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Critical dynamics of a nonlocal model and critical behavior of perovskite manganites
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We investigate the nonconserved critical dynamics of a nonlocal model Hamiltonian incorporating screened
long-range interactions in the quartic term. Employing dynamic renormalization group analysis at one-loop
order, we calculate the dynamic critical exponent z = 2 + εf1(σ,κ,n) + O(ε2) and the linewidth exponent w =
−σ + εf2(σ,κ,n) + O(ε2) in the leading order of ε, where ε = 4 − d + 2σ , with d the space dimension, n the
number of components in the order parameter, and σ and κ the parameters coming from the nonlocal interaction
term. The resulting values of linewidth exponent w for a wide range of σ is found to be in good agreement with
the existing experimental estimates from spin relaxation measurements in perovskite manganite samples.

DOI: 10.1103/PhysRevE.93.052132

I. INTRODUCTION

The nonequilibrium dynamics of magnetic systems near
the critical point has received continual attention for decades
[1–7]. In a typical scenario, the system is quenched near the
critical temperature Tc at time t = 0 from an equilibrium state
away from Tc. A sudden quench near Tc causes the system to
undergo a slow relaxation towards the new equilibrium state,
referred to as the critical slowing down. Theoretical models
for the critical dynamics are usually based on a Langevin-type
equation governed by the Ginzburg-Landau Hamiltonian for
nonconserved or conserved order parameters [3–7]. These
models elucidate the existence of various universality classes
depending on the associated conservation laws and model
parameters, namely the number of components n of the
order parameter and the space dimensionality d. In addition
to the two independent static critical exponents [e.g., the
correlation length exponent ν defined via ξ ∝ |T − Tc|−ν

and the Fisher exponent η for the algebraic decay of the
two-point correlation function at criticality, G(r − r′) ∝ |r −
r′|−(d−2+η)], the order parameter relaxation is governed by
a dynamic exponent z describing the critical slowing down.
The characteristic time scale diverges as τ ∝ |T − Tc|−zν on
approaching the transition point. Different values for z ensue
depending on whether the order parameter is conserved and
the existence of additional conserved quantities. The simplest
cases among them are the purely relaxational models with
either nonconserved (Model A) or conserved (Model B) order
parameter 	. The renormalization group (RG) treatment for
model A with short-range (SR) interactions gives z = 2 + cη

at two-loop order with c = 6 ln( 4
3 ) − 1, yielding z = 1.984 in

three dimensions [4–6].
While the above theoretical investigations were carried out

for the model A with SR interactions, a long-range (LR)
model was proposed by Fisher, Ma, and Nickel [8] where
the quadratic term in the model Hamiltonian was modi-
fied by incorporating LR interactions. Following this (LR)
model, the corresponding nonconserved critical dynamics was
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investigated by Belim [9] in a field-theoretic framework.
Carrying out the calculations at two-loop order and employing
the Padé-Borel resummation technique, it was found that
the LR interaction affects the relaxation time of the system,
indicated by the variation of z within the range 2.000072 �
z � 2.006628.

Recently, the doped perovskite manganites
[(R1−xAxMnO3), R stands for rare-earth and A stands
for alkaline-earth elements] have become the focus of
scientific and technological interest as they exhibit colossal
magnetoresistance (CMR) [10–14]. A number of experimental
investigations on the critical slowing down of such compounds
near the paramagnetic (PM) to ferromagnetic (FM) phase
transition were performed via a number of powerful
techniques, namely muon spin relaxation (μSR) spectroscopy
[15,16], inelastic neutron scattering [17], pump-probe
method [18,19], and magnetic resonance methods [20,21].
In some of these experiments [18,19] the relaxation time
exponent νz was measured for thin-film samples while in
some other experiments [16,20,21], the linewidth exponent
w = ν(z + 2 − d − η) [4,22] was measured for bulk samples.
In Ref. [16], μSR measurements were performed on a single
crystal of Nd0.5Sr0.5MnO3 exhibiting critical slowing down
of Mn ion spin fluctuations in the critical paramagnetic
regime. This facilitated the measurement of the linewidth
exponent w from the relaxation of the diffusive component,
yielding w = 0.59 ± 0.05. Using the electron-paramagnetic
resonance (EPR) technique, Atsarkin et al. [20] investigated
the critical slowing down of longitudinal spin relaxation
close to the PM-FM phase transition temperature Tc in
La1−xCaxMnO3 for x = 0.2, 0.25, and 0.33. From the
magnetic resonance linewidth measurements, they obtained
the linewidth exponent w ≈ 0.5 for all samples. Using a
similar experimental technique, Yassin et al. [21] measured
w for La0.67−2xNd2xCa0.33−xSrxMnO3 with x = 0, 0.1, 0.15,
0.2, and 0.25 and found w to be nearly a constant (≈0.5) for
all samples. The above spin relaxation experiments [16,20,21]
indicate an interesting feature of perovskite manganite
samples in the sense that the linewidth exponent w near the
critical point of PM-FM phase transition is close to w ≈ 0.5
independent of their chemical compositions (x, R, and A).

Microscopic models for the magnetic (and electrical) prop-
erties of perovskite manganites are based on the framework
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of double exchange (DE) interaction [10,13,23] and electron-
phonon coupling, partially the Jahn-Teller type [10,24],
leading to polaron formation. It is interesting to note that the
polaron model correctly explains the insulating (paramagnetic)
phase in these systems and it has been suggested [25] that the
polaron effect switches off as temperature is lowered through
Tc to obtain a metallic (ferromagnetic) phase. However, as
discussed in Refs. [20,21], the experimental finding that
the linewidth exponent w remains constant for different
samples (namely w ≈ 0.5) is not consistent with the prediction
of the polaron hopping model [26,27]. In addition, Monte
Carlo (MC) simulations have been performed [28–32] on a
model Hamiltonian representing the DE interaction for the
investigation of the static as well as dynamic critical behavior.
These simulations yield ν = 0.6949 ± 0.0038, β = 0.3535 ±
0.0030, γ = 1.3909 ± 0.0030 in Ref. [28], β ≈ 0.365 in Refs.
[29,31], β = 0.36 ± 0.01 in Ref. [30], and ν = 0.686 ± 0.010,
β = 0.356 ± 0.006, z = 1.975 ± 0.010 in Ref. [32], that are
close to those of the three-dimensional (3D) Heisenberg model
(with SR interaction). This suggests that the DE and 3D
Heisenberg models [33,34] belong to the same universality
class. Although a few perovskite manganite samples [35,36]
are found to have 3D Heisenberg critical indices, a vast
majority of samples [11,37–41] exhibit a widely varying sets of
critical indices including the tricritical mean-field exponents.
Thus, although the DE is widely accepted as one of the
key mechanisms for CMR in perovskite manganites, models
involving the DE interaction cannot capture their widely
varying critical behavior near the PM-FM phase transition.
Further, theoretical developments along the lines of the SR
TDGL model [6] and its modified LR version [9] cannot be
expected to reproduce their widely varying critical indices.
This necessitates an alternative model capable of capturing
the static as well as the dynamic critical exponents observed
in experimental samples.

Lattice distortions are known to be important in perovskite
manganites as they are coupled to electronic, magnetic,
and chemical degrees of freedom [10,42–44]. A pronounced
variation of electrical resistivity and a large shift of Tc after
isotope exchange (18O for 16O) indicate a strong spin-lattice
coupling [12,45]. It has been pointed out [10,46,47] that
lattice distortions are directly related to the imposed strain
due to perturbations induced via changes in R, A, and x. A
quantitative analysis [46] predicted a dramatic sensitivity of
material properties to strain, particularly the shifting of Tc with
strain. Different strain modes are shown to evolve depending
on whether the perturbation is due to the size distribution of
R/A atoms or to the change in the doping concentration x. It
may further be stated that elastic interactions play an essential
role in the formation of superstructures [48] and texturing [47]
observed in perovskite manganites.

It is interesting to note that, a number of theoretical
investigations have been performed on the role of spin-lattice
coupling near the critical point. In particular, Fisher [49] con-
sidered a compressible Ising system with spin-lattice coupling
resulting from the fact that the exchange interaction varies with
the separation between the spins. Wagner [50,51] reconsidered
the problem and obtained an effective Hamiltonian involving
a long-range four spin interaction term as a result of the spin-
lattice coupling. Aharony considered a continuum generaliza-

tion of this model [52] with wave-vector-dependent four-spin
(quartic) coupling and showed the existence of tricriticality
in the system. It is important to note that some perovskite
manganite samples exhibit triciritcal exponents. At the same
time, spin-lattice interactions are known to play an important
role in perovskite manganites. Thus, any model describing
the critical properties of perovskite manganite samples should
include the effect of spin-lattice coupling and it should be able
to exhibit tricriticality in the system. Theoretical investigations
described above indicate that the quartic term in the effective
Hamiltonian should have a long-range (nonlocal) character
as a result of spin lattice interaction. Thus it is interesting
to consider a long-range model Hamiltonian with nonlocal
interaction in the quartic term and see whether such a model
can exhibit the critical properties of perovskite manganite
samples including tricriticality.

The static critical behavior of a model Hamiltonian with a
nonlocal interaction in the quartic term was studied recently by
means of Wilson’s momentum shell decimation RG scheme
[53]. Quite satisfactorily, this nonlocal model was found to
represent a variety of critical exponents corresponding to
the static critical behavior of a wide range of perovskite
manganite samples including triciritcal exponents exhibited
by some of the samples. This motivates us to investigate
the dynamic critical behavior governed by the same nonlocal
model Hamiltonian in the spirit of Model A of Halperin and
Hohenberg [6]. Through this nonlocal mode Hamiltonian, we
are particularly interested in capturing the dynamic critical
behavior of perovskite manganites near the PM-FM phase
transition.

In this paper, we write the nonconserved Langevin dy-
namics for the order parameter 	 governed by the nonlocal
model Hamiltonian. Employing Wilson’s momentum shell
decimation RG scheme, we carry out the calculations at one-
loop order and obtain the dynamic exponent z and the linewidth
exponent w in the leading order of ε, where ε = 4 − d + 2σ ,
with d the space dimension and σ is a parameter occurring
in the nonlocal interaction term. Interestingly, the linewidth
exponent w is found to be almost constant (w ≈ 0.5), although
the static critical exponents vary with the nonlocal exponent
σ in the range −0.5 � σ � 0. The critical exponents agree
well with the available experimental estimates for different
samples. This suggests that the nonlocal model Hamiltonian
is a viable model for the critical behavior of PM-FM phase
transition in perovskite manganites.

The rest of the paper is organized as follows. In Sec. II,
we introduce the dynamical model in the presence of nonlocal
interactions and present the analytical results following from
the dynamic RG analysis. Section III presents a comparison of
the predicted results with the experimental estimates. Finally,
discussions and conclusions are given in Sec. IV.

II. NONLOCAL UNCONSERVED DYNAMICS
AND RG CALCULATIONS

The dynamics of an n-component unconserved order
parameter φi(x,t) is given by [4,6]

∂

∂t
φi(x,t) = −�0

δH

δφi(x,t)
+ ηi(x,t), (1)
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where we incorporate nonlocal interactions in the quartic term
of the Ginzburg-Landau (GL) free-energy functional H as

H [	] =
∫

ddx

[
c0

2
|∇	(x)|2 + r0

2
	2(x)

+
∫

ddx ′	2(x)u(x − x′)	2(x′)
]
, (2)

where d is the space dimension, the time dependence has
been suppressed for brevity, and 	2 = ∑n

i=1 φ2
i , |∇	|2 =∑n

i=1 ∇φi · ∇φi , and u(x − x′) is the nonlocal coupling
function. The term ηi(x,t) represents a Gaussian white noise
with zero mean and correlation

〈ηi(k,ω)ηj (k′,ω′)〉 = 2�0(2π )d+1δd (k + k′)δ(ω + ω
′
)δij

(3)

in the Fourier space. Equation (1) can be portrayed in the
Fourier space as

[−iω

�0
+ r0 + c0k

2

]
φi(k,ω)

= ηi(k,ω)

�0
− 4

∫
ddk1

(2π )d
dω1

2π

∫
ddk2

(2π )d
dω2

2π
u(k1 − k)

×φi(k1,ω1)φj (k2,ω2)φj (k − k1 − k2,ω − ω1 − ω2),

(4)

where summation over repeated indices is implied. We start
with Eq. (4) and perform a dynamic RG analysis [6,7,54] at
one-loop order. Decimation of scales from the momentum shell
lying in the range �

b
� k � � (� being the ultraviolet cutoff)

yields the equation of motion in the reduced range 0 � k � �
b

as

φi(k,ω) = G0(k,ω)
ηi(k,ω)

�0
− 4G0(k,ω)

∫
ddk1

(2π )d
dω1

2π

×
∫

ddk2

(2π )d
dω2

2π
u(k1 − k)φi(k1,ω1)

×φj (k2,ω2)φj (k − k1 − k2,ω − ω1 − ω2)

+G0(k,ω)Ri(k,ω), (5)

a b

FIG. 1. One-loop Feynman diagrams corresponding to the self-
energies (a) �a and (b) �b. Solid lines represent the propagator G0,
dashed lines the field φi , dots the noise correlation, and wiggly lines
represent the nonlocal coupling u(k).

c

a

b

FIG. 2. One-loop Feynman diagrams for the vertex u(k1 − k).
Panels (a), (b), and (c) correspond to ϒa , ϒb, and ϒc given in
Eqs. (13)–(15). The various lines and the dots have the same meanings
as in Fig. 1.

where G0(k,ω) = (−iω
�0

+ r0 + c0k
2)

−1
is the bare propagator,

and

Ri(k,ω) = −(�a + �b)φi(k,ω),

with the self-energy corrections (Fig. 1)

�a(k,ω) = 8n

�0

∫
ddk1

(2π )d
dω1

2π
u(0)|G0(k1,ω1)|2, (6)

�b(k,ω) = 16

�0

∫
ddk1

(2π )d
dω1

2π
u(k1 − k)|G0(k1,ω1)|2, (7)

at one-loop order. We choose the form of the coupling function
to be the same as that of the static case [53] as

u(q) = λ0

[q2 + m2]σ
(8)

in the Fourier space, where λ0 is a coupling constant and
m is a screening parameter. Performing the frequency and
momentum integrations appearing in Eqs. (6) and (7), we
obtain

�a(0,0) = 4nSdλ0

c0m2σ [2π ]d

×
[(

b2−d − 1

2 − d

)
�d−2 − r0

c0

(
b4−d − 1

4 − d

)
�d−4

]
,

(9)
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�b(0,0) = 8Sdλ0

c0[2π ]d

[(
b2−d+2σ − 1

2 − d + 2σ

)
�d−2−2σ −

(
r0

c0
+ σm2

)(
b4−d+2σ − 1

4 − d + 2σ

)
�d−4−2σ

]

+ 8Sdλ0

c0[2π ]d
k2

[
σ (2σ + 2 − d)

d

(
b4−d+2σ − 1

4 − d + 2σ

)
�d−4−2σ

]
, (10)

in the large-scale and long-time limits (k → 0,ω → 0), where Sd = 2πd/2/�(d/2) is the surface area of a unit sphere embedded
in a d-dimensional space. These expressions for self-energy give rise to corrections �r and �c to the bare coefficients r0 and c0

as

�r = 4nSdλ0

c0m2σ [2π ]d

[(
b2−d − 1

2 − d

)
�d−2 − r0

c0

(
b4−d − 1

4 − d

)
�d−4

]
+ 8Sdλ0

c0[2π ]d

[(
b2−d+2σ − 1

2 − d + 2σ

)
�d−2−2σ

−
(

r0

c0
+ σm2

)(
b4−d+2σ − 1

4 − d + 2σ

)
�d−4−2σ

]
, (11)

and

�c = 8σ (2σ + 2 − d)Sdλ0

c0d[2π ]d

(
b4−d+2σ − 1

4 − d + 2σ

)
�d−4−2σ . (12)

We see that the noise amplitude �0 does not acquire any correction at this order of calculations.
Within the same calculational framework, we also obtain the relevant corrections to the bare vertex u(k1 − k) (Fig. 2) at

one-loop order and obtain

ϒa = 64n

�0

∫
ddk1dω1

[2π ]d+1

∫
ddk2dω2

[2π ]d+1
u(k1 − k)φi(k1,ω1)φj (k2,ω2)φj (k − k1 − k2,ω − ω1 − ω2)

×
∫

ddpd�

[2π ]d+1
u(k1 − k)|G0(p,�)|2G0(k − k1 − p,ω − ω1 − �), (13)

ϒb = 256

�0

∫
ddk1dω1

[2π ]d+1

∫
ddk2dω2

[2π ]d+1
u(k1 − k)φi(k1,ω1)φj (k2,ω2)φj (k − k1 − k2,ω − ω1 − ω2)

×
∫

ddpd�

[2π ]d+1
u(p − k + k1 + k2)|G0(p,�)|2G0(k − k1 − p,ω − ω1 − �), (14)

ϒc = 256

�0

∫
ddk1dω1

[2π ]d+1

∫
ddk2dω2

[2π ]d+1
φi(k1,ω1)φj (k2,ω2)φj (k − k1 − k2,ω − ω1 − ω2)

×
∫

ddpd�

[2π ]d+1
u(p − k)u(p − k1)|G0(p,�)|2G0(k1 + k2 − p,ω1 + ω2 − �). (15)

Performing the loop integrations appearing in the above expressions for ϒa and ϒb, we obtain the correction �λ to λ0 as

�λ = − 4nSdλ
2
0

c2
0m

2σ [2π ]d

[(
b4−d − 1

4 − d

)
�d−4 − 2r0

c0

(
b6−d − 1

6 − d

)
�d−6

]

− 16Sdλ
2
0

c2
0[2π ]d

[(
b4−d+2σ − 1

4 − d + 2σ

)
�d−4−2σ −

(
σm2 + 2r0

c0

)(
b6−d+2σ − 1

6 − d + 2σ

)
�d−6−2σ

]
(16)

in the k → 0,ω → 0 limit. ϒc being irrelevant, it does not contribute to �λ.
The RG calculations is carried out by maintaining the form of the original equation [Eq. (4)] invariant. Consequently, the

reduced range 0 � k � �
b

is projected into the full range (0 � k � �) by rescaling the variables and the field as k′ = bk, ω′ = bzω,
and 	′ = bx	. These, together with the assumption of self-similarity and powerlike fall-off of the correlation function at the
critical point [8,55,56], yield �′ = bz−2+η(�0 + ��), λ′ = b4−d+2σ−2η(λ0 + �λ), r ′ = b2−η(r0 + �r), and c′ = b−η(c0 + �c).
Thus, incorporating the renormalized corrections to r0, c0, and λ0 given by Eqs. (11), (12), and (16), we obtain the RG flow
equations as

r ′ = b2−η

[
r0 + 4nλ0Sd

m2σ [2π ]d

{
(b2−d − 1)�d−2

c0(2 − d)
− r0

c2
0

(b4−d − 1)�d−4

(4 − d)

}

+ 8λ0Sd

[2π ]d

{
(b2σ+2−d − 1)�d−2σ−2

c0(2σ + 2 − d)
−

(
r0

c2
0

+ σm2

c0

)
(b2σ+4−d − 1)�d−2σ−4

(2σ + 4 − d)

}]
, (17)
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λ′ = b4−d−2η+2σ

[
λ0 − 4nλ2

0

m2σ

Sd

[2π ]d

{
(b4−d − 1)�d−4

c2
0(4 − d)

− 2r0

c3
0

(b6−d − 1)�d−6

(6 − d)

}

−16λ2
0Sd

[2π ]d

{
(b4−d+2σ − 1)�d−4−2σ

c2
0(4 − d + 2σ )

−
(

σm2

c2
0

+ 2
r0

c3
0

)
(b6−d+2σ − 1)�d−6−2σ

(6 − d + 2σ )

}]
, (18)

c′ = b−η

[
c0 + 8σ (2 − d + 2σ )λ0Sd

d[2π ]d

{
(b4−d+2σ − 1)�d−4−2σ

c0(4 − d + 2σ )

}]
, (19)

�′ = bz−2+η�0. (20)

These RG flow equations suggest the existence of a LR fixed point r → r∗, λ → λ∗, c → c∗ = c, and �0 → �∗
0 = �0,

corresponding to

r∗

c
= − (4 − d − 2η + 2σ )

{
n
κσ + 2(1 − σκ)

}
�2

(2 − η)
{

n
κσ + 4(1 − σκ)

} − (4 − d − 2η + 2σ )
(

n
κσ + 2

) (21)

and

λ∗

c2
= (4 − d − 2η + 2σ )�4−d+2σ

Sd

(2π)d
{

4n
κσ + 16(1 − σκ)

} , (22)

where κ = m2/�2 is a redefined screening parameter. A linear
stability analysis indicates that the above fixed point is stable
for values of σ lying in the range −0.5 � σ � 0.5 in three
dimensions. Further, the upper critical dimension dc turns out
to be dc = 4 + 2σ . From Eq. (19), the Fisher exponent η can
be calculated in the leading order of ε = dc − d as

η = − 2σε

(σ + 2)
[

n
κσ + 4(1 − σκ)

] − 4σ
+ O(ε2). (23)

Equation (20) yields the dynamic critical exponent z as z =
2 − η, giving

z = 2 + 2σε

(σ + 2)
[

n
κσ + 4(1 − σκ)

] − 4σ
+ O(ε2). (24)

Thus, we find z = 2 + εf1(σ,κ,n) + O(ε2). In Fig. 3, we
display the variations of z with (a) order parameter components
n and (b) screening parameter κ in the physically allowed range
of σ in three dimensions. In Fig. 3(a), we show the variations
of z with n for κ = 0.001 while in Fig. 3(b) we show the
variation of z with κ for n = 3. These plots clearly show that
the dynamic exponent z undergoes negligible variation with
respect to n and κ in the negative regime of σ .

0.4 0.2 0.0

(a) (b)

0.2 0.4
1.97
1.98
1.99
2.00
2.01
2.02
2.03

σ

z

0.4 0.2 0.0 0.2 0.4
1.97
1.98
1.99
2.00
2.01
2.02

σ

z

FIG. 3. Plots for z = 2 + εf1(σ,κ,n) + O(ε2). Panel (a) shows
the variation of z with n for κ = 0.001 and panel (b) shows the
variation of z with κ for n = 3 in d = 3. The dotted, dashed, and
solid curves correspond to n = 1,2,3 in (a) and κ = 0.0001,0.001,

0.01 in (b).

It may be noted that, similarly to the original model A
dynamics with SR 	4 potential, the present LR model does not
give any relevant RG corrections to the noise amplitude �0 at
one-loop order. However, due to the incorporation of nonlocal
coupling function u(k), we obtain a nonzero correction to
η at one-loop order in the leading order of ε. Thus, it is
the renormalization of η that leads to strikingly different
long-range dependent results for the dynamic exponent z. We
find that the value of z lies in the range 1.972 � z � 2.016
for d = 3. This may be compared with the field-theoretic
result 2.000072 � z � 2.006628 [9] obtained from a different
model.

In order to calculate the linewidth exponent w, given by
the scaling relation w = ν(z + 2 − d − η) = ν(4 − d − 2η),
we calculate the correlation length exponent ν and obtain

ν = 1

2
+ ε

(
n
κσ + 2

)
2
[

n
κσ + 4(1 − σκ)

]
×

{
1

2
+ 2σ

(σ + 2)
[

n
κσ + 4(1 − σκ)

] − 4σ

}

− σε

2(σ + 2)
[

n
κσ + 4(1 − σκ)

] − 8σ
+ O(ε2). (25)

Equation (25) together with Eq. (23) yields

w = −σ + ε

[
1

2
+ σ

(σ + 2)
{

n
κσ + 4(1 − σκ)

} − 4σ

×
{

(2 + σ ) − 2σ
(

n
κσ + 2

)
{

n
κσ + 4(1 − σκ)

}}]

−ε

[
σ ( n

κσ + 2)

2
{

n
κσ + 4(1 − σκ)

}]
+ O(ε2). (26)

In Fig. 4, we display the variations of w with (a) n and (b) κ in
three dimensions. In Fig. 4(a), we show the variations of w with
n for κ = 0.001 while in Fig. 4(b) we show the variation of w

with κ for n = 3. These plots clearly show that the dependence
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FIG. 4. Plots for w = −σ + εf2(σ,κ,n) + O(ε2). Panel (a) shows

the variation of w with n for κ = 0.001 and panel (b) shows the
variation of w with κ for n = 3 in d = 3. The dotted, dashed, and
solid curves correspond to n = 1,2,3 in (a) and κ = 0.0001,0.001,

0.01 in (b).

on n and κ of the linewidth exponent w is insignificant and,
interestingly, w ≈ 0.5 in the range −0.5 < σ < 0.

Further, the exponent νz, related to the characteristic time
scale as τ ∝ |T − Tc|−zν , is obtained as

νz = 1 + ε
(

n
κσ + 2

)
{

n
κσ + 4(1 − σκ)

}
×

{
1

2
+ 2σ

(σ + 2)
[

n
κσ + 4(1 − σκ)

] − 4σ

}
+ O(ε2).

(27)

The other static critical exponents, namely the spontaneous
magnetization exponent β, susceptibility exponent γ , and
critical isotherm exponent δ, can be obtained by using the
expressions for η and ν from Eqs. (23) and (25) in the well-
known scaling relations, namely Josephson scaling νd = 2 −
α, Fisher scaling γ = ν(2 − η), Widom scaling γ = β(δ − 1),
and Rushbrooke scaling α + 2β + γ = 2 [55,57]. This yields

β = σ + 1

2
− ε

4

[
1 + 2σ (σ + 2)

(σ + 2)
[

n
κσ + 4(1 − σκ)

] − 4σ
−

(
n
κσ + 2

)
(2σ + 2)

n
κσ + 4(1 − σκ)

×
{

1

2
+ 2σ

(σ + 2)
[

n
κσ + 4(1 − σκ)

] − 4σ

}]
+ O(ε2), (28)

γ = 1 + ε
(

n
κσ + 2

)
n
κσ + 4(1 − σκ)

[
1

2
+ 2σ

(σ + 2)
[

n
κσ + 4(1 − σκ)

] − 4σ

]
+ O(ε2), (29)

and

δ = σ + 3

σ + 1
+ ε

σ + 1

[
1

σ + 1
+ 2σ (σ + 2)

(σ + 1)
[
(σ + 2)

{
n
κσ + 4(1 − σκ)

} − 4σ
]
]

+ O(ε2). (30)

III. COMPARISON WITH EXPERIMENTS

As noted earlier, in recent experimental studies on the
critical behavior of perovskite manganites [16,18–21], the
relaxation rate of the system near the critical point has been
measured by various techniques. In Table I and II, we display
the experimental results and compare them with our calculated
results. To compare the results, we first match the experimental
value of β with our theoretical estimate from Eq. (28) by tuning
the long-range exponent σ . For the same value of σ , we then
calculate the other exponents, namely γ , δ, z, w, and νz from
Eqs. (29), (30), (24), (26), and (27), respectively.

Atsarkin et al. [20] investigated the critical slowing down of
longitudinal spin relaxation close to the PM-FM critical point
Tc in La1−xCaxMnO3 for x = 0.2, 0.25, 0.33. It is interesting
to note that they measured the exponent w ≈ 0.5 for all those
samples from EPR linewidth measurements. Using a similar
experimental technique, Yassin et al. [21] also obtained the
same value (w ≈ 0.5) for a wide range of doping levels x

in La0.67−2xNd2xCa0.33−xSrxMnO3, namely x = 0, 0.1, 0.15,
0.2, and 0.25. These experimental estimates for w are in
excellent agreement with our calculated results for w in the
range −0.5 < σ < 0 as shown in Fig. 4. Thus the nonlocal
model Hamiltonian governing the critical dynamics correctly
captures the trend of a constant value of w for a wide range of
σ akin to the wide range of x in the experimental samples. This
trend appears to be true for different constituent R and A in

perovskite manganites. In addition, we see from Table I that the
values of β, γ , and δ for σ = −0.193 are in close agreement for
the sample La1−xCaxMnO3 with x = 0.2 [58]. For x = 0.33,
the β value is available in Ref. [15] and we display it in
Table I. For the other doping level, namely, x = 0.25, the
experimental estimates for static critical exponents are not
available at present. Similarly, the static critical exponents for
the samples La0.67−2xNd2xCa0.33−xSrxMnO3 studied in Ref.
[21] are not available except for x = 0 [15].

Krishnamurthy et al. [16] performed a μSR experiment
and studied the critical slowing down of Mn ion spin
fluctuations in the critical paramagnetic regime in single-
crystal Nd0.5Sr0.5MnO3 and obtained w = 0.59 ± 0.05. From
this value of w, they estimated the value z = 2.00 ± 0.12
from the scaling law w = ν(z + 2 − d − η), where the value
ν = 0.61 ± 0.02 was taken from another experiment [59]
and η = 0.031 ± 0.004 from the RG calculation of model C
[22]. In addition to the linewidth exponent w, they [16] also
measured the static critical exponents β, γ , and δ. Here we
compare them with our results and find that, although there is
a slight departure in the w value, the values for z, β, γ , and δ

are in good agreement.
In a few other experiments on perovskite manganites

[18,19], direct observational values for z and w are not
available. For example, Liu et al. [18,19] measured the
relaxation time exponent νz = 1.39 for the thin-film samples

052132-6



CRITICAL DYNAMICS OF A NONLOCAL MODEL AND . . . PHYSICAL REVIEW E 93, 052132 (2016)

TABLE I. Comparison of the critical exponents z, w, β, γ , and δ following from Eqs. (24), (26), (28), (29), and (30) for n = d = 3 and
κ = 0.001 with experimental estimates obtained for perovskite manganite compounds. Unavailable experimental data are indicated by dashes;
PC denotes polycrystalline and SC denotes single-crystal samples.

σ Experimental sample Ref. z w β γ δ

−0.148 1.979 0.510 0.345 1.201 4.264
La0.67Ca0.33MnO3 (PC) [15,20,21] – 0.50 0.345 ± 0.015 – –

−0.193 1.975 0.509 0.328 1.164 4.351
La0.8Ca0.2MnO3 (SC) [20,58] – 0.50 0.328 1.193 4.826

−0.186 1.975 0.509 0.330 1.170 4.338
Nd0.5Sr0.5MnO3 (SC) [16] 2.00 ± 0.12 0.59 ± 0.05 0.33 ± 0.02 1.24 ± 0.03 –

La0.75Ca0.25MnO3 (SC) [20] – 0.50 – – –
La0.47Nd0.2Ca0.23Sr0.1MnO3 (PC) [21] – 0.49 – – –

La0.37Nd0.30Ca0.18Sr0.15MnO3 (PC) [21] – 0.49 – – –
La0.27Nd0.4Ca0.13Sr0.2MnO3 (PC) [21] – 0.49 – – –
La0.17Nd0.5Ca0.08Sr0.25MnO3 (PC) [21] – 0.50 – – –

La0.7Sr0.3MnO3 and La0.7Ca0.3MnO3. Based on the closeness
of this experimental value with the prediction of the 3D
Heisenberg model, they concluded that the critical behav-
ior of both the samples should be governed by the 3D
Heisenberg model. However, in a different set of experiments
on La0.7Sr0.3MnO3 [11] and La0.7Ca0.3MnO3 [60], it was
concluded from the results of static critical exponents that the
3D Heisenberg model is not adequate enough to describe their
critical behavior. This casts some doubt on the applicability of
the 3D Hesisenberg model on these samples. It is important
to note that this disagreement in the experimental results,
despite the same chemical composition of the two samples,
is most likely due to the difference in their physical forms in
these two experiments. In Refs. [18,19], the samples were thin
films of thicknesses ∼ 200 nm, whereas in Refs. [11,60] the
experiments were performed on bulk samples. Consequently,
it is expected that the finite-size effects will play some role in
determining the critical behavior in the thin-films case. It is
apparent that the experimental measurements on the thin films
did not take this finite-size effect into consideration and, as a
result, the corresponding critical exponents cannot be expected
to agree with those coming from the bulk samples. As we see
from Table II, although our theoretical values for the critical
exponents β, γ , and δ agree well with the experimental ones,
the value of νz does not agree too well with the thin-film
measurements. We cannot expect a good agreement with the
thin-film samples because our results are applicable for bulk
samples without any finite-size effects.

IV. DISCUSSIONS AND CONCLUSIONS

In this paper, we have performed a dynamic RG analysis
on the dynamic model [Eq. (1)] governed by the nonlocal
model Hamiltonian [Eq. (2)]. Carrying out the calculations at
one-loop order in the leading order of ε = 4 − d + 2σ , we
have seen that the nontrivial fixeded point is stable in the
range −0.5 � σ � 0.5 in three dimensions. Within this range
of σ , our present model Hamiltonian yields nonzero values
of the Fisher exponent η, giving z = 2 + εf1(σ,κ,n) + O(ε2).
The plots for z in three dimensions given in Fig. 3 indicate
that their dependencies on the model parameters n and κ are
insignificant in the negative range of σ . It may be noted that
the dynamic exponent lies in the range 1.972 � z � 2.016 for
n = 3 in three dimensions. We have derived an expression
[Eq. (26)] for the linewidth exponent w in the leading order
of ε yielding w = −σ + εf2(σ,κ,n) + O(ε2). This leads to
w ≈ 0.5 in three dimensions in the range −0.5 � σ � 0
irrespective of the values of the model parameters n and κ ,
as shown in Fig. 4. This is consistent with the experimental
investigations [20,21], suggesting that the linewidth exponent
w for perovskite manganite samples has an almost constant
value w ≈ 0.5 irrespective of their chemical compositions. A
few experiments studying the dynamic critical behavior of per-
ovskite manganites measured the value of the relaxation time
exponent νz. Consequently, we calculated its value leading to
νz = 1 + εf3(σ,κ,n) + O(ε2) at one-loop order. The currently
available experimental estimates for the exponents w and νz lie
well within the range −0.5 � σ � 0, as shown in Table I and

TABLE II. Comparison of the critical exponents νz, β, γ , and δ following from Eqs. (27), (28), (29), and (30) for n = d = 3 and κ = 0.001
with experimental estimates obtained for perovskite manganite compounds.

σ Experimental sample Ref. νz β γ δ

−0.094 1.251 0.370 1.251 4.164
La0.7Sr0.3MnO3 (SC) [18] 1.39 – – –
La0.7Sr0.3MnO3 (SC) [11] – 0.37 ± 0.04 1.22 ± 0.03 4.25 ± 0.2

−0.114 1.232 0.360 1.232 4.201
La0.7Ca0.3MnO3 (SC) [19] 1.39 ± 0.06 – – –
La0.7Ca0.3MnO3 (SC) [60] – 0.36 ± 0.01 1.2 4.263
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Table II. In addition, as displayed in Table I, within the same
stable range of the nontrivial fixed point, the present nonlocal
model Hamiltonian reproduces satisfactorily the static critical
exponents for the samples for which experimental values of
the linewidth exponent are also available from various spin
relaxation experiments [16,20,21]. It is worth noting that in
Refs. [20,21] the value of w = 0.5 was obtained from the EPR
linewidth for various doping levels x. The measured static
critical exponents β, γ , and δ in the available experiments
[15,58] are also presented in Table I and they agree well
with the present theoretical estimates. However, the estimates
coming from μSR experiment [16] yields w ≈ 0.59. This
value, although, slightly deviates from our model predictions
(w ≈ 0.5), and the other critical exponents z, β, and γ obtained
in the same experiment [16] are in good agreement.

Further, while comparing the relaxation exponent νz in
Table II with the available experimental estimates [18,19],
we observed a slight mismatch which appears to be a
consequence of finite-size effects for which one expects
finite-size corrections in the thin-film samples, as discussed
earlier in Sec. III. However, the static critical exponents for
the same (bulk) samples, as available in Refs. [11,60], match
well with our model predictions as displayed in Table II.

We have thus seen that our theoretical predictions for
the critical exponents are in reasonable agreement with the
experimental ones considering that our calculations are at one
loop order. We expect, as in the standard φ4 theory [61], better
agreements with the critical exponents if the calculations are
performed up to two-loop order. Moreover, just like in the
standard φ4 theory, to get very precise values of the critical
exponents one needs to calculate the Feynman diagrams up to
five- or six-loop orders and perform a Borel summation of the
resulting ε expansion [62]. We deem such a detailed and more
exact calculation unnecessary because our calculations capture
the correct trend of the static and dynamic critical exponents
already at one loop order that helps us to ascertain about the
form of the nonlocal interaction in the effective Hamiltonian.

In this context, we would like to note from a number
of previous theoretical investigations [50,52], that nonlocal
interaction in the effective Hamiltonian emerges in systems
involving spin-lattice coupling. In particular, Fisher [49] con-
sidered spin-lattice coupling in a compressible Ising system
by accounting for the fact that the exchange interaction varies
with the separation between the spins. Reconsidering this
problem, Wagner [50] showed the emergence of nonlocal four
spin interaction in the effective spin Hamiltonian. Aharony
considered a continuum generalization of this Hamiltonian

and predicted the existence of tricriticality in the system
[52]. It is thus interesting to investigate whether nonlocal
interactions are capable of reproducing the wide range of
universality classes (apart from tricriticality) observed in
perovskite manganites that are known to possess a strong
spin-lattice coupling. In fact, an effective Hamiltonian with
nonlocal interaction in the quartic term was analyzed via
Wilson’s momentum shell decimation RG scheme. It was
found that the model could reproduce a vast range of static
critical properties including tricriticality in a satisfactory
manner for widely varying compositions of experimental
samples [53]. Remarkably, the dynamic critical behavior of the
(experimentally explored) perovskite manganites gives clear
indication that the linewidth exponent remains approximately
constant, although their static critical exponents vary across
samples. It is gratifying that the nonlocal model considered in
this paper is capable of reproducing the correct trends of both
static and dynamic critical exponents observed in experimental
perovskite manganite samples.

We conclude by noting that the critical behavior near
the second-order phase transition in CMR materials has
been extensively explored in the recent past due to their
high technological demands. Since there has been a great
deal of experimental data on the critical behavior of these
systems, it is an interesting adventure to explore them on
theoretical grounds. The nonlocal model in this work is
only an initial theoretical attempt to describe their dynamic
critical behavior. It is, however, worth remarking that a very
few experimental works on the dynamic critical behavior of
perovskite manganites have been reported in comparison to the
enormous number of static critical measurements. Additional
experimental investigations on the dynamic critical behavior
will be required to verify the model predictions. Particularly,
the dynamic exponents need to be measured for varying
compositions of perovskite manganite samples. We hope that
the present work will inspire to carry out further experimental
research along this line.
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