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Persistent homology analysis, a recently developed computational method in algebraic topology, is applied to
the study of the phase transitions undergone by the so-called mean-field XY model and by the φ4 lattice model,
respectively. For both models the relationship between phase transitions and the topological properties of certain
submanifolds of configuration space are exactly known. It turns out that these a priori known facts are clearly
retrieved by persistent homology analysis of dynamically sampled submanifolds of configuration space.
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I. INTRODUCTION

Topological methods lie at the base of many successful
physical theories [1], with fields of applications ranging from
dynamical systems and quantum computation to the theory
of phase transitions and topological field theories. In recent
years, the possibility has been investigated [2] that at least
for a broad class of physical systems the deep origin of phase
transitions is a major topological change of some submanifolds
of phase space or, equivalently, of configuration space. The
central idea is that the singular energy dependence displayed
by the thermodynamic observables at a phase transition is the
shadow of such major topological change.

This new point of view about the deep origin of phase tran-
sitions was originally proposed for theoretical reasons, in fact,
after the Yang-Lee theorem the mathematical description of
phase transitions requires the thermodynamic limit (N → ∞)
in order to break the analyticity of thermodynamic observables.
However, phase transition phenomena occur in nature as dra-
matic qualitative changes of some physical property also very
far from thermodynamic limit. Let us think of Bose-Einstein
condensation, of Dicke’s superradiance in microlasers, of
superconductive transitions in very small metallic objects,
of the filament-globule transition in homopolymers, of the
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folding transition in proteins, of a microscopic snowflake
melting into a droplet of liquid water, to mention just some
examples.

The question was: Can we think of a different mathematical
approach unifying the description of phase transitions in finite,
small N systems with the standard description resorting to
the thermodynamic limit dogma? At least for a broad class
of physical potentials the answer was in the affirmative as
can be seen in Refs. [2] and [3,4]. However, in some sense
similarly to the Yang-Lee theory for which analytically finding
the zeros of the grand partition function is in practice possible
only for a few models (essentially given by the Lee-Yang
“circle theorem”), also the topological approach suffers from
computational difficulties, and analytic topological informa-
tion can be obtained only for a very few models. Also the
direct numerical measurement of topological properties of
the configuration space of physical systems faces serious
computational issues because of the high dimensionality of
the associated manifolds. The idea that some of the mentioned
computational obstacles could be overcome comes from the
observation of the existence of new computational tools in
the fields of discrete geometry and topology. These new
methods have already been developed for analyzing data
in high-dimensional spaces [5]. Hence, we expect that they
could be useful to investigate topological changes also in
physical configuration spaces by identifying their homology
from random samples.

In the present paper we resort to persistent homology
analysis. Persistent homology [6–8], a particular sampling-
based technique from algebraic topology, was originally
introduced in 2002 [9] by Edelsbrunner et al. with the
aim of extracting coarse topological information from high-
dimensional data sets [5]. In a nutshell, while homology
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detects the connected components, tunnels, voids of a given
topological space, persistent homology computes multiscale
homological features obtained from a discrete sample of a
topological space X by foliating it appropriately. Hitherto,
the study of persistent homology has already proved useful
in various fields such as biological and medical data analysis,
neuroscience [10], sensor network coverage problems [11], to
quote just a few of them.

Here persistent homology is applied to the study of
equilibrium phase transitions. Two models are considered
for which we rigorously know what to expect: the so-called
mean-field XY model (MFXY ) and the classical lattice φ4

model. For the MFXY model both the thermodynamics and the
configuration space topology are exactly known, whence the
topological origin of phase transition is rigorously ascertained;
while for the φ4 model it is analytically known that the
phase transition does not correspond to any topology change
in configuration space at any finite N (see Sec. II B for a
discussion on this model).

The benchmarking so performed gave sharp and unam-
biguous results in the good direction. This could open new
interesting perspectives for practical applications of the above-
mentioned topological theory of phase transitions.

II. PHASE TRANSITIONS AND TOPOLOGY

It is well know that the unbounded growth with N of certain
thermodynamic quantities, eventually leading to singularities
in the N → ∞ limit, is the hallmark of an equilibrium phase
transition. Apart from several studies on specific models [2],
two theorems state that these unbounded growths are necessar-
ily due to appropriate topological transitions in configuration
space [3,4]. The following exact formula

SN (v) = (kB/N) log

[∫
Mv

dNq

]

= kB

N
log

[
vol

[
Mv \

N (v)⋃
i=1

�
(
x(i)

c

)]

+
N∑

i=0

wi μi(Mv) + R
]
, (1)

makes explicit the relation between thermodynamics and
topology, where S is the configurational entropy, v is the
potential energy per degree of freedom, and the μi(Mv) are the
Morse indexes (in one-to-one correspondence with topology
changes) of the submanifolds {Mv = V −1

N ((−∞,v])}v∈R of
configuration space; in square brackets: the first term is the
result of the excision of certain neighborhoods of the critical
points of the interaction potential from Mv; the second term
is a weighted sum of the Morse indexes, and the third term
R is a smooth function of N and v. It is evident that sharp
changes in the potential energy pattern of at least some of the
μi(Mv) (thus of the way topology changes with v) affect S(v)
and its derivatives. It can be proved that the occurrence of
phase transitions necessarily stems from this topological part
of thermodynamic entropy [3,4].

A. Mean-field XY model

The mean-field XY model is defined by the Hamiltonian
[12,13]

H(p,ϕ) =
N∑

i=1

p2
i

2
+ J

2N

N∑
i,j=1

[1 − cos(ϕi − ϕj )] − h

N∑
i=1

cos ϕi.

(2)

Here ϕi ∈ [0,2π ] is the rotation angle of the ith rotator and
h is an external field. Defining at each site i a classical spin
vector mi = (cos ϕi, sin ϕi), the model describes a planar (XY )
Heisenberg system with interactions of equal strength among
all the spins. We consider the ferromagnetic case J = 1. The
equilibrium statistical mechanics of this system is exactly
described, in the thermodynamic limit, by mean-field theory. In
the limit h → 0, the system has a continuous phase transition,
with classical critical exponents, at the critical temperature
Tc = 1/2, or at the critical energy density Ec/N = 3/4 [12].

The entire configuration space M of the model is an
N -dimensional torus, parametrized by N angles. The subman-
ifolds Mv ⊂ M are defined by

Mv = V−1(−∞,v]

= {(ϕ1, . . . ,ϕN ) ∈ M : V(ϕ1, . . . ,ϕN ) � v}, (3)

i.e., defined by the constraint that the potential energy per
particle V = V/N does not exceed a given value v.

Morse theory [14] states that topology changes of the Mv

occur in correspondence with critical points of V , i.e., those
points where ∇V = 0. This implies [2] that there are no
topological changes for V > 1/2 + h2/2, i.e., all the Mv with
V > 1/2 + h2/2 are diffeomorphic to the whole M .

The Euler characteristic, a topological invariant of the
manifolds Mv , which is exactly computed in Refs. [15,16],
is defined by

χ (Mv) =
N∑

k=0

(−1)kμk(Mv), (4)

where the Morse number μk is the number of critical points of
V that have index k [14].

After a monotonic growth with v, a sharp, discontinuous
jump to zero of χ (Mv) is found at the phase transition point,
that is, at vc = 1/2 + 0+. However, as already shown in
Refs. [15,16], it is just this major topological change occurring
at vc that is related to the thermodynamic phase transition of
the mean-field XY model.

B. φ4 model

The lattice φ4 model is defined by the Hamiltonian

H(p,ϕ) =
∑
i∈Zd

⎡⎣p2
i

2
+J

2

d∑
μ=1

(ϕi+eμ
− ϕi)

2 − 1

2
m2ϕ2

i + λ

4
ϕ4

i

⎤⎦,

(5)

where eμ is the unit vector in the μth direction of the
d-dimensional lattice. At equilibrium and for d � 2, this
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model—representing a set of linearly coupled nonlinear
oscillators—shows a second-order phase transition with
nonzero critical temperature. This phase transition is due to
a spontaneous breaking of the discrete O(1), or Z2, symmetry.

Recently, this model has been proposed as a counterex-
ample of the topological theory of phase transitions [17]. In
fact, the phase transition of the d � 2 lattice φ4 model occurs
at a critical value vc of the potential energy density, which
belongs to a broad interval of v values void of critical points
of the potential function. This means that the {�N

v<vc
}v∈R are

diffeomorphic to the {�N
v>vc

}v∈R so that no topological change
seems to correspond to the phase transition. Since then, it is
commonly believed that this result undermines the value of the
topological theory [18].

However, the following heuristic reasoning could suggest a
different explanation of the situation. Both the microcanonical
caloric curve (temperature versus energy) and the law of
divergence of the specific heat of the φ4 model show markedly
softer transition patterns [19,20] than those shown by other
models undergoing a continuous phase transition, such as the
mean-field XY model and the p-trigonometric model [2]. For
these latter models it has been analytically proved that major
topology changes correspond to the critical energy value of the
phase transition [15,21,22]. We can thus wonder whether, in
some sense to be specified, a softer topology change in phase
space and in configuration space of the φ4 model can be at the
roots of its phase transition. In the absence of critical points,
and in presence of a discrete (Z2) symmetry breaking, one is
led to think of a corresponding breaking of connectedness of
phase and configuration spaces. This could be defined a soft
topology change because it would be an asymptotic change of
the number of phase-space connected components: from one
component in the symmetric phase (vanishing magnetization)
to two disjoint components in the broken-symmetry phase (of
positive and negative magnetization, respectively).

This heuristic argument has inspired a detailed analysis,
reported in Ref. [23], based on numerical simulations of the
equations of motion derived from the Hamiltonian (5). Along
the numerical trajectories in phase space one can follow the
time evolution of the order parameter M (magnetization)

M(t) = 1

N

∑
i

ϕi(t). (6)

It is found that below the phase transition critical energy
density εc = Ec/N the phase-space trajectories are trapped
for some average time τtr in a region of either positive or
negative value of M, then move to another region of opposite
sign of M, and so on, back and forth. The interesting result is
that τtr grows with a power law of N , the number of degrees
of freedom, that is: τtr ∝ Nα(ε) at ε < εc, with an exponent
α = α(ε), which increases by lowering the value of ε. To the
contrary, at ε > εc the trapping time is short (in units of the
inverse of the shortest linear frequency of the system) and is a
flat function of N .

Let us now denote with �N
E = H−1(E) an N -dimensional

constant energy hypersurface of phase space, with �H
t :

�N
E → �N

E the Hamiltonian flow, with M+
E ⊂ �N

E the set of
all the phase-space points for which M > 0, with M−

E ⊂ �N
E

the set of all the phase-space points for which M < 0. By

inversely reading the function τtr (N ) we deduce that: at ε < εc,
for any chosen value of τtr > 0 there is a number of degrees of
freedom N (τtr ) such that for any larger value of this number,
i.e., for N > N (τtr ), and for times up to t ∈ [0,τtr ] we have
�H

t (M)+E = M+
E and �H

t (M)−E = M−
E . In other words, the

sets M±
E are invariant sets of the Hamiltonian flow on a time

scale τtr with the remarkable property that τtr → ∞ in the
limit N → ∞. Hence, any phase-space trajectory originating
in one of the two regions M±

E will remain therein forever in
the limit N → ∞. This amounts to an asymptotic breaking of
topological transitivity at ε < εc, and this in turn is equivalent
to an asymptotic loss of connectedness of the energy level sets
�N

E [24]. Of course the asymptotic change of topology of the
energy level sets entails also the asymptotic change of topology
of the potential level sets �N

v , which are submanifolds of
the �N

E . At variance with other models, the topological
change of the φ4 model corresponds to an asymptotic loss
of diffeomorphicity among the �N

v<vc
and the �N

v>vc
occurring

in the absence of critical points. Hence, in the opinion of
the authors, the φ4 model need no longer be regarded as a
counterexample to the theory of [3,4].

This sheds light on the way of reformulating the theorems in
Refs. [3,4]. In fact, uniform convergence of the Helmholtz free
energy to a twice differentiable thermodynamic limit function
(thus the absence of first- and second-order phase transitions)
derived under the assumption that the equipotential level sets
�N

v = V −1
N (v) are diffeomorphic at any finite N must be

extended to encompass also asymptotic diffeomorphicity. In so
doing the φ4 model need not be regarded as a counterexample
to the topological theory.

Notice that, at variance with the MFXY model for which
a sharp topological signature of the phase transition shows
up at rather small N values, the phase transition of the d �
2 lattice φ4 model is more akin to what is required by the
Yang-Lee theory (that is, asymptoticity), even if tackled from
the topological point of view. Now, taking advantage of the
above-mentioned results in a reverse form, if the phase-space
sampling through the Hamiltonian dynamics of the φ4-model
is performed at a given Ñ for a sufficiently long time t �
τ̃tr (Ñ), then also for E < Ec the energy level sets �N

E appear
simply connected. In other words, in view of the application of
persistent homology analysis, this model is a good candidate
for a negative check against the MFXY model.

III. TOPOLOGICAL ANALYSIS

In the following we report on the topological analysis which
begins by sampling the configuration space of each system
at different energies. Then we apply persistent homology
analysis.

A. Samples of the configuration space

We begin by constructing samples of the configuration
spaces to be studied. For the MFXY model, this is done
by numerically integrating the equations of motion derived
from Hamiltonian (2) with the external field set to h = 0
for a system of N spins, with N up to 6000. The numerical
integration is performed by means of a fifth-order optimal
symplectic algorithm [25]. We sampled the configuration
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space for the following values of the energy density ε =
E/N = 0.6,0.75,0.88, that is, below, at, and above the critical
energy, respectively. The system is initialized with a Gaussian
distribution for both conjugated variables {ϕi,pi}. The total
angular momentum (P = ∑

i pi = 0) is imposed to vanish.
Given the initial conditions for the aforementioned energies,
the system dynamics is evolved for a T = 1.26×107 time
steps, with an integration step of 
t = 0.05. With these inte-
gration step and the use of a fifth-order symplectic algorithm
the relative energy fluctuations were kept at 
E/E 	 10−9.
Then 6000 snapshots are uniformly sampled in time after a
transient dynamics to equilibrate kinetic and potential energies
to their equipartition values.

For the φ4 model we set J = 1,m2 = 2,d = 3, and λ = 0.1
in the Hamiltonian (5). We consider a three-dimensional (3d)
cubic lattice with 83 sites, periodic boundary conditions, and
an integration time step 
t = 0.05. With these parameters,
the use of a third order symplectic algorithm [26] kept the
relative energy fluctuations at 
E/E 	 10−9 (a lower-order
algorithm was required in this case with respect to the MFXY

model because trigonometric functions are replaced by the
polynomial form of the φ4 potential). Then the Hamiltonian
dynamics is numerically simulated at two different values of
the energy density, that is, ε = 25 well below the transition
energy density εc 	 31 [20], and ε = 35 well above εc.

B. Persistent homology

The main idea of persistent homology is to build an
increasing sequence of simplicial complexes, called a filtration
(see Ref. [7]), from a point cloud, i.e., a set of points
embedded in a metric space. We report a detailed mathematical
description of persistent homology in the supplementary
material and refer the interested reader to Ref. [7]. Here we
streamline the topological analysis. The standard way to obtain
a simplicial complex from a set of points S is to construct its
ρ-Rips-Vietoris complex [7], an abstract simplicial complex
that can be defined on any set of points in a given metric
space M. The n simplices of the ρ-Rips-Vietoris complex
are determined by subsets of n + 1 points {p0, . . . ,pn} such
that D(pi,ρ) ∩ D(pj ,ρ) �= ∅ for all i �= j ∈ {0, . . . ,n}, where
D(p,ρ) is ball of radius ρ centered at p. Persistent homology
is a powerful instrument in that it does not select just an
ρ value, but rather studies how the homology of the space,
and in particular of the ρ-Rips-Vietoris complexes, changes
as ρ varies. As ρ is increased, simplexes are added in the
ρ-Rips-Vietoris simplicial complex. A new simplicial complex
is added to the filtration only when a new simplex is born along
the (continuous) parameter ρ, i.e., the ρ-Rips-Vietoris complex
has changed. Thus, the filtration is discrete: it can be indexed
by integers, useful to characterize the topological features of
the space.

C. Simplicial complexes in configuration space

In most applications of persistent homology, the parameter
ρ is taken to represent the Euclidean distance between points
in S. In the case of physical configuration spaces we replace
it by a Riemannian one. In fact, the configuration space M of
a standard Hamiltonian systems (that is with quadratic kinetic

energy) equipped with the Jacobi metric [2], is a complete
Riemannian manifold, which means that given any two points
there exists a length-minimizing geodesic connecting them
(Hopf-Rinow theorem [27]). Of course this is also the case of
the mean-field XY and φ4 models, thus the distance among
two points P1 and P2 in M is:

d(P1,P2) =
∫ P2

P1

(
[E − V (ϕ1, . . . ,ϕN )]

N∑
k=1

(dϕk)2

) 1
2

. (7)

In other words, computing this distance requires solving the
equations of motion with assigned initial and final conditions.
In practice this is computationally very heavy. We therefore
take advantage of the robustness of topological information
with respect to metrical deformations and observe that the
integral contains a nonconstant factor multiplying the Eu-
clidean arc length. We then choose to approximate d(P1,P2)
by replacing the factor by its mean among the initial and final
values:

d(p1,p2) = 1

2
[
√

E − V (p1) +
√

E − V (p2)]deucl(p1,p2)

(8)

deucl(p1,p2) =
√√√√ N∑

k=1

[ϕk(p2) − ϕk(p1)]2. (9)

An important computational issue lies in the size of the
produced simplicial complexes. Indeed, already for a sample
of the configuration space S with cardinality N = 6000 points,
the set of complexes will contain a huge number of simplices
hindering efficient computation, since the number of all
simplices for all dimensions up to N − 1 scales as number
of subsets of N , that is 2N . So, we first restrict ourselves to
the study of the first two homology groups, H0 and H1, which
allows us to consider only simplices up to dimension 2 and
then adopt a subsampling strategy, which allows us to reduce
the dimension of the problem by choosing a representative
subset of points L ⊂ S without losing important topological
features of the configuration space. The subsampling is based
on a suitable selection of landmark points called sequential
maxmin [28,29]. In sequential maxmin, the first landmark is
picked randomly from S. Inductively, if Li−1 is the set of the
first i − 1 landmarks, then let the ith landmark be the point of
S, which maximizes the distance (8) from all the points of Li−1.
Since the starting node is chosen at random, the resulting L

subsets will change if the algorithm is iterated. In our case, this
allows us to perform a bootstraplike procedure, by repeatedly
subsampling the full point clouds and then aggregating the
homological signatures detected. The results we present are
obtained from 20 different subsamples, each containing 300
points.

IV. RESULTS

Persistent homology computes the generators of topological
features (homology groups) persisting across different scales
and assigns them birth and death values related to their points
of appearance and disappearance along the filtration. That
is, when the radius ρ of the balls varies, for any persistent
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FIG. 1. Persistence diagram for the MFXY model. Persistence
distributions of H1 generators below (ε = 0.6), at (εc = 0.75), and
above (ε = 0.88) the phase transition.

generator g (see the Appendix for the formal definition) we
have the value of the parameter ρ of the filtration where
g first appears (birth index indicated by βg) and the value
where it disappears (death index indicated by δg). In this
way, connected components, one-dimensional cycles, three-
dimensional voids, and similar higher-order structures of the
topological space M acquire a weight proportional to the
length of their persistence interval, πg = δg − βg . Note that
for H0, πg = δg , because all (dis)connected components are
already present at the beginning. For higher-order homology
groups Hk the generators can instead appear and disappear
freely along the filtration.

In Figs. 1 and 2 the basic descriptors of persistent
homology, that is, persistence diagrams, are displayed for the
H1 generators of the MFXY model and of the φ4 model,
respectively.

FIG. 2. Persistence diagram for the φ4 model. Persistence dis-
tributions of H1 generators below (ε = 25) and above (ε = 35) the
phase transition, occurring at the critical energy density εc 	 31.

FIG. 3. Homological features of the MFXY model. Raw (inset)
and rescaled (main plot) distributions of deaths for the generators of
the first homology group H0. Note that the width and shape of the
distributions change across the transition, becoming more and more
narrow as the energy is increased.

Usually one considers important topological features to be
those associated with generators of Hn such that their πg is
large with respect to some meaningful length. In our case we
do not have a given reference scale. We can however compare
the results obtained at energies below and above the transition
energy in order to look for topological signatures of a phase
transition. We show the distributions of δg for the H0 generators
of the MFXY model (Fig. 3) and of the φ4 model (Fig. 4).
In the former case, as the energy is increased, the peak of
the distribution δg of H0 becomes progressively narrower and
centered at larger ρ values. To the contrary, in the latter case
the peak of the distribution shifts to larger ρ values at higher
energies, but it does not broaden.

In order to show that this behavior is genuinely due to
topological features and not due to the different geometrical
sizes of the point clouds, we take the point cloud at the lowest
energy and affinely rescale the point clouds at higher energies

FIG. 4. Homological features of the φ4 model. Raw (inset) and
rescaled (main plot) distributions of deaths for the generators of
the first homology group H0. At variance with the MFXY model,
here there is no appreciable change in the width and shape of
the distributions across the transition. The green points refer to
ε = 25 < εc. The velvet points refer to ε = 35 > εc.
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as to make them comparable i.e.

dij (ε) → 〈d(ε0〉
〈d(ε)〉dij (ε), (10)

where dij (ε) is the distance between points i and j for the point
cloud at energy density ε. In this way, we can meaningfully
compare the persistences of generators belonging to clouds
of different size. Below the transition of the MFXY model,
the distribution of the H0 persistences of configuration space
covers more scales than it does at and above the transition
energy, respectively. This broader distribution means that the
corresponding point cloud is heterogeneously distributed in the
embedding space M compared to the distributions, definitely
more homogeneous, in the other two cases. No variation of the
peak widths of the H0 persistence distributions is observed in
the case of the φ4 model.

Figures 3 and 4 display the raw (inset) and rescaled (main
plot) distributions of deaths for the generators of the first
homology group H0. The rescaling is necessary to make the
point clouds, sampled at different energies, comparable. In
fact, the death and birth indexes are the values of the radius
of the balls where the generators appear and disappear. Thus,
without the rescaling, βg and πg would reflect the size of
the underlying manifold. Note that for the MFXY model
the width and shape of the distributions change across the
transition, becoming more and more narrow as the energy is
increased, while there is no appreciable change in the φ4 case.
The different topological signatures highlight the presence of
a topological change in the case of the MFXY model, that
is absent in the φ4 model. In Figs. 5 and 6 the distributions
of persistences for the generators of the homology group H1

confirm what is found for H0. In this case the difference in
functional forms for the H1 persistence distribution below and
above the MFXY transition is even clearer, while, again, we
find no differences for the φ4 model.

Now let us comment about the hollowness detected by
the H1 homology group. For what concerns the MFXY

model, below the phase transition energy, the H1 persistence
distribution displays a long tail, which disappears at and above
the transition (Fig. 5). We observe that the three sets of points
superpose for values of π less then approximately 25. This

FIG. 5. Distributions of persistences for the generators of the
homology group H1 in the case of the MFXY model. In this case
the difference in functional forms for the H1 persistence distribution
below and above the transition is even clearer.

FIG. 6. Distributions of persistences for the generators of the
homology group H1 in the case of the φ4 model. In this case
no difference is found in functional form for the H1 persistence
distributions below and above the transition.

range of π values, in the present context, can be attributed
to what is commonly referred to as noise, whereas larger π

values are usually considered as bringing about meaningful
topological information. Thus, the stronger persistence of
meaningful cycles, which corresponds to the long tail observed
below the phase transition point of the MFXY model, certainly
probes a change of shape of configuration space. Additionally,
this change of shape can be interpreted as the signature of a
change of the dimension of high-order homology groups.

Let us remark that the performed samplings of configuration
space submanifolds are definitely sparse and they could not be
other then sparse had we taken billions of points. Not to speak
of the huge total number of simplexes, growing as 2N with N

the number of sample points. This notwithstanding, the results
shown in Fig. 5 clearly tell us that the MFXY phase transition
corresponds to a change of the topology of the configuration
space submanifolds, in perfect agreement with the available
theoretical knowledge. The same concordance is found in the
case of the φ4 model where we see that the difference in H1

persistences disappears, in perfect agreement with a priori
known absence of topological changes – at finite N – of the

〈
〉

FIG. 7. Average persistence landscape of the H1 homology for
the MFXY model. �p is the average function (see text) reported as
a function of the radius ρ of the balls used to construct the Rips-
Vietoris simplicial complex. The shadows around solid lines are 95%
confidence band.
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〈
〉

FIG. 8. Average persistence landscape of the H1 homology for
the φ4 model. �p is the average function (see text) reported as a
function of the radius ρ of the balls used to construct the Rips-
Vietoris simplicial complex. The shadows around solid lines are 95%
confidence band.

underlying configuration space in correspondence with the
phase transition.

Finally, in Figs. 7 and 8 we show the outcomes of a different
method of getting insight to the shape of data obtained by
sampling the configuration space of the MFXY and φ4 models,
respectively. This is the so-called persistence landscape, which
combines the main tool of persistent homology method, that
is, persistence diagram, with statistics [30]. With respect to
the barcode or persistence diagram this descriptor has the
technical advantage of being a function, thus allowing the
use of the vector space structure of its underlying function
space to apply the theory of random variables with values
in this space. Theory and details of this method can be
found in Refs. [30] and [31]. In practice, one proceeds
by computing the H1 homology for a subsample of the
original data set, then one associates to each generator a
symmetric tent-shaped function peaking in the middle of
the persistence interval of the corresponding generators and
finally one considers the envelope of the functions defined in
this way over all the generators. Informally, one can think
of the persistence landscape as the envelope of the π/4
clockwise rotated persistence diagram (operation that can be
given a proper mathematical definition) thus associating a
curve �p(ρ) to each persistence diagram. In our case, we
iterated this procedure for the different subsamples, in our
case 20 subsamples, obtaining the curve 〈�p(ρ)〉 averaged
over the samples. Each curve reported in Fig. 7 reports the
results for different energy values: below, at, and above the
phase transition point. A marked difference is again obtained
above and below the phase transition in the case of the MFXY

model, and no relevant difference between the patterns below
and above the phase transition in the case of the φ4 model,
apart from a meaningless translation.

V. CONCLUDING REMARKS

The results reported for each model in the figures shown
in the preceding section, and especially the comparison with
those reported in Figs. 5, 6, 7, and 8 are strongly supportive
of the validity of the application of persistent homology to

probe major topological changes in the configuration spaces
of physical systems undergoing phase transitions.

Let us remark that the formulation of the topological theory
of phase transitions stems from the combined effect of the
investigation of the Hamiltonian dynamical counterpart of
phase transitions on the one hand, and of the geometrization of
Hamiltonian flows seen as geodesic flows on suitably defined
Riemannian manifolds on the other hand [2]. In fact, it has
been observed that the peculiar dynamical changes occurring
at a phase transition correspond to special geometrical changes
of the mechanical manifolds. Then it turned out that these
special geometrical changes had to be due to more fundamental
changes of topological kind. In other words, this theory has
deep roots and rather compelling motivations [2]. Moreover,
developing this unconventional viewpoint on phase transitions
was of prospective interest to tackle phase transition phenom-
ena in finite and small N systems (mesoscopic and nanoscopic
systems), in the microcanonical ensemble (especially when
this is not equivalent to the canonical ensemble), in the absence
of order parameters (for example in gauge models, i.e., with
local symmetries), in amorphous and disordered materials,
in polymers and proteins, in biophysical systems, in strongly
inhomogeneous systems. However, as mentioned in Sec. I,
computational difficulties have frustrated these expectations.

Now the results reported in the present work show that
persistent homology, by providing handy computational tools
(which are presently available as open access software pack-
ages), can lend new credit to the prospective practical interest
of the topological theory of phase transitions. Additionally,
especially, since improvements of the numerical algorithms
are continuously underway.

Moreover, this opens many fascinating and challenging
questions related with the mentioned necessarily sparse
sampling of high-dimensional manifolds. It is not out of
place to mention that this situation is reminiscent of Monte
Carlo methods, which typically allow efficient estimates of
multiple integrals in high-dimensional spaces with very sparse
samplings. Monte Carlo methods owe their efficacy to the so-
called importance sampling technique, suggesting that further
developments in the proposed application of the persistent
homology could be found in a somewhat similar direction.

ACKNOWLEDGMENT

This work was supported by the Seventh Framework
Programme for Research of the European Commission under
FET-Open grant TOPDRIM (Grant No. FP7-ICT-318121).

APPENDIX: SIMPLICIAL COMPLEXES

We can see a simplicial complex X as a set of polyhedrons
(convex hulls of linearly independent points: points, lines,
triangles, tetrahedra, and higher-dimensional equivalents) in
RN attached in a good way, i.e., the intersection of two
polyhedrons is empty or a face of the two and all the faces of a
polyhedron of X is also a polyhedron of X. We can also think
of simplicial complexes as abstract sets, with the definition:

Definition 1. An (abstract) simplicial complex is a
nonempty family X of finite subsets, called faces, of a vertex
set V such that σ ⊂ τ ∈ X implies that σ ∈ X.
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FIG. 9. A graphic representation of a simplicial complex.

We assume that the vertex set is finite and totally ordered. A
face of n + 1 vertices is called n face, denoted by [p0, . . . ,pn],
and n is its dimension. We set, as usual, the dimension of the
empty set as −1. The dimension of a simplicial complex is the
highest dimension of the faces in the complex.

In Fig. 9 the vertices (full circles) represent 0-simplices,
segments joining two vertices represent 1-simplices, trian-
gles represent 2-simplices, and the tetrahedron represents a
3-simplex.

1. Simplicial homology

Let us fix a field k. In the following, by vector space
we intend k-vector space. Given a simplicial complex X of
dimension d, for any n such that 0 � n � d consider the vector
space Cn := Cn(X) of all the linear combinations of n faces of
X with coefficients in k. Elements in Cn are called n chains.

The boundary operators are the linear maps sending an n

face to the alternate sum of its (n − 1) faces, i.e.,

∂n : Cn → Cn−1 (A1)

[p0, . . . ,pn]→
n∑

j=0

(−1)i[p0, . . . ,pj−1,pj+1, . . . ,pn]. (A2)

They share the property ∂n−1 ◦ ∂n = 0. The null space ker ∂n =
{c ∈ Cn|∂nc = 0}, that is, the subspace of Cn containing only
the n chains without boundary, is called the vector space of n

cycles and denoted by Zn := Zn(X), with by convention Z0 =
∅. The subspace Im ∂n+1 of Cn, is called the vector space of n

boundaries and denoted by Bn := Bn(X), with by convention
Bd = ∅. The property ∂n−1 ◦ ∂n = 0 is then equivalent to
Bn ⊆ Zn for all n.

Definition 2. For 0 � n � d, the nth simplicial homology
space of X, with coefficients in k, is the vector space Hn :=
Hn(X) := Zn/Bn. We denote by βn := βn(X) the dimension
of Hn, which is usually called the nth Betti number of X.

Let us see two examples. First, let us consider the
simplicial complex X consisting of a triangle [p1p2p3] and
all its edges and vertices (i.e., X = {[p1p2p3],[p1p2],[p1p3],
[p2p3],[p1],[p2],[p3]}). The boundary of the 2-simplex

[p1p2p3] is

∂2([p1p2p3]) = [p2p3] − [p1p3] + [p1p2], (A3)

which is a one-chain whose boundary is

∂1([p2p3] − [p1p3] + [p1p2]) = [p3] − [p2]

+[p1] − [p3] + [p2] − [p1] = 0. (A4)

Therefore, Z1 = B1 is the vector space generated by [p2p3] −
[p1p3] + [p1p2], so H1 = ∅ and β1 = 0.

After let us consider the simplicial complex X′ consisting
of all the edges and vertices of the triangle but without the face
[p1p2p3] (i.e., X′ = X/[p1p2p3]). Therefore, Z′

1 is generated
by [p2p3] − [p1p3] + [p1p2] whereas B ′

1 = ∅. So H ′
1 = Z′

1
and β ′

1 = 1. Comparing the two examples, we see that by
eliminating the two-face from X (roughly speaking, punching
hole in the triangle) a generator of H1 is created. In conclusion,
the homology spaces characterize the presence of holes in
simplicial complexes. Indeed, the zeroth Betti number is the
number of connected components of X, the first Betti number
is the number of generators of two-dimensional (polygonal)
holes, the third Betti number is the number of generator of
three-dimensional holes (convex polyhedron), etc.

2. Persistent homology

The starting point in persistent homology is a filtration. As
in Ref. [7], we call a simplicial complex X filtered if we are
given a family of subspaces {Xv} parametrized by N , such that
Xv ⊆ Xw whenever v � w and Xv is a simplicial complex.
The family {Xv} is called a filtration.

There are many ways to construct a filtration from a point
cloud or a network. The most popular filtration for data analysis
is the Rips-Vietoris filtration [7].

The Rips-Vietoris complex is a simplicial complex associ-
ated to a set of points in a metric space in the following way:
every point p is the center of a radius ρ ball D(p,ρ) and n + 1
points {p0, . . . ,pn} determine an n face in the Rips-Vietoris
complex if the corresponding radius ρ balls intersect two
by two, i.e., D(pi,ρ) ∩ D(pj ,ρ) �= ∅ for all i �= j ∈ {0 . . . n}.
Clearly, the Rips-Vietoris complex depends on the parameter ρ

and if ρ1 < ρ2 the complex with ρ1 radius balls is contained in

FIG. 10. Rips complex filtration. Reproduced with owner’s per-
mission from Ref. [6].
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the complex with ρ2 radius balls. To the growth of ρ we obtain
an increasing sequence of simplicial complexes, a filtration, the
Rips-Vietoris filtration. In this context persistent topological
features of the filtration are considered as features of the
point cloud. Figure 10 pictorially represents a Rips-Vietoris
filtration: given a point cloud, it is shown that simplicial
complexes of increasing complexity are found by increasing
the radii of the balls centered at the points of the cloud.

The following basic properties of the algebraic structure of
persistent homology hold.

Proposition 1. Let X and Y be two simplicial complexes, a
simplicial map f : X → Y is a map sending vertices of X to
vertices of Y and faces of X to faces of Y . Then f determines
a linear map between the homology groups Hi(f ) : Hi(X) →
Hi(Y ) for all i. From which, the following makes sense.

Definition 3. The persistent homology module of a filtration
is given by the direct sum of the homology groups of
the simplicial complexes Hn(Xv) and the linear maps iv,w :

Hn(Xv) → Hn(Xw) induced in homology by the inclusions
Xv ↪→ Xw for all v � w.

Following [7], this system is called a module because the di-
rect sum of vector spaces Hn = ⊕vHn(Xv) has a k[x]-module
structure via an algebraic action given by x × m := iv,v+1(m)
for m ∈ Hn(Xv). The linear maps iv,v+1 are not always injec-
tive. A persistent homology generator is a generator of Hn as
k[x] module, i.e., an element g ∈ Hn(Xv) such that there is no
h ∈ Hn(Xw) for w < v with the property that xv−wh = g. By
the structure theorem on modules over principal ideal domains,
the isomorphism class of a k[x] module is completely deter-
mined by the degree of each generator g (birth of the generator
βg) and the degree in which the generator is annihilated by the
module action (death of the generator δg). The persistence
(lifetime) of a generator is measured by pg := δg − βg .

Persistent homology modules can be computed using
libraries like JAVAPLEX (Java) or DIONYSUS (C++), which are
both available from the Stanford’s CompTop group [32].
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