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Free-molecule heat transfer in a conservative force field between parallel surfaces
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The heat flux between parallel surfaces is computed analytically assuming that heat is transferred by particles
moving ballistically under the influence of a conservative force field. Particle reflection at the surfaces is governed
by a Maxwell-type boundary condition. It is found that the force field can give rise to a substantial reduction, but
also to an enhancement of the heat flux, depending on the ratio of the temperatures at the two surfaces. The influ-
ence of the accommodation coefficients is studied. An asymmetry introduced by the force field and/or the boundary
conditions at the two surfaces causes a significant heat-flux rectification, characteristic for a thermal diode.
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I. INTRODUCTION

Heat may be transferred by atoms or molecules in a fluid,
or by electrons or phonons in a solid. In the regime where the
wavelike character of these entities does not play a role, they
can be modeled as classical particles. Within certain limits,
the kinetics of these particles is described by the Boltzmann
equation, most notably when their number density is low
enough to describe particle-particle interactions as pointlike
and to exclusively consider binary collisions. The Boltzmann
equation has been established as a standard description for
particle transport away from thermodynamic equilibrium in
a number of different contexts. First of all, it is used to
model gas dynamics in the rarefied regime [1,2]. It has also
found widespread applications in modeling electron transport
in semiconductors in the semiclassical domain [3,4]. Even
phonon transport in solids is often described based on the
Boltzmann equation [5,6].

The most important dimensionless group characterizing
these transport processes is the Knudsen number Kn, being
the ratio between the mean free path of the particles and a
characteristic system dimension. For Kn � 1, the collisions
between particles can be neglected, and transport phenomena
can be analyzed based on ballistic particle trajectories. In gas
kinetics, this is referred to as the free-molecular flow regime.
A classical result in that context is the free-molecular heat
flux between two parallel surfaces with complete thermal
accommodation (see, e.g., [7]):

qfm = ρ√
π

(2R)3/2
√

T1T2(
√

T1 −
√

T2). (1)

In this expression, T1 and T2 are the surface temperatures,
ρ is the mass density of the particles, and R is the specific gas
constant.

There are various situations in which ballistic heat transport
becomes important. For example, apart from the classical case
of a rarefied gas confined between two surfaces, ballistic
transport also plays a role for the electronic contribution
to solid heat transfer on the nanoscale. Solid structures
with a characteristic scale below 100 nm in at least one
dimension play a key role in a plethora of scientific and
technological settings, and the mean free path of electrons at
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room temperature can be of the order of 50 nm [8,9]. Several
extensions and generalizations of the relationship shown in
Eq. (1) have been presented in the literature. First, Eq. (1)
was generalized to account for a broader class of boundary
conditions at the two surfaces [10]. Further, using numerical
schemes for solving the kinetic equations, the effects of
particle-particle collisions on heat transfer between parallel
surfaces have been studied [11–17].

Among others, nanoscale heat transport plays a key role
in current efforts to design thermoelectric devices with
increased efficiency [18,19]. Thermoelectric energy converters
often utilize nanostructures with characteristic dimensions
comparable to the mean free path of electrons and phonons,
and are based on the idea of increasing the ratio of electric
and thermal conductivity compared to the value characteristic
for bulk materials. Motivated by this example, it appears as if
one important aspect of ballistic heat transfer between parallel
surfaces has not been considered up to now: Close to the
surface of a solid (or close to the interface to a second phase
or material), electrons or phonons may experience a mean
force field. For example, in metals the corresponding effective
potential is related to the work function and increases when an
electron approaches the surface [20]. Similarly, ions moving
in an electric field applied between two surfaces experience an
electrostatic potential.

While the examples above may appear a bit exotic, heat
transfer by ballistic particle transport in a mean force field be-
tween two parallel surfaces is a quite ubiquitous phenomenon
also within the quite classical scope of a gas confined in a gap
at high Knudsen numbers. The following order-of-magnitude
arguments suggest that neglecting the mean force field onto
atoms or molecules in a gas [as inherent in Eq. (1)] is usually
not supported by the physics of gas-surface interactions.

Atoms or molecules in a gas interact with a surface
via van der Waals forces. Based on an interaction potential
between two atoms or molecules of the form Uaa = −C/r6 (r:
separation distance), a simplified expression for the interaction
potential between an atom or molecule and a planar wall is
given as [21]

Uas = −π

6

Cn

d3
, (2)

where d is the distance between an atom or molecule and the
surface, and n is the number density of atoms or molecules
in the wall material. For simplicity, is has been assumed that
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the atoms or molecules in the gas and in the wall material are
identical. Let us consider the interaction of argon with a sur-
face. From the Lennard-Jones parameters of argon (see, e.g.,
[22,23]) we obtain C ≈ 1.1 × 10−77 J m6. In order to transfer
energy to a surface of an electrically insulating material, an
atom has to collide with surface atoms or molecules and excite
or destroy phonons. Generally, this is a complex problem
requiring a quantum mechanical treatment (see [24] and
references therein). However, in a simple classical picture we
can assume that energy transfer between an atom and a surface
only happens when there is a geometric overlap between the
surface structures and the atom. The corresponding geometric
quantity enabling mapping the electron cloud of argon to a
sphere is the van der Waals radius rW. For argon we have
rW ≈ 0.188 nm [25]. Correspondingly, at the point of contact
of an argon atom with a flat surface at T = 300 K, Eq. (2)
gives Uas ≈ −12.7kBT , where kB is the Boltzmann constant,
and a characteristic value of n = 105 mol m−3 was assumed.
This potential energy value is a manifestation of the fact that
atoms or molecules can be adsorbed at surfaces. Generally, the
magnitude of this value depends on the combination of wall
material and gas species. This picture suggests that before
atoms or molecules transfer energy to a surface, they are often
exposed to an attractive van der Waals potential of significant
magnitude. When considering the ballistic flight of gas atoms
or molecules between two parallel surfaces, owing to the
material dependence of van der Waals interactions, the effects
of the attractive potentials at the two surfaces generally do not
cancel each other, and the fact that the atoms or molecules are
exposed to a force field needs to be taken into account.

The examples above motivate developing a theory for
free-molecule heat transfer between parallel surfaces in a
conservative force field. For this purpose, it is assumed that
the heat is carried by “particles,” a generic term representing
entities such as atoms, molecules, ions, electrons, or phonons,
depending on the situation considered.

II. CALCULATION OF HEAT FLUX

Particle transport is modeled based on the collisionless
Boltzmann equation,

∂f

∂t
+ c · ∇rf + F

m
· ∇cf = 0, (3)

where f (r,c,t) is the phase-space distribution function of
the particles (defined on the product space of position and
velocity), m the particle mass, and F the force field. A
conservative force field derived from a potential via F = −∇U

is assumed. In the absence of collisions between particles,
the Boltzmann equation can be solved by computing ballistic
particle trajectories [2]. Figure 1 depicts the specific situation
considered in this article. Particles move ballistically between
two infinitely extended parallel surfaces. The lower surface
(1) has a temperature of T1, the upper one (2) a temperature of
T2. It is assumed that the two surfaces are isosurfaces of the
potential energy. Without loss of generality, we specify U = 0
at the lower surface and U = Us � 0 at the upper surface. For
solving the collisionless Boltzmann equation and computing
the heat flux, boundary conditions at the two surfaces need to de
defined. We consider the commonly used Maxwell boundary

FIG. 1. Schematic showing particles moving ballistically be-
tween two surfaces. The parameters defining the boundary conditions
are indicated.

condition, reading

fout(c) = σfM(c) + (1 − σ )fin(c∗), (4)

where fout represents the phase-space distribution of the
particles reflected from the corresponding surface, fin that of
the incoming particles, and fM the Maxwell distribution, given
by

fM(c) = n

(
βm

2π

)3/2

exp

(
−1

2
βmc2

)
, (5)

with n being the particle number density and β = (kBT )−1 (kB:
Boltzmann constant). The “*” superscript indicates inversion
of the z component of velocity, i.e., c∗ = (cx,cy,−cz). σ is a
momentum accommodation coefficient, being 1 for a diffusely
reflecting surface and 0 for a surface with specular reflection.
Different values σ1, σ2 are assumed for surfaces 1 and 2.

Figure 1 shows different trajectories of particles emerging
from surface 1. By contrast to the situation without force field,
not all of these particles reach surface 2. Some of them are
directed back to surface 1 without transferring any energy.

To compute the heat flux between the surfaces, it is
sufficient to know the phase-space distribution function at
one of the surfaces. A steady-state solution is assumed.
The key to the following analysis is to divide the velocity
space into two subspaces, using the threshold velocity ct =√

2Us/m. Considering energy conservation in the conservative
force field, it follows that a particle emitted from surface
1 is only able to reach surface 2 if cz|1 � ct, where the
subscript indicates at which velocity the surface is evaluated.
Conversely, particles emitted from surface 2 reach surface
1 with |cz|1 � ct. In other words, all particles impinging on
surface 1 with |cz|1 < ct originate from surface 1 and have
been redirected to this surface; all particles impinging with
|cz|1 � ct must have reached surface 2 before. Specifically,
this means that for |cz|1 < ct and when replacing cz by −cz,
the phase-space distributions of the incoming and outgoing
particles at surface 1 must be identical. At surface 1 we have

f (1)
in (c∗) =

{
f

(1)
out (c) if |cz| < ct

N−f
(2)
out (c

∗
−) if |cz| � ct

, (6)

where the subscripts “in” and “out” refer to cz � 0 (cz � 0)
and cz > 0 (cz < 0) for surface 1 (surface 2), respectively. The
superscript indicates at which surface f should be evaluated.
For particles impinging on surface 1 originating from surface
2 it needs to be taken into account that the z velocity increases
during their ballistic flight. A velocity vector c = (cx,cy,cz) at
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surface 1 is therefore mapped to a velocity

c− = [
cx,cy,cz

√
1 − 2Us

/(
mc2

z

)]
(7)

at surface 2. Correspondingly, to ensure particle number
conservation, a normalization factor

N− =
(

1 − 2Us

mc2
z

)−1/2

(8)

has to be introduced. At surface 2, all of the incoming particles
originate from surface 1. Correspondingly,

f (2)
in (c) = N+f

(1)
out (c+), (9)

where c+ and N+ are obtained by replacing the “–” signs under
the square root in Eqs. (7) and (8) by “+” signs.

In what follows, a route toward computing f (1)
in and f

(1)
out

will be described. If |cz|1 < ct, Eqs. (4) and (6) constitute a
system of two equations for the two unknowns. If |cz|1 � ct,
Eq. (6) contains f

(2)
out which can be reexpressed with the help

of Eq. (4). Using Eq. (9) then again yields a closed system of
equations for f (1)

in and f
(1)
out . As a result, we obtain

f
(1)
out (c) = σ1f

(1)
M (c) + (1 − σ1)f (1)

in

(
c∗),

(10)
f (1)

in

(
c∗) = f

(1)
out (c),

if |cz|1 < ct and

f
(1)
out (c) = σ1f

(1)
M (c) + (1 − σ1)f (1)

in (c∗),
(11)

f (1)
in

(
c∗) = σ2f

(2)
M

(
c∗) + (1 − σ2)f (1)

out (c),

if |cz|1 � ct. The solution is

f
(1)
out (c) = f

(1)
M (c),

(12)
f (1)

in

(
c∗) = f

(1)
M (c),

if |cz|1 < ct and

f
(1)
out (c) = σ1f

(1)
M (c) + (1 − σ1)σ2f

(2)
M (c)

1 − (1 − σ1)(1 − σ2)
,

(13)

f (1)
in

(
c∗) = σ2f

(2)
M (c) + (1 − σ2)σ1f

(1)
M (c)

1 − (1 − σ1)(1 − σ2)
,

if |cz|1 � ct. Via f
(1)
M and f

(2)
M , this solution depends on the yet

undetermined parameters n1 and n2.
To fix n1 and n2, we employ the following two conditions:
(1) The particle number density at surface 1 is given by n;
(2) The incoming particle number flux at surface 1 is equal

to the outgoing particle number flux.
Since surface 1 has been chosen to determine n1 and n2,

in the following we skip the superscripts at the phase-space
distribution functions, adopting the convention that from this
point on all phase-space distributions are evaluated at surface
1 if not stated otherwise. The first of the above two conditions
is expressed as∫

cz�0
find

3c +
∫

cz>0
foutd

3c = n. (14)

After expressing fin and fout via Eqs. (12) and (13), splitting
the velocity space into subspaces S− = {c ∈ R3 : |cz| < ct}

and S+ = {c ∈ R3 : |cz| � ct}, and performing the integrals
over the two subspaces separately, Eq. (14) transforms into

n = n1

2

[
2erf(c̃t1) + σ1(2 − σ2)[1 − erf(c̃t1)]

1 − (1 − σ1)(1 − σ2)

]

+ n2

2

σ2(2 − σ1)[1 − erf(c̃t2)]

1 − (1 − σ1)(1 − σ2)
, (15)

where erf is the error function and c̃ti = √
mβi/2 ct. The

condition of equal incoming and outgoing particle fluxes reads∫
cz�0

czfind
3c +

∫
cz>0

czfoutd
3c = 0. (16)

Again, the corresponding integrals can be evaluated in a
straightforward manner, resulting in

n2 =
√

β2

β1
exp

(
c̃2

t2 − c̃2
t1

)
n1. (17)

Equations (15) and (17) represent two equations for the two
unknowns n1 and n2. The solution is

n1 = 2n

(
2erf(c̃t1) + [1 − (1 − σ1)(1 − σ2)]−1

×
{
σ1(2 − σ2)[1 − erf(c̃t1)]

+
√

β2

β1
exp

(
c2

t2 − c2
t1

)
σ2(2 − σ1)[1 − erf(c̃t2)]

})−1

, (18)

together with Eq. (17).
For computing the heat flux between the two surfaces, it is

assumed that the internal degrees of freedom of the particles
(if any) remain unaffected by the collisions with the surfaces.
Consequently, only the energy stored in the center of mass
motion contributes, and the heat flux is given by

q = m

2

(∫
cz�0

czc
2find

3c +
∫

cz>0
czc

2foutd
3c

)
. (19)

Again, by utilizing Eqs. (12) and (13), and by splitting
the velocity space into two integration domains S− and S+,
all integrals contributing to Eq. (19) can be evaluated in a
straightforward manner, yielding

q =
√

2

πm

σ1σ2

1 − (1 − σ1)(1 − σ2)

[
n1

β
3/2
1

exp
(−c̃2

t1

)(
1 + 1

2 c̃2
t1

)

− n2

β
3/2
2

exp
(−c̃2

t2

)(
1 + 1

2 c̃2
t2

)]
(20)

where n1 and n2 are given by Eqs. (17) and (18), respectively.
For later convenience, it is preferable to introduce a dimen-
sionless heat flux q̃ = q[n

√
2/πm(kBT1)3/2]−1 which is given

by

q̃ = σ1σ2

1 − (1 − σ1)(1 − σ2)

[
ñ1 exp(−Ũs)

(
1 + 1

2
Ũs

)

− ñ2

(
T2

T1

)3/2

exp

(
−Ũs

T1

T2

)(
1 + 1

2
Ũs

T1

T2

)]
, (21)
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where Ũs = Us/(kBT1) and

ñ1 = 2

(
2erf(

√
Ũ s) + [1 − (1 − σ1)(1 − σ2)]−1

{
σ1(2 − σ2)

× [1 − erf(
√

Ũ s)] +
√

T1

T2
exp

[
Ũs

(
T1

T2
− 1

)]

× σ2(2 − σ1)

[
1 − erf

(√
Ũs

T1

T2

)]})−1

,

ñ2 =
√

T1

T2
exp

[
Ũs

(
T1

T2
− 1

)]
ñ1. (22)

As a consistency check, we can compare the expression of
Eq. (20) for the case Us = 0 with the literature expression
for the free-molecule heat flux. Sparrow and Kinney [10]
computed the free-molecular heat flux without force field, but
for arbitrary accommodation coefficients at the two surfaces.
If Us = 0, Eq. (20) reduces to their equation (up to a constant
factor of 4, which is missing in their expression).

III. DISCUSSION AND CONCLUSIONS

To study the effects of the force field and of the boundary
conditions separately, we first analyze the case σ1 = σ2 =
1. In gas kinetics, accommodation coefficients close to 1
approximate the behavior of many surfaces reasonably well
[26,27]. Figure 2 shows the dimensionless heat flux as a
function of the temperature ratio T2/T1. The curves are labeled
with Ũs = Us/(kBT1). As expected, the heat flux changes
sign with T2 − T1, being positive for T1 > T2 and negative
for T1 < T2. For T1 < T2 the magnitude of the heat flux
decreases with increasing Ũs. In this case the “bottleneck”
for heat transfer is the relatively slow particles traveling from
surface 1 to surface 2. With increasing Ũs, fewer and fewer of
these particles are able to reach surface 2, and their average
kinetic energy decreases. At a value of Ũs = 5 the heat flux is
almost completely suppressed compared to the case without
a force field. The situation for T1 > T2 is more complex.
Without a force field it is easy to show that q̃ assumes an
absolute maximum at T2/T1 = 1/4. The reason that the heat
flux decreases for T2/T1 < 1/4 lies in the fact that in the limit

FIG. 2. Dimensionless heat flux as a function of the temperature
ratio for the case of diffuse reflection boundary conditions at both
surfaces. The curves are labeled with Ũs.

FIG. 3. Dimensionless heat flux as a function of the temperature
ratio for σ1 = 0.5, σ2 = 1. The curves are labeled with Ũs.

T2 → 0 the particles leaving surface 2 become so slow that
they hardly carry any kinetic energy. At nonzero values of Ũs

the maximum gets shifted to smaller values of T2/T1; in the
cases considered in Fig. 2 these values are so small that they fall
outside of the range shown on the abscissa. As a consequence,
the heat flux at nonzero values of Ũs is not always smaller
than that obtained for Ũs = 0, but exceeds the latter if T2/T1

is small enough.
Figure 3 shows the heat flux as a function of the temperature

ratio for the case σ1 = 0.5, σ2 = 1. It can be seen that
compared to the case with two diffusely reflecting surfaces, the
heat flux gets reduced by roughly a factor of 2. For T1 � T2

the heat flux is governed by particles emitted from surface 1. If
σ1 = 0.5, and based on a statistical interpretation of the surface
accommodation coefficient, a surface-particle energy transfer
happens in only half of the cases. Likewise, when T2 � T1,
the heat transfer is governed by particles emitted from surface
2. If σ1 = 0.5, only half of these particles are able to transfer
energy to surface 1. Choosing σ1 = 1, σ2 = 0.5 has roughly
the same effect as σ1 = 0.5, σ2 = 1 (cf. Fig. 4). Only for small
values of Ũs there is a distinct difference between these two
assignments of boundary conditions: σ1 = 1, σ2 = 0.5 results
in a lower (higher) heat flux than σ1 = 0.5, σ2 = 1 for T2 > T1

(T1 > T2).
A force field acting on the particles not only influences the

magnitude of the heat flux, it also rectifies the heat flux to a cer-
tain degree. Without a force field, replacing T1 by T2 at surface

FIG. 4. Dimensionless heat flux as a function of the temperature
ratio for σ1 = 1, σ2 = 0.5. The curves are labeled with Ũs.
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FIG. 5. Heat-flux ratio as a function of the temperature ratio for
diffuse reflection boundary conditions at both surfaces. The curves
are labeled with Ũs.

1 and T2 by T1 at surface 2 only reverses the sign of the heat flux
but does not change its magnitude. By contrast, a thermal diode
exhibits a significantly different heat-flux magnitude when the
temperatures at its boundary are exchanged. Other than their
electronic counterparts, the design of thermal diodes has posed
substantial challenges that were difficult to overcome [28,29].
Recently, novel pathways towards thermal rectification have
been explored [30–33]. To quantify the thermal rectification,
we introduce the heat-flux ratio:

rq =
∣∣∣∣q(T1,T2)

q(T2,T1)

∣∣∣∣ =
∣∣∣∣ q̃(T2/T1)

q̃(T1/T2)

∣∣∣∣
(

T1

T2

)3/2

. (23)

In Fig. 5 the heat-flux ratio is displayed as a function
of T2/T1 for diffuse reflection boundary conditions at both
surfaces. Since rq(T2/T1) = 1/rq(T1/T2), the values on the
abscissa are limited to T2/T1 > 1. Already a comparatively
small Ũs of 0.05 gives rise to a significant rectification of the
heat flux. The dependence of rq on Ũs is highly nonlinear,
such that the deviation from rq = 1 obtained for Ũs = 0.05 is
already more than half of the deviation obtained for Ũs = 1.

To further shine light on heat-flux rectification, consider
a case with disparate values of σ1 and σ2. Figure 6 displays
the heat-flux ratio as a function of T2/T1 for σ1 = 0.1, σ2 = 1
(top) and σ1 = 1, σ2 = 0.1 (bottom). The first thing to note is
that even at Us = 0 heat-flux rectification occurs. Apparently,
the symmetry breaking due to the different assignments of
accommodation coefficients at surfaces 1 and 2 is sufficient to
induce different heat transport resistances in the two directions.

To explain this heat-flux rectification due to boundary
conditions, consider the case σ1 � 1, σ2 = 1, T2/T1 � 1
at vanishing potential. This simple case is constructed to
highlight the basic mechanism. To further simplify matters,
details of the phase-space distribution will be ignored, and it
will be assumed that there are two types of particles, “hot”
ones with an energy of the order of kBT2 and “cold” ones with
an energy of the order of kBT1. If T2/T1 � 1, the contribution
to the heat flux by the cold particles can be neglected. To study
heat-flux rectification, two different temperature assignments
need to be compared, i.e.,

Case A: T1 at surface 1, T2 at surface 2;
Case B: T2 at surface 1, T2 at surface 2.

FIG. 6. Heat-flux ratio as a function of the temperature ratio for
σ1 = 0.1, σ2 = 1 (top) and σ1 = 1, σ2 = 0.1 (bottom). For the latter
case, only the curves corresponding to the largest and smallest value
of Ũs are displayed. The curves representing intermediate values of
Ũs fall between these two limits.

Under the assumptions made, the magnitude of the heat flux
in case A is approximately given by qA ∼ σ1NAkBT2, with
NA being the particle number flux density. This expression
is obtained by taking into account that only cold particles
impinging at surface 2 contribute to the heat flux (while
hot particles impinging at this surface do not, since their
kinetic energy is unchanged upon collision with the surface).
The probability of a particle hitting surface 2 being cold is
given by σ1, since the conversion of hot into cold particles
occurs at surface 1. Likewise, in case B the magnitude of the
heat flux is approximately given by qB ∼ σ1NBkBT2, since
in this case heat is transferred by hot particles emitted from
surface 1. Again, the conversion from cold to hot particles
occurs with a probability of σ1. It is not difficult to see
that the particle number flux densities, NA and NB , are
different. Given that σ1 is very small, surface 2 determines the
kinetic energy of the particles exchanged between the surfaces;
i.e., NA ∼ √

kBT2/m, NB ∼ √
kBT1/m. The corresponding

heat-flux ratio is obtained as rq ∼ √
T2/T1. Exactly the same

expression can be derived from Eq. (20) in the limit σ1 →
0, T2/T1 → ∞ (while σ2 = 1, Us = 0). This simple example
highlights how the boundary conditions cause a heat-flux
rectification.

Figure 6 exhibits an interesting influence of the force field
on heat-flux rectification. For the case σ1 = 0.1, σ2 = 1, the
rectification is very sensitive to the force field. The substantial
rectification occurring at Ũs = 0 can be virtually eliminated
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by applying a comparatively weak potential of Ũs = 0.05.
By contrast, when σ1 = 1, σ2 = 0.1, the potential has little
influence on rq .

To summarize, the free-molecule heat flux between parallel
surfaces was computed analytically in the presence of a
conservative force normal to the surfaces. At both surfaces,
a Maxwell boundary condition for the reflection of particles
was assumed. The force field can give rise to a substantial

reduction, but also to an enhancement of the heat flux,
depending on the ratio of the temperatures at the two surfaces.
Furthermore, the force and/or the boundary conditions for the
phase-space distribution function at the two surfaces result
in a significant degree of heat-flux rectification. The model
developed in this work may be helpful for analyzing various
scenarios in which heat is transported ballistically by atoms
(or molecules), electrons, or phonons.
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