed as the following
canonical form [47]:

1 - S
QAIAZ:Z|:I®I+I"1 'G®I+I®r2'0+ztl1zn6m ®O'ni|a

m,n

where the reduced state of the ith party is

Qe

Q4 = TrA,"(QAIAz) = %[I+f; :
7; being the vectors in R*® with |F;| < 1.

Let spectral values of Oun, be Ago, Aot A1o, and Aqq, where
Aoo = Aot = Ao = A Given the Hamiltonian of Eq. (17),
the passive state reads

passive

QP =3 ") (1| @ [ya) (32,

X,y

with x,y € {0,1}. We have

T passwe H

A1A2 Z )\'X_}ex_)u

x,y=0
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where e,, = ¢} + e3. Hence, we have

Z Axy€xy

x,y=0

Wop = Tr(e,,, H

and

Wol;,t = Tr(QAIAZ H) - Ulrr(gnu2 Tr[UQAlA U'TH ]

Now observe that

min Tr[U; ® Usg, ,, Ul ® UlH]

Ui ® Uz
= min Trfo, ,, Ul ®U2HU1 ® Us]
U1 QU
= Ungn Trlo, ., Ul @ Uj(H ® 1 +1® Hy)U; ® Us]
1®U2

- Z min Ti[o, U HU;]

i=I
2
- ;nlljiinTr[UiQAi U H].

Therefore, we need to independently minimize Tr[U;p, U, f H;]
over all U;. To obtain the minimum expectation value of
the Hamiltonian H;, each party applies the local unitary that
rotates the local state vectors 7; along —ﬁi (see Fig. 1), which
actually transform the states Qs = %(I—}- 7;.0) to the state

1(I — |F;|h;.5). Thus we have
nll]i,_nTr[QAi U;Hi U,-]

= Te[ (0~ [F7ilhi - )5(ef T+ € hi - 5)]
= (e — e/ |Fi]).

Hence the local extractable work will be

Wop = Tr(0,,,, H Z[e — e |71,

which further implies

2
1
Weg = - ;j[e — e |7

For any pure product state, |7| = |7>| = 1 and the passive
state is |00), i.e., Agp = 1, which, from the above expression,
immediately implies Wgg = 0, which is compatible with our
previous observation that for any pure state the ergotropic gap
is zero.

Nonzero EG for a mixed product state: Consider
a mixed product state of the particular form
pap=pa @ pp=diag{a,1 — a} @ diag{p,1 — B} = diag{ap,
a(l=8),(1 —a)B,(1 —a)(1 —B)} having the same
Hamiltonian as in Eq. (16). Consider the case 8 < a < % The
states p; can also be written as %[I + 1.0l with 7| =1 — 2«
and |F,| = 1 — 2. The passive state can then be written as
doo = (1 —a)(1 = B), ko1 = (1 — B)a, Ao = B(1 — «), and
A1 = af. To transform the state, one must apply the unitary

Z Ayexy |- (18)

x,y=0
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that has the action |00) — |11), [01) — |01), |10) — |10),
and |11) — |00). Clearly, this is an entangling unitary and
cannot be realized locally. In this case, the EG turns out to be

=(a—B)(e) —e)) + (@ + Ble] + (B —)ey. (19)

In the following, we consider a few special classes of correlated
states of a two-qubit system.

(a) Mixture of Bell states. The general form of this class is
given by

4
O = Z pi|Bi)(B
i=l

where {|B; )}4 , are four Bell states (one singlet and three
triplets). As one can see, these states are already diagonal
in the Bell basis with spectral values {pi}?zl. A suitable
global unitary can be considered such that the populations
{pi}}_, can be arranged in descending order as follows:
{ Prmaxs p]/nax, DimaxsPmin}, Where ppa is the maximum of
{piti_ 1, pmax being the second maximum and so on such that
pmax Pmdx > Pmdx 2 Pmin-
Since the marginal states are completely mixed, we have

WeG(0p) = eo(l - pr/nax) + 6(2)(% -
+ei(s Pain) +€3(5 —

Proax)
- pmin) .

Pmax — Pmax —

pmdx

p max

For the case ¢ = ¢ = 0 and e} = e} = 1, it takes the simpler

form WEG(QBeu) = Pmax — Pmin-
(b) Werner class of states. The generic form of this class is
given by

- I 1

w =PI+ A - )5 ® 5
The spectral values are (1+3p A 4p ,%, ! 4p ). For this entire
class of states, the completely mixed marginals imply

Wec(e,) = zp{(er —el) + (e =)}, (20)

which for the case e(l’ = e(z) =0 and ei = e; =1 takes the

value Weg(0,,) = p. Itis known that the Werner class of states
contains quantumness in correlations for all values of p except
p = 0, which implies a nonvanishing ergotropic gap for all
values of p except p = 0.

B. Multiparticle-multilevel systems

Here we generalize the calculation of a two-qubit state for
arbitrary states of multiparty systems. Consider an N-particle
state 0, , ~and the Hamiltonian H, which is of the form of
Eq. (1). Since there is no interaction term in the Hamiltonian,
the expression of local ergotropy as in Eq. (5) turns out to be

W = max Te[(e,,__,, —Ue,,_,,U")H]
N
- ll;rézglif Tr (QA[ ..... An UQAI ----- An UT) Z Hi ®Ik
i=1 kei
N
=Tr| 0, . 2 HQL
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- miﬁrzllTr UQA] ZH @Ik
€1l
N
=> Tre, H
i=1
— min Tr\ o, ZH QL |u|. @b

kei

where o, = Tr;(o,, ,,)is the normalized reduced state of the
ith subsystem; here Tr; denotes the partial trace over all parties
except i. The second term on the right-hand side of Eq. (21)
can be written as

N
JQILI}JTr O, UT 2Hi®lk U
i= kei
i N N N
= min Tr|o, , QU HRL|RU:
QL Ui i i=1 i=1 kel i=1
[ N
= min Tr|o, ZU,-THiUi®Ik
®{V:| Ui | i=1 kei
N n
= min 3o, 0/ H )]
N
Z nTr [0, (U H; U] (22)

Putting the expression of Eq. (22) into Eq. (21), we get

N

W[ﬁn Z [Tr (Q )

i=1

mlnTr(U 0, U; H)] (23)

From the above expression, it is clear that local ergotropy is
the sum of optimal work extracted by each party individually
by applying a local unitary. Obviously, to extract optimal
work, each party applies suitable unitaries that transform their
reduced density matrix ¢, to the corresponding local passive
state QP"‘SS”"‘ Therefore, we have

N

Wape = D_[Tr(e,, H:)

i=1
Substituting Egs. (2) and (24) in Eq. (6), we have
N
Weg = ) Tr[o " H,] — Te[o?™"¢ H].  (25)

ApnA
i=l

— Tr(e™ " H;)]. (24)

Thus for any state o, , = the ergotropic gap is quantified by
the difference of the internal energy of the global passive state
from the sum of internal energies of the passive state of each
parties’ reduced state.

Local ergotropy is the sum of the optimal works extracted
by each party, locally. As discussed earlier, switching on
the suitable time-dependent local interacting field V;(¢), each
party can transform its initial reduced state to a local passive
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state. However, as no global interaction is allowed, the global
state 0, , ~does not in general evolve into its passive form

QP““VC, rather the global state 04,4, ©volves into a state

Na,..ay» Where Tr;(n, )= Qljfss”e‘v’ i. At this point, one
can further ask whether the state n, , ~can be considered
as a resource for work extraction under the constraint that no
global interaction field among different parties can be applied.
Interestingly, given many copies of the statey, , ,theanswer
is yes. This is because the composition of many copies of
passive systems may not remain passive and exhibit a form of
activation [22,23]. It has been shown that the only completely
passive state is the Gibbs state (thermal state) from where no
additional work can be extracted even with many (unbounded)
copies [22]. Therefore, using the activation process, work can
be extracted until each local passive state transforms into a
completely passive state, i.e., a thermal state. In the following,
we focus on global and local work extraction from a correlated
quantum system when it is no longer isolated but rather put in
contact with a thermal bath.

V. EXTRACTING WORK IN THE PRESENCE
OF A THERMAL BATH

Consider the scenario in which the system is no longer
isolated but each of the subsystems is put in contact with
local baths of the same temperature 8~'. In this scenario,
one can again be interested in the maximal work that can be
extracted via global unitaries acting jointly on the system and
the bath and also the amount of maximal extracted work via
local unitaries acting jointly on the subsystems and the local
bath. In such a scenario, it is well known that the extractable
work is upper-bounded by the difference between initial and
final (thermal) free energies [6,26,27], i.e.,

W(cb) _ F(U) _ F(O,thermal)’

opt —

where F(o0) =Ti(Ho) — B~'S(o) and othemal = expCAH)
with Z = Tr[exp(—BH)] being the partition function. The
superscript “(cb)” indicates that work is extracted in contact
with a bath. Thus we have

WG(Cb) — F(QA],.”,An) _

opt Fle ;hlemil)’

n

W(i)(tcb) — Z [F(QA,») _ F(Q;hermal)].

i=1 /
In such a scenario, the difference between global and local
extractable work is therefore
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%wet we have H = ' H;, which further gives Q‘he”“al
otema ‘we have —

n

AW = p~! [Z S(e,,) = S(es,.. )} @7

i=l1

For a two-particle system, the above expression reduces to the
well-known quantum mutual information [48]. It is worthwhile
to mention that this quantity can be nonzero for classically
correlated states.

VI. DISCUSSIONS

Quantumness in correlations is a topic of fundamental
research interest. It captures a more general type of correlations
than the entanglement. As discussed earlier, for a bipartite
scenario, discord is one of the quantities that measures the
quantumness present in a correlation. The concepts of quantum
correlations can easily be extended to a multiparticle scenario
in the sense that a multipartite quantum state contains quantum
correlations if it cannot be written as a convex combination of
any orthonormal product basis of the subsystems pertaining to
the whole system. In this work, we show that this nonclassical
feature of correlations has an interesting manifestation in
thermodynamics, particularly in work extraction from isolated
systems. In this direction, we have proven that the presence of
quantum correlations in a multipartite state sufficiently implies
a nonzero difference between global and local ergotropy,
which we call the ergotropic gap. To motivate local ergotropy,
we have considered a situation in which the spatially separated
parties are unable to implement any global interaction field.
This leads to the concept of extracting optimal work by
transforming the reduced states to corresponding passive
states, applying local unitaries independently. As a future
area of research, the following topics can be explored: First,
it would be interesting to classify the states for which the
ergotropic gap is nonzero. Second, it would be worthwhile
to explore the concept of ergotropy in situations in which
different parties are allowed to come together and global
unitaries can be applied.
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