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Exact extreme-value statistics at mixed-order transitions
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We study extreme-value statistics for spatially extended models exhibiting mixed-order phase transitions
(MOT). These are phase transitions that exhibit features common to both first-order (discontinuity of the order
parameter) and second-order (diverging correlation length) transitions. We consider here the truncated inverse
distance squared Ising model, which is a prototypical model exhibiting MOT, and study analytically the extreme-
value statistics of the domain lengths The lengths of the domains are identically distributed random variables
except for the global constraint that their sum equals the total system size L. In addition, the number of such
domains is also a fluctuating variable, and not fixed. In the paramagnetic phase, we show that the distribution of
the largest domain length lmax converges, in the large L limit, to a Gumbel distribution. However, at the critical
point (for a certain range of parameters) and in the ferromagnetic phase, we show that the fluctuations of lmax are
governed by novel distributions, which we compute exactly. Our main analytical results are verified by numerical
simulations.
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I. INTRODUCTION

Extreme events are generally rare, but their implications
may be of major importance. Hence, the theory of such
events have found many applications in diverse fields such
as geology (e.g., earthquakes analysis), economy (e.g., stock
market fluctuations), physics (e.g., properties of ground states
of disordered systems), or biology (e.g., evolution theory). The
theory of extreme-value statistics (EVS) for independent and
identically distributed (i.i.d.) random variables has been well
known since the work of Tippett, Fisher, Fréchet, Gumbel,
Weibull, and others [1–5]. However, the study of extreme
values for sets of correlated variables is an active field of
research (for a recent review see Ref. [6]). In this work we study
a specific class of correlated variables, which represent degrees
of freedom of a spatially extended system poised at a rather
unconventional type of critical point, named mixed-order
phase transition (MOT).

MOTs are phase transitions in which the order parameter
changes discontinuously, as in first-order transitions, but
exhibit diverging correlation length and scale-free distributions
as in continuous transitions. Such transitions appear in several
distinct contexts including the one-dimensional Ising model
with long-range interactions [7–9], models of DNA denatura-
tion [10,11], wetting and depinning transitions [12,13], models
for glass and jamming transitions [14–17], complex network
evolution [18–21], active biopolymer gels [22,23], or models
of moving condensates [24].

While it is clear that these transitions do not fall into the
ordinary classification scheme of phase transitions, there is cur-
rently no theoretical framework that provides a comprehensive
classification of such transitions. One clear distinction between
different MOTs is the behavior of the correlation length near
the transition: in some cases its divergence is polynomial in
the control parameter (e.g., in the Poland-Scheraga model
[10] and in the no-enclave percolation model [23]), while in
others the correlation length exhibits an essential singularity,
in the form of stretched exponential divergence (e.g., in the
inverse distance squared Ising model [7] or in the spiral

model for jamming [15]). Recently [25,26], this distinction
in the behavior of the correlation length was studied in a
one-dimensional setting, using renormalization group (RG)
analysis to study, on the same footing, models from both
classes. It is an ongoing research task to find other relations and
distinctions between such transitions, or at least a framework
in which they can be analyzed together. Here we highlight
EVS as a unifying concept for such transitions.

In the examples for MOT mentioned above, mixed-order
transitions separate a phase composed of microscopic domains
from a phase in which a macroscopic domain exists. For
instance, in the context of DNA denaturation, the relevant
domains are denatured regions, and the MOT involves the
appearance of a macroscopic denatured region. In the context
of network evolution, the relevant domains are the connected
components, and a macroscopic domain is a spanning cluster.
The transition itself can be identified with the change in the
scaling of the maximal domain size with the total system size:
the largest domain is subextensive below the transition, and
extensive above it. Hence, it is natural in this context to study
the extreme-value statistics (EVS) of the set of domain sizes.

Obtaining exact results for EVS of generally correlated
variables, such as domain sizes in a network evolution model,
is notoriously hard. In order to gain analytical insight into this
problem we study it in the context of the truncated inverse
distance squared Ising model (TIDSI), which was introduced
in Ref. [25] as a bridge between models exhibiting MOT in
one dimension. The sizes of domains in a configuration of the
TIDSI model are essentially independent variables, apart from
a sum constraint, which generates correlations [see Eq. (7) be-
low]. In addition, the number of domains is fluctuating. Due to
this special structure, many properties of this model, including
the extreme-value theory of its domain sizes, are analytically
accessible. We find that the EVS distribution can be either
standard independent-variables distribution or novel EVS
distributions, depending on control parameters of the model.

In this paper we derive the EVS of the TIDSI model
analytically and discuss its important features. The paper is
organized as follows. In Sec. II we introduce the TIDSI model,
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FIG. 1. Domain representation of the TIDSI model of size L. In
this configuration, the number of domains is N = 6. We recall that
the interaction is restricted to spins within the same domain. The
Boltzmann-Gibbs weight of such a configuration is given by Eq. (7).
In this paper we study the statistics of the largest domain length
lmax = max1�i�N li .

discuss its various representations and recall its phase diagram.
In Sec. III we discuss the extreme-value theory of the TIDSI,
which is the main result of this paper. In Sec. IV we discuss the
direct relation between the TIDSI and other one-dimensional
models, which exhibit MOT. Finally we discuss our findings in
Sec. V. For completeness, we review basic results for EVS of
i.i.d. random variables in Appendix A. Some technical details
have been relegated to Appendix B and C.

II. MODEL

The TIDSI model was introduced in Ref. [25] and further
analyzed in Ref. [26]. Originally, the TIDSI was defined
as an Ising spin chain with specific long-range interactions.
However, in this paper we will focus on its representation in
terms of spin domains (see Fig. 1), in the regime in which
the relevant domains are large and hence terms inversely
proportional to domain length can be neglected. We start by
reminding the readers of the original TIDSI model in the spin
representation and then derive its domain representation.

A. Spin representation

In its spin chain representation the TIDSI model is defined
on a spin chain of size L. At each site there is an Ising spin
σi = ±1. There is a standard nearest-neighbor ferromagnetic
interaction between spins. In addition, there is a ferromagnetic
long-range interaction between spins belonging to the same
domain, where a domain is a consecutive set of spins of the
same sign (see Fig. 1). Thus the long-range interaction is
truncated by the finite domain size. We consider the case where
the long-range interaction decays asymptotically according to
an inverse quadratic law. The full Hamiltonian of the system
in the spin representation thus reads

H = −JNN

L−1∑
i=1

σiσi+1 −
∑
i<j

J (i − j )σiσj

j−1∏
k=i

1 + σkσk+1

2
,

(1)

J (r) ≈ Cr−2, r � 1. (2)

The product in the second term of Eq. (1) ensures that the
long-range interaction is restricted to spins within the same
domain. We consider here free boundary conditions.

B. Domain representation

A typical configuration of the system will consist of
alternating spin domains characterized by sizes {l1,l2, · · · ,lN }
(see Fig. 1) where N is the number of domains, which may
also vary from configuration to configuration. Note that the
variables ln’s satisfy the constraint

N∑
n=1

ln = L, (3)

where L is the system size. In terms of these domains, the
Hamiltonian can be reexpressed as

H =
N∑

n=1

Hn − JNN, (4)

Hn = −JNN (ln − 2) −
ln∑

r=1

(ln − r)J (r). (5)

For any long-range interaction J (r) that satisfies r2J (r) → C

as r → ∞, we have

ln∑
r=1

J (r) = ã − C

ln
+ O

(
l−2
n

)
ln∑

r=1

rJ (r) = b̃ + C log ln + O
(
l−1
n

)
.

For large enough domains we can ignore O(l−1
n ) corrections.

As we will see later, this is justified near the critical point
where the domains are typically very large. Using the sum rule∑N

n=1 ln = L, the linear term −(JNN + ã)ln, summed over n,
just becomes a constant and hence can be dropped. Hence,
under the approximation of long domains the Hamiltonian is
reexpressed as

H = C
∑

n

log ln + �N. (6)

Here C is a constant parameter and � = 2JNN + C + b̃ serves
as a chemical potential for the number of domains.

In this domain representation, a configuration C of the
system is specified by the domain sizes {l1,l2, . . . ,lN } and
the number N of domains (see Fig. 1). The Boltzmann
weight associated with such a configuration C is simply
P (C) ∝ e−βH, where β = 1/(kB T ) is the inverse temperature
and the Hamiltonian H is given in Eq. (6). This then leads to
the following joint distribution of the domain lengths and their
number

P (l1,l2, . . . ,lN ,N |L) = 1

Z(L)

N∏
n=1

e−β�

lcn
δ∑N

n=1 ln,L
, (7)

where δi,j is the usual Kronecker δ and c = βC. For the
purpose of the normalization of the full joint distribution,
we need here c > 1. The normalization constant Z(L) is the
partition function given by

Z(L) =
∞∑

N=1

∞∑
l1=1

· · ·
∞∑

lN =1

N∏
n=1

e−β�

lcn
δ∑N

n=1 ln,L
. (8)
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FIG. 2. Phase diagram of the model (6) in the (c,T ) plane, with
� = 1. The different regions of the critical line (I–III) are explained
in the text.

The two natural parameters in the model are the inverse
temperature β and the fugacity e−β�. For convenience, we will
use an alternative parametrization in terms of the exponent
c characterizing the power-law decay of the domain size
distribution and the temperature T . We note that this model
has close similarity to the Poland-Scheraga model of DNA
denaturation where the number of loops N is also a variable
(see later in Sec. IV for discussions).

C. Phase diagram

The phase diagram of the TIDSI model in the (c,T ) plane
was derived in Ref. [26] (see Fig. 2). For completeness we
briefly summarize the main results (for zero magnetic field).
There are two relevant order parameters for the TIDSI model:
the density of domains ρ = N

L
, and the magnetization m =∑

n�1 (−1)nln [26]. For any C and � > 0, a phase transition
is predicted at some Tc(C,�), which is given by

ζ (βcC) = eβc�. (9)

Here βc = kBT −1
c and ζ (γ ) = ∑∞

n=1 n−γ is the Riemann ζ

function. In Fig. 2 the phase diagram is presented in the
(c,T ) plane. The critical line in Fig. 2 separates a high-
temperature paramagnetic phase, in which m = 0 and ρ > 0,
and a low-temperature ferromagnetic phase in which m = ±1
and ρ = 0. The ferromagnetic phase is a condensed phase,
where there is one big domain of size ∼L while the other
domains are of size ∼O(1). The critical line has three different
regimes: In regime I (1 < c � 2) the magnetization jumps
from 0 to ±1 abruptly, while the density of domains drops
continuously to 0 in the paramagnetic phase as one approaches
the critical line. In regimes II (2 < c � 3) and III (c > 3) both

m and ρ change discontinuously. In regime II the magnetic
susceptibility diverges at the transition, while in regime III it
is finite (see Ref. [26] for definition of magnetic susceptibility
in this context). In all regimes the spin-spin correlation length
diverges, and hence the transition is critical. See Table I for the
typical size of the domains in different regimes on the critical
line.

In this paper, the main focus is not on the thermodynamics
of this model but rather on the statistics of the largest domain
lmax. As discussed above, this is a natural observable since
the transition from paramagnetism to ferromagnetism occurs
via the emergence of a macroscopic domain as one crosses
the critical line. We show in this paper that the statistics of
the largest domain indeed has an extremely rich and novel
behavior in different regions of the phase diagram in the (c,T )
plane.

III. STATISTICS OF THE LARGEST DOMAIN

In the domain representation the system is characterized by
a fluctuating number of domains N with domain lengths li’s
distributed according to the joint probability density function
(PDF) given in Eq. (7). We define the largest domain size
as lmax = max1�n�N ln. This is clearly a random variable
and we are interested in computing its PDF, in particular in
the thermodynamic limit L → ∞, in the various regions of
the phase diagram in the (c,T ) plane. Note that due to (i)
the presence of the global constraint

∑N
n=1 ln = L in Eq. (7)

and (ii) the fluctuating number of domains N , the variables
ln’s are correlated and therefore the standard extreme-value
statistics (EVS) of uncorrelated variables are not valid here.
Indeed we will see that these two facts lead to results for lmax

that are rather different from and richer than the standard EVS
results. We note that the EVS in case (ii) above, i.e., with a
fluctuating number of variables N was studied recently in the
context of luminosity of galaxies in Ref. [27].

At this point, it is useful to point out that lmax has been
recently studied in models that are similar but not exactly
identical to the present case. For example, in the case of zero
range process (ZRP), the joint distribution of the number of
particles at different sites of a lattice of size N has a similar
structure as in Eq. (7) [28,29]:

PZRP(l1, . . . ,lN |L) ∝
N∏

n=1

1

lcn
δ∑N

n=1 ln,L
, (10)

where ln represents the number of particles at site n and L

represents the total number of particles. Similar domain size

TABLE I. Summary of the main results for the average value 〈lmax〉 and its cumulative distribution P1(x|L) in the different regions of
the phase diagram depicted in Fig. 2. The amplitudes are given by apara = a [see Eq. (13)], acrit = d−1 	[(c − 2)/(c − 1)] [see Eq. (15)], and
A1 ≡ A1(c) is given in Eq. (15). The functions F1(y),F2(y),F3(y), and F4(y)—which are different in these four different cases—can be read
off from Eqs. (12), (15), (17)–(18), and (22)–(23), respectively.

T = Tc T = Tc

T > Tc c � 2 (II and III) 1 < c < 2 (I) T < Tc

〈lmax〉 ≈ apara log L acrit L
1/(c−1) A1 L L

Cumulative dist. P1(x|L) ≈ F1[(x − bL)/a] F2[x/L1/(c−1)] F3(x/L) F4(L − x)
Gumbel Fréchet �= i.i.d. case �= i.i.d. case
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distributions also appear in certain microscopic models of
driven diffusive systems [30]. The statistics of lmax in this case
(10) has been studied in Ref. [31]. Even though structurally
Eq. (10) is similar to the joint PDF in Eq. (7), there are two
important differences: (i) the number of sites N is fixed and,
hence, (ii) there is no explicit fugacity.

Similarly, the largest time interval between returns to the
origin has been studied for one-dimensional lattice random
walks [32] and more generally for renewal processes [33,34].
In this case, the joint PDF of the intervals between renewals is
given by

PREN(l1, . . . ,lN ,N |L) ∝
[

N−1∏
n=1

f (ln)

]
q(lN ) δ∑N

n=1 ln,L
, (11)

where ln’s represent the intervals between renewal events and L

represents the total time interval. Here the number of intervals
N is a variable as in Eq. (7). However, unlike in Eq. (7), the
first N − 1 intervals have the same weight f (ln) but the last
one has a different weight q(lN ) = ∑∞

l=lN +1 f (l). In addition,
there is no explicit fugacity as in Eq. (7). In these renewal
processes (11), the weight f (l) is taken as an input in the
model. In contrast, in the TIDSI model the renewal structure
along with the weight f (l) ∝ l−c emerge naturally from the
Boltzmann weight of an underlying Hamiltonian. Hence the
joint PDF in Eq. (7) has a richer structure as it can be studied in
the various regions of the parameter space in the (c,T ) plane.
Consequently, we will see that the results for the statistics
of lmax in the TIDSI model also have a richer structure as
summarized below.

A. Summary of main results

Our main results concern the exact expression for the
cumulative distribution of the largest domain, P1(x) =
Pr (lmax � x), or equivalently for its distribution p1(x|L) =
Pr(lmax = x), in the large L limit, in the various regions of the
phase diagram in the (c,T ) plane (see Fig. 2 and Table I).

(i) T > Tc: in the paramagnetic phase, the marginal dis-
tribution of the domain size has an exponential tail P (l) ∼
l−ce−l/ξ where ξ ≡ ξ (T ,c) is the typical domain size, which
is finite for T > Tc [25,26]. In this case, we show that the
maximal domain size lmax, properly shifted and scaled, is
distributed according to a Gumbel distribution (see also Fig. 3
below):

P1(x|L) ≈ exp

{
− exp

[
−

(
x − bL

a

)]}
, (12)

where bL, which depends explicitly on L, and a, which is
independent of L, are given by

a = − 1

log (z∗)
, bL = a log

[
z∗ L

(1 − z∗)Lic−1(z∗)(a log L)c

]
,

(13)

where Lic(z) = ∑
l�1

zl

lc
is the polylogarithm function and z∗

is determined by the relation

Lic
(
z∗) = eβ�. (14)

This result (12) implies that in the paramagnetic phase, the
average value of the largest domain scales logarithmically with
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L=8000
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FIG. 3. Log-linear plot of p1(x|L) for c = 3/2 and e−β� = 0.5
(hence in the paramagnetic phase). The square symbols corre-
spond to a numerical evaluation of p1(x|L) for L = 8000 (see
Appendix C for details) while the solid line corresponds to the exact
formula given in Eq. (38).

L, 〈lmax〉 ≈ bL ≈ a log L. In this phase, the PDF of the ln’s has
an exponential tail and besides, the typical number of domains
is ∝ L. Therefore, the fact that the limiting distribution is given
by a Gumbel law (12), which is known to describe the EVS of
i.i.d. variables with an exponential tail [4] (see also Appendix
A), shows that the correlations among the ln’s, generated by the
global constraint in Eq. (7), do not play any role for T > Tc.
Note that a similar property was found for renewal processes
with exponentially distributed intervals in Ref. [34].

(ii) T = Tc: along the critical line, the marginal distribu-
tion of the domain size has an algebraic tail P (l) ∼ l−c. In
this case, we find that depending on the value of c (c > 2 or
1 < c < 2), the PDF of lmax exhibits two different behaviors.

(a) If c > 2, we show that the limiting distribution is
asymptotically given by a Fréchet distribution (see also Fig. 6
below):

P1(x|L) ≈ exp

[
−

(
d

x

L
1

c−1

)1−c]
,

d =
[

1

(c − 1)ζ (c − 1)

]1/(1−c)

. (15)

Therefore, in this case, the average value of lmax grows
algebraically (and sublinearly) with L, 〈lmax〉 ∝ L

1
c−1 . Be-

sides, for c > 2, the number of domains is still extensive,
≈ L/ζ (c − 1) [25,26] and therefore the limiting distribu-
tion found here (15) coincides with the result of EVS for
i.i.d. random variables with an algebraic PDF [4] (see also
Appendix A). The reason behind this can be traced back to the
fact that in this case 〈l〉 is finite and the global constraint in
Eq. (7) becomes irrelevant, as it is typically satisfied in most
configurations. This is also in line with the results found for
renewal processes in Ref. [34].

(b) If c < 2, the statistics of lmax is quite different from the
predictions of EVS for i.i.d. random variables. First, we show
that, in this case, lmax ∼ L and in particular its first moment is
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given by

〈lmax〉 ∼ A1(c) L, A1(c)

= 1

c − 1

∫ ∞

0

	(1 − c,x)

	(1 − c,x) − 	(1 − c)
dx, (16)

where 	(α,z) = ∫ ∞
z

xα−1e−x dx is the incomplete gamma
function. Note that −	(1 − c) > 0 for 1 < c � 2. Besides we
show that in this case the limiting PDF of lmax is given by (see
Fig. 5 below)

P1(x|L) ≈ 1 − H1

(
L

x

)
, (17)

where H1(u), which is defined for u � 1, obeys the following
relation∫ ∞

0
e−wuH1(u) uc−2du = 	(c − 1)

wc−1

	(1 − c,w)

	(1 − c,w) − 	(1 − c)
.

(18)

The function H1(u) is a piecewise analytic function, which has
singularities at all integer values of u > 1 [while H1(u) = 0 for
u � 1]. In particular, for 1 < u < 2, H1(u) can be computed
explicitly

H1(u) = B(c)u2−c(u − 1)2c−2
2F1(1,c,2c − 1,1 − u),

1 < u < 2, (19)

with 2F1 being the hypergeometric function and B(c) =
−	(c − 1)/[	(1 − c)	(2c − 1)] > 0. One can also check
from Eq. (18) that H1(u) → 1 as u → ∞, as it should (as
P1(x|L) → 0 when x → 0). For instance, for the special case
c = 3/2, H1(u) = √

u − 1, for 1 < u < 2. The asymptotic
behaviors of the PDF p1(x|L), in the large L limit, are given
in Eqs. (63) and (64). The nontrivial distribution H1(u) (18)
indicates that the global constraint is important in this case.
The extensivity of 〈lmax〉 ∝ L together with its nontrivial PDF,
exhibiting nonanalytic behaviors, is reminiscent of the results
found for renewal processes, as in Eq. (11), when f (l) exhibits
heavy tails [32–34], corresponding here to c � 2.

In this regime, one may wonder whether the largest domain is
the only extensive one, or whether other domains are extensive.
To answer this question, we have computed the statistics of the
kth largest domain, l(k)

max. We found that l(k)
max is extensive for

any finite k. In particular, its average is given by〈
l(k)
max

〉 ∼ Ak(c) L, Ak(c)

= 1

c − 1

∫ ∞

0

[
	(1 − c,x)

	(1 − c,x) − 	(1 − c)

]k

dx, (20)

while its cumulative distribution Pk(x|L) = Pr(l(k)
max � x)

reads, for large L,

Pk(x|L) ≈ 1 − Hk

(
L

x

)
,∫ ∞

0

e−wu

u2−c
Hk(u)du = 	(c − 1)

wc−1

(
	(1 − c,w)

	(1 − c,w) − 	(1 − c)

)k

,

(21)

which, for k = 1, yields back the formula in Eq. (18). These
results imply that for c < 2, there are, at the critical point,

10-7
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L=2000
fferro(y)

x-3

FIG. 4. Plot of p1(x|L) for c = 3 and e−β� = 0.2 (hence in
the ferromagnetic phase). The square symbols correspond to a
numerical evaluation of p1(x|L) for L = 2000 (see Appendix C for
details) while the circular symbols correspond to the exact limiting
distribution fferro(y) obtained by expanding the right hand side of
Eq. (23) in powers of z. The slight discrepancy between the numerical
and the exact asymptotic results is a finite L effect. The solid line is
a guide to the eyes indicating the expected algebraic behavior ∝ x−c,
see Eq. (48).

many macroscopic domains. Note that from Eq. (20) one easily
checks that

∑∞
k=1〈l(k)

max〉 = L. Besides, from Eq. (21), one can
show that Hk(u) = 0 for 0 < u � k (as the kth largest domain
is necessarily smaller than L/k), while Hk(u) → 1 as u → ∞.
As for k = 1, one can also show that Hk(u) has singularities
at every integer values of u � k. Note that the study of the kth
longest excursion for renewal processes (11), and f (l) ∼ l−3/2,
was recently studied in Ref. [35].

(iii) T < Tc: in this case it is more convenient to focus on
the PDF p1(x|L) = P1(x|L) − P1(x − 1|L) = Pr .(lmax = x).
We find that, for large L, keeping x fixed, it reads

p1(x|L) ≈ fferro(y = L − x), (22)

where the generating function of the scaling function fferro(y),
with y ∈ N, is given by (see also Fig. 4)

∞∑
y=0

zyfferro(y) =
(

1 − e−β�ζ (c)

1 − e−β�Lic(z)

)2

. (23)

The asymptotic behaviors of fferro(y) can easily be extracted
from this expression (23) and they are given in Eq. (48)
below. Note that Eq. (22) implies that for large L, the
maximum domain size is given by lmax ≈ L. Besides the
limiting distribution fferro(x) is actually quite different from
the standard limiting distributions known from the EVS of
i.i.d. random variables, which shows that the global constraint
among the ln’s (7) is actually important in the ferromagnetic
phase. Interestingly, the limiting distribution fferro(x) has an
algebraic tail [see Eq. (48)], fferro(x) ∝ x−c. This indicates that
〈lmax〉 − L ≈ O(1) for c � 2 while 〈lmax〉 − L ∼ O(L2−c) for
1 < c < 2 (and a logarithmic growth for c = 2). In this case,
one can show that the size of the next maxima l(k)

max, for k � 2
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are all of order 1, l(k)
max ≈ O(1). Their distribution, that depends

on k, is rather cumbersome and is not given here.
To summarize, the general picture is that in the param-

agnetic phase domains are small, and hence correlations—
which emerge due to the global constraint (3)—are essentially
negligible. In the ferromagnetic phase the maximal domain
consists of almost all of the sites of the chain, while the size of
the other domains is of order O(1). At the transition, if c > 2
the domains are again small (subextensive) and the effect of
correlations is negligible, but for c < 2 the maximal domain
is extensive and the correlations are relevant. These results are
summarized in Table I.

B. Derivation of the results

The starting point of our analytical computations is an
exact expression for the cumulative distribution P1(x|L) =
Pr (lmax � x) of the largest domain lmax = max1�n�N ln in the
TIDSI model. It is simply obtained by summing up the joint
PDF of the domains in Eq. (7) over the lengths ln’s from 1 to
x (for a fixed value of the number N of domains) and then
by summing over all possible values of N . This yields the
following ratio:

P1(x|L) = W0(x|L)

Z(L)
, (24)

where Z(L) is the partition function given in Eq. (8) and
W0(x|L) is thus given by

W0(x|L) =
∞∑

N=1

x∑
l1=1

· · ·
x∑

lN =1

N∏
n=1

e−β�

lcn
δ∑N

n=1 ln,L
. (25)

Obviously, Z(L) = limx→∞ W0(x,L). Similarly, to compute
the cumulative distribution of the kth largest domain l(k)

max,
Pk(x|L) = Pr (l(k)

max � x), it is useful to first introduce an
auxiliary probability Wp(x|L)/Z(L), with an integer p � 0,
which denotes the probability that there are exactly p domains
whose sizes are bigger than x. For the event that the kth largest
domain has length less than or equal to x to occur, there must be
at most k − 1 domains with lengths bigger or equal to x (see
for instance Ref. [36]). The cumulative probability Pk(x|L)
can then be written as

Pk(x|L) = 1

Z(L)

k−1∑
p=0

Wp(x|L), (26)

where W0(x,L) is given in Eq. (25) while, for p � 1, Wp(x|L)
is computed straightforwardly as

Wp(x|L) =
∞∑

N=p

e−Nβ�

(
N

p

)

×
∞∑

l1=x+1

· · ·
∞∑

lp=x+1

x∑
lp+1=1

· · ·
x∑

lN =1

N∏
n=1

1

lcn
δ∑N

n=1 ln,L
,

p � 1 (27)

where the binomial coefficient
(
N

p

)
is a simple combinatorial

factor counting the number of different ways to choose these
p largest domains among N .

We start by analyzing the distribution of the largest domain,
P1(x|L), above, at, and below the critical temperature Tc. The
difficulty with evaluating expressions such as (25) and (27)
comes from the constraint over the domain sizes. To handle
such sums, it is customary (see for instance Refs. [26,31])
to work with the corresponding generating functions with
respect to L (in the language of statistical physics, this
amounts to a shift from the canonical to the grand-canonical
ensemble). One obtains

W̃0(x,z) =
∞∑

L=1

W0(x|L)zL

=
∞∑

N=1

N∏
n=1

(
x∑

l=1

e−β�zl

lc

)
= e−β��c(z,x)

1 − e−β��c(z,x)
,

(28)

where the function �c(z,x) is given by

�c(z,x) =
x∑

l=1

zl

lc
. (29)

These explicit and exact formulas in Eqs. (28) and (29) are
our starting point to extract the large L behavior of W0(x|L),
via the Cauchy’s inversion formula

W0(x|L) = 1

2πi

∮
1

zL+1
W̃0(x,z)dz, (30)

where the integration contour runs around the origin and
does not contain any singularities of W̃0(x,z). Eventually one
obtains P1(x|L) from Eq. (24), in the different regions of the
phase diagram.

Similarly, the generating function of Wp(x|L) can also be
expressed as

W̃p(x,z) =
∞∑

L=1

Wp(x|L)zL

=
∞∑

N=p

e−Nβ�

(
N

p

)
[Lic(z)−�c(z,x)]p[�c(z,x)]N−p,

p � 1. (31)

It is straightforward to perform the sum over N to obtain

W̃p(x,z) = e−pβ�[Lic(z) − �c(z,x)]p

[1 − e−β��c(z,x)]p+1
, p � 1. (32)

Note that this expression is valid only for p � 1, while for
p = 0 Eq. (28) is valid. Finally, Wp(x|L) for p � 1 can also
be obtained via Cauchy’s inversion formula

Wp(x|L) = 1

2πi

∮
1

zL+1
W̃p(x,z)dz, (33)

where the integration contour runs around the origin and
does not contain any singularities of W̃p(x,z). Eventually one
obtains Pk(x|L) from Eq. (26), in the different regions of the
phase diagram.

1. Largest domain in the paramagnetic phase (T > Tc)

In this regime e−β�ζ (c) > 1 [see Eq. (9)] and to compute
W0(x,L) from Eq. (30), for large L, one notices that, for fixed
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x, W̃0(x,z) has a simple pole at z∗(x) [see Eq. (28)] given by

1 − e−β��c

(
z∗(x),x

) = 0. (34)

For T > Tc, z∗(x) < 1 for all finite x [this can be checked from
Eq. (9)]. Because of the existence of this pole the integral in
(30) can be evaluated to leading order in the large L limit as

W0(x|L) ≈ [z∗(x)]−L.

In particular, Z(L) = limx→∞ W0(x|L) = (z∗)−L where z∗ ≡
z∗(x → ∞). Using that �c(z,x → ∞) = Lic(z), Eq. (34)
implies that z∗ satisfies Eq. (14). And therefore

P1(x|L) = W0(x|L)

Z(L)
≈

(
z∗

z∗(x)

)L

. (35)

We now compute z∗(x) for large x from Eq. (34). This is done
by using the large x expansion of �c(z,x):

�c(z,x) = Lic(z)−
∞∑

l=x+1

zl

lc
= Lic(z)−zx+1

∞∑
l=0

zl

(x + 1 + l)c

= Lic(z) − 1

1 − z

zx+1

xc
[1 + O(x−1)]. (36)

By using this asymptotic expansion (36), we find that z∗(x),
which is solution of Eq. (34), admits the large x expansion:

z∗(x) = z∗ + 1

1 − z∗
1

Lic−1(z∗)

z∗x+2

xc
[1 + O(x−1)], (37)

where we recall that z∗ satisfies Eq. (14). From Eq. (35)
together with Eq. (37) one obtains:

P1(x|L) ∼
(

1 + 1

1 − z∗
1

Lic−1(z∗)

z∗x+1

xc

)−L

. (38)

In the large L limit, Eq. (38) eventually leads to the Gumbel
distribution announced in Eq. (12).

In Fig. 3 we show a comparison between a numerical
estimate of p1(x|L) and the exact analytical formula derived
from Eq. (38). Note that the small discrepancy observed for
small value of x is a finite L effect. For very large L, one
expects that this formula (38) converges to the Gumbel form
given in Eq. (12). Note that, for finite L, one expects to observe
rather strong finite-size effects, as this is the case for the EVS
of i.i.d. random variables [37].

2. Largest domain in the ferromagnetic phase (T < Tc)

We start by evaluating the partition function Z(L) in Eq. (8).
Its generating function Z̃(z) is given by

Z̃(z) = lim
x→∞ W̃0(x,z) = e−β�Lic(z)

1 − e−β�Lic(z)
, (39)

from which one can show that the large L behavior of Z(L) is
controlled by the branch point at z = 1 of Z̃(z). Indeed, here,
and in the following, we will use the asymptotic behavior of
the polylogarithm function,

Lic(z) = ζ (c) + (1 − z)c−1{	(1 − c) + O[(1 − z)3]}
+ (1 − z)[−ζ (c − 1) + O(1 − z)]. (40)

From this asymptotic behavior (40), one obtains the behavior
of Z̃(z) for z close 1 as

Z̃(z) ∼ e−β�

1 − e−β�ζ (c)
+ e−β�

[1 − e−β�ζ (c)]2
	(1 − c)(1 − z)c−1

× [1 + O(1 − z)] + regular terms. (41)

From Eq. (41), one thus obtains the large L behavior of Z(L)
as

Z(L) ≈ e−β�

[1 − e−β�ζ (c)]2
L−c. (42)

In the ferromagnetic phase, it is more convenient to compute
the PDF of lmax (instead of the cumulative distribution), as in
the case of ZRP [31]. It reads

p1(x|L) = Pr .(lmax = x) = P1(x|L) − P1(x − 1|L)

= 1

L
[W0(x|L) − W0(x − 1|L)]. (43)

Using the expression of W0(x|L) in Eqs. (30) and (28) one
obtains

p1(x|L) = e−β�

Z(L)

1

2πi

∮
1

zL+1

zx

xc

× 1

1 − e−β��c(z,x)

1

1 − e−β��c(z,x − 1)
dz.

(44)

Setting x = L − y in Eq. (44) one finds

p1(L−y|L) = e−β� (L−y)−c

Z(L)

1

2πi

∮
1

zy+1

× 1

1−e−β��c(z,L−y)

1

1−e−β��c(z,L−y−1)
dz.

(45)

Therefore, using the asymptotic behavior of Z(L) in (42), one
obtains the limiting expression of p1(L − y|L) in Eq. (45), for
fixed y and L → ∞ as

p1(L − y|L) ≈ [1 − e−β�ζ (c)]2 1

2πi

∮
1

zy+1

× 1

[1 − e−β�Lic(z)]2
dz. (46)

Therefore, one has

p1(x|L) = p1(L − y|L) ≈ fferro(y)

= (1−e−β�ζ (c))2 1

2πi

∮
1

zy+1

1

[1−e−β�Lic(z)]2
dz.

(47)

This is equivalent to the expression given in Eq. (23), upon
using the Cauchy’s inversion formula. It is easy to derive
now the asymptotic behavior of the function fferro(y) from
Eq. (23). For example, taking the limit z → 0 in Eq. (23) and
using Lic(0) = 0, one obtains fferro(0) = [1 − e−β�ζ (c)]2. In
contrast, by taking the z → 1 limit and using the asymptotic
properties of Lic(z) in Eq. (40), it is easy to show that
fferro(y) ∼ Aferro/y

c for large y (where L has been sent to
infinity already), where Aferro = 2e−β�/[1 − e−β�ζ (c)]. The
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asymptotic behaviors of fferro(y) can thus be summarized as
follows

fferro(y) ≈
{

[1 − e−β�ζ (c)]2, y → 0,
Aferro
yc , y → ∞.

(48)

In Fig. 4 we show a comparison between a numerical
evaluation of p1(x|L) for large L = 2000 and the exact
asymptotic result in Eqs. (22) and (23).

3. Largest domain at the critical point (T = Tc), for 1 < c < 2

We recall that in this case eβc� = ζ (c), see Eq. (9). In this
case the pole z∗(x) < 1 for finite x converges to the branch-cut
at z = 1 as x → ∞, which then dominates the integral in
Eq. (30). We thus set z = e−s , and evaluate �c(e−s ,x) when
s → 0. It is then convenient to rewrite �c(e−s ,x) as

�c(e−s ,x) =
x∑

l=1

e−sl

lc
= Lic(e−s) −

∞∑
l=x+1

e−sl

lc
. (49)

We recall the asymptotic behavior of the polylogarithm
function [see Eq. (40)],

Lic(e−s) = ζ (c) + sc−1[	(1 − c) + O(s3)]

+ s[−ζ (c − 1) + O(s)], (50)

whose leading behavior thus depends on whether c < 2 or
c > 2. Besides, in the limit s → 0, the discrete sums over l

in Eq. (49) can be replaced, to leading order, by integrals.
Therefore, in the limit s → 0, x → ∞ keeping sx fixed one
obtains (using Eq. (50) for c < 2 here)

�c(e−s ,x) ≈ ζ (c) + sc−1[	(1 − c) − 	(1 − c,sx)], (51)

where we recall that 	(α,z) = ∫ ∞
z

xα−1e−x dx. Using this
small s behavior (51) in the expression for W̃0(x,e−s) in
Eq. (28), one obtains

W̃0(x,e−s) ∼ ζ (c)

sc−1

1

	(1 − c,sx) − 	(1 − c)
, for

s → 0, x → ∞, keeping sx fixed, (52)

where we have used e−βc�ζ (c) = 1, see Eq. (9). This formula
in Eq. (52), evaluated in the limit x → ∞ yields, using Z(L) =
limx→∞ W0(x|L)

∞∑
L=1

e−sLZ(L) ≈
∫ ∞

0
e−sLZ(L)dL ≈ − ζ (c)

	(1 − c)
s1−c, (53)

which yields the large L behavior of the partition function
Z(L)

Z(L) ≈ − ζ (c)

	(1 − c)	(c − 1)
Lc−2, L → ∞. (54)

On the other hand, by rewriting the small s behavior of
W̃0(x,e−s) in Eq. (52) as

W̃0(x,e−s) = − ζ (c)

	(1 − c)sc−1

(
1− 	(1 − c,sx)

	(1 − c,sx) − 	(1 − c)

)
(55)

we obtain that W0(x|L) takes the following scaling form, for
L → ∞, x → ∞ keeping x/L finite:

W0(x|L) ∼ Lc−2

[
− ζ (c)

	(1 − c)	(c − 1)

][
1 − H1

(
L

x

)]
.

(56)

Dividing by Z(L) given in Eq. (54) one then gets

P1(x|L) = W0(x|L)

Z(L)
= 1 − H1

(
L

x

)
, (57)

where the scaling function H1(L/x) satisfies

∞∑
L=1

e−sLLc−2H1

(
L

x

)
≈ 	(1 − c,sx)

	(1 − c,sx) − 	(1 − c)
. (58)

This equation holds in the scaling limit where L → ∞, x →
∞ keeping the ratio L/x fixed. Equivalently, in the Laplace
space, this corresponds to taking s → 0, x → ∞, keeping
sx finite. In the limit s → 0, the discrete sum over L can
be replaced by an integral over the continuous variable L.
Performing the change of variable u = L/x in that integral
yields the relation for H1(u) announced in Eq. (18):∫ ∞

0
e−wuH1(u)uc−2du = 	(c−1)

wc−1

	(1 − c,w)

	(1 − c,w)−	(1 − c)
.

(59)

It turns out that this expression can be inverted explicitly in the
range 1 < u < 2 (see Appendix B for details). One obtains

H1(u) = B(c)u2−c(u − 1)2c−2
2F1(1,c,2c − 1,1 − u),

1 < u < 2, (60)

with 2F1 being the hypergeometric function and B(c) =
−	(c − 1)/[	(1 − c)	(2c − 1)] > 0, as announced in Sec. I
in Eq. (19). In particular, for u → 1, H1(u) behaves as

H1(u) ≈ B(c)(u − 1)2c−2, u → 1. (61)

From the cumulative distribution in Eq. (57), one can obtain
the PDF of lmax as

p1(x|L) ≈ ∂

∂x
[1 − H1(L/x)] = L

x2
H ′

1(L/x). (62)

Multiplying both sides by L one gets

Lp1(x|L) ≈ g

(
x

L

)
, where g(y) = 1

y2
H ′

1

(
1

y

)
. (63)

From the asymptotic behavior of H1(u) in Eq. (61) when
u → 1, one obtains the behavior of g(y) for y → 1, as
g(y) ≈ 2B(c)(c − 1)(1 − y)2c−3. On the other hand, in the
opposite limit y → 0, we need to investigate the large u

asymptotics of H1(u) in Eq. (59). In this limit, we need to
study the poles of H1(u), i.e., the zeros of wc−1[	(1 − c,w) −
	(1 − c)], which are denoted by sk . These zeros are such that
s±k = −αk ± iβk with a negative real part (αk > 0, for all k)
and 0 < α0 < α1 < α2 < . . .. Furthermore, s0 = −α0 is the
only real zero (i.e., β0 = 0) [38]. Therefore in the large u limit,
one has 1 − H1(u) ∝ e−α0u and where the amplitude can be
computed explicitly by evaluating the residue of the integrand
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FIG. 5. Left: Scaled plot of the PDF of lmax, Lp1(x|L) as a function of x/L for L = 100 and L = 1000 at criticality and for c = 1.3. The
good collapse of the data [obtained from numerical simulations, (see Appendix C for details)], for these two different values of L, corroborate
the scaling form given in Eq. (63). The singularity for x/L = 1/2 is clearly visible on this plot, while other singularities (of higher order and
hence not visible on this plot) also exist for x/L = 1/k, with k = 3,4, . . .. Right: Scaled plot of the PDF of lmax, Lp1(x|L) as a function of
x/L for L = 4000 at criticality and for c = 1.3. The diamond symbols correspond to a numerical evaluation of p1(x|L) while the blue solid
line, for x/L � 1/2 corresponds to the exact result given in Eqs. (63) and (60). The dotted line for y < 1/2 corresponds to the asymptotic
behavior for y → 0, given in Eq. (64) (and in this case α0 ≈ 1.582).

at w = −α0. Finally, the asymptotic behaviors of g(y) can be
summarized as follows

g(y) ≈
{

γ0 e−α0/yyc−4
(
1 − 2−c

α0
y
) + O(e−α1/y), y → 0,

γ1 (1 − y)2c−3 + O((1 − y)2c−2), y → 1,

(64)

where γ0 = πα2
0e

−α0/{(c − 1) sin[π (c − 1)]} and γ1 = 2(c −
1)B(c) and where −α0 is the single negative real zero of
	(1 − c,w) − 	(1 − c) as a function of real w. Note also
that, by looking at the asymptotic behavior of g(y) for y → 1
in Eq. (64), one observes that c = 3/2 appears as a kind
of transition point. For c < 3/2, g(y) is diverging when
y → 1 while it is vanishing for c > 3/2. Exactly at c = 3/2,
g(y) = 1/(2y3/2) and in this case g(y → 1) = 1/2.

In Fig. 5 (left panel) we show a scaled plot of the PDF
of lmax, Lp1(x|L) as a function of y = x/L for L = 100 and
L = 1000 at criticality and for c = 1.3. This plot shows a very
good agreement with the scaling form predicted in Eq. (63)
Lp1(x|L) ≈ g(y = x/L). This plot also shows clearly the
singularity of p1(x|L) for x = L/2, a feature that is commonly
observed in the PDF of such extreme quantities in related
models [32–34]. In the right panel of Fig. 5 we show that our
numerical data (for L = 4000) are in very good agreement
with our exact formula (the solid line) valid for x/L � 1/2,
given in Eqs. (63) and (60). Furthermore, we show that the
asymptotic behavior of g(y) for y → 0 in Eq. (64), plotted as
a dotted line in Eq. (64), provides a very good estimate in the
whole interval [0,1/2].

To conclude this section, we compute the average value
〈lmax〉, which is conveniently written as

〈lmax〉 =
∞∑

x=1

[1 − P1(x|L)] = 1

Z(L)

∞∑
x=1

[Z(L) − W0(x|L)].

(65)

From the results obtained in Eqs. (53) and (55), one finds that
the generating function of the numerator is given by

∞∑
L=1

e−sL

∞∑
x=1

[Z(L) − W0(x|L)]

≈ − ζ (c)

	(1 − c)

1

sc

∫ ∞

0

	(1 − c,u)

	(1 − c,u) − 	(1 − c)
du, s → 0.

(66)

These relations (65) and (66), together with the expression for
Z(L) in Eq. (54), lead to the result for 〈lmax〉 announced in
Eq. (16).

4. Largest domain at the critical point (T = Tc), for c > 2

In this case, �c(e−s ,x) behaves, for s → 0, as

�c(e−s ,x) =
x∑

l=1

e−sl

lc
= Lic(e−s) −

∞∑
l=x+1

e−sl

lc
. (67)

For c > 2, the first term behaves as Lic(e−s) = ζ (c) − sζ (c −
1) + o(s) [see Eq. (40)]. On the other hand, when s → 0 the
discrete sum over l can be replaced by an integral over l which,
for s → 0 and x → ∞ behaves simply as

∞∑
l=x+1

e−sl

lc
≈ x1−c

c − 1
. (68)

Therefore, one has the asymptotic behavior

�c(e−s ,x) ≈ ζ (c) − sζ (c − 1) − x1−c

c − 1
. (69)

It thus follows from Eqs. (28) and (69) that

W̃0(x,e−s) ≈ ζ (c)

ζ (c − 1)

1

s + d x1−c
(70)
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FIG. 6. Scaled plot of p1(x|L) L1/(1−c) as a function of x/L1/(c−1),
for L = 2000, according to Eq. (15)—we recall that p1(x|L) =
P1(x|L) − P1(x − 1|L)—for c = 3 at the critical temperature [see
Eq. (9)]. The solid line corresponds to the Fréchet distribution with
parameters specified in Eq. (15).

where d = 1/[(c − 1)ζ (c − 1)], from which it follows that, for
large L,

W0(x|L) ∼ e−d Lx1−c

. (71)

The partition function Z(L) = W0(x → ∞|L) ≈ 1 for large
L and c > 2. Hence, P1(x|L) = W0(x|L)/Z(L) tends to the
Fréchet distribution announced in Eq. (15).

In Fig. 6, we show a scaled plot of the PDF of lmax,
p1(x|L) L1/(c−1) as a function of x/L1/(c−1) evaluated nu-
merically for L = 2000. We see that the data are quite well
described by our exact analytical prediction given in Eq. (15).

5. kth largest domain

The starting point for the analysis of the cumulative distri-
bution Pk(x|L) of the kth largest domain is the expression given
given in Eq. (26) in terms of the probability Wp(x|L)/Z(L)
(27) that there are exactly p domains whose size are larger
than x. As done before for P1(x|L), it is convenient to study
the generating function of Wp(x|L) with respect to L, which
reads, for p � 1

W̃p(x,z) =
∞∑

L=1

Wp(x|L)zL

=
∞∑

N=p

e−Nβ�

(
N

p

)
[Lic(z)−�c(z,x)]p[�c(z,x)]N−p.

(72)

It is straightforward to perform the sum over N to obtain

W̃p(x,z) = e−pβ�[Lic(z) − �c(z,x)]p

[1 − e−β��c(z,x)]p+1
. (73)

This formula (73) is exact in the whole phase diagram and
we now focus on the critical line, where T = Tc, and restrict
our attention to the case c < 2 where one expects that Pk(x)
will be described by a nontrivial distribution, i.e., different
from the one predicted by the EVS of i.i.d. sequences. In this

case, we set z = e−s and the large L behavior of Wp(x|L) is
governed by the behavior of W̃p(x,e−s) when s → 0. In the
scaling limit, s → 0, x → ∞, keeping the product sx fixed,
one obtains, using the expansion of �c(e−s ,x) in Eq. (51)
together with Lic(e−s) ≈ ζ (c) + 	(1 − c)sc−1:

W̃p(x,e−s) ≈ ζ (c)

sc−1

[	(1 − c,sx)]p

[	(1 − c,sx) − 	(1 − c)]p+1
. (74)

Note that setting p = 0 in this formula (74) yields back
the result obtained above for W̃0(x,e−s) in the same scaling
limit (52). The probability Pk(x) is obtained by summing
up the probabilities Wp(x|L)/Z(L) for 0 � p � k − 1. From
Eq. (74), one obtains straightforwardly

k−1∑
p=0

W̃p(x,e−s)

= − ζ (c)

sc−1	(1 − c)

(
1 −

[
	(1 − c,sx)

	(1 − c,sx) − 	(1 − c)

]k)
.

(75)

From this expression (75) together with Eq. (26), by perform-
ing the same manipulations as for k = 1, see Eqs. (55)–(58),
one arrives at the expression for Pk(x|L) given in Eq. (21).
Finally, the computation of the average value 〈l(k)

max〉 can be
performed along the same lines as for k = 1 [see Eqs. (65),
(66)]. Using Eq. (75), this yields the result announced in
Eq. (20).

IV. RELATION TO OTHER MODELS

A. Relation to the inverse distance squared Ising model

As mentioned in the introduction, MOTs appear in several
apparently unrelated contexts. One of the first models which
was studied in this context is the one-dimensional Ising model
with interactions decaying as r−2, named here the inverse
distance squared Ising (IDSI) model. The IDSI is defined,
much like the TIDSI, on a spin chain of size L, with the
Hamiltonian

H = −
∑
i<j

J (i − j )σiσj , (76)

J (r) ≈ Cr−2. (77)

Thouless [7] was the first to suggest that this model exhibits
a discontinuous phase transition at some finite temperature,
i.e., that the magnetization changes discontinuously from 0 to
mc at the transition. Later Yuval and Anderson [8,39] used a
scaling analysis to predict that the transition is critical. Their
analysis predicted that the correlation length has an essential
singularity at the transition,

ξ ∼ exp

[
O

(
1√

T − Tc

)]
. (78)

Only 15 years later, the mixed-order nature of the transition
was proved rigorously by Aizenman et al. [9].

In addition to the structural similarity between Eqs. (1)–(2)
and Eqs. (76)–(77), the IDSI model exhibits mixed-order
symmetry breaking transition point, which is qualitatively
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similar to the transition in the TIDSI model. However, the
quantitative features of this transition, namely the jump of the
magnetization from 0 to mc < 1, and the essential singularity
in the correlation length, as well as more subtle features, are
different from the TIDSI, as discussed in Refs. [25,26].

In terms of EVS, the authors are not aware of any systematic
study of the extreme-value theory of the IDSI model. However,
it is known [9] that domains, as defined in the TIDSI, are
microscopic in the IDSI model for any positive temperature.
At the transition there is a macroscopic structure that emerges,
but it is hidden and can be revealed in a random cluster model
perspective. Hence, it is plausible to guess that the extreme-
value statistics may follow a Gumbel distribution. Anyway the
EVS, whatever form it has, will probably not show the features
we discussed above for the TIDSI model.

B. Relation to the Poland-Scheraga model

The Poland-Scheraga (PS) model [10] is a prototypical
model for studying thermal denaturation of DNA molecules,
which is the process in which the two strands of the DNA
molecule separate upon heating. The PS model idealizes the
DNA chain of size L as a set of alternating bound and denatured
segments. The degrees of freedom are the lengths of these
segments {l1,l2, . . . ,lN }. Bound segments contribute linearly
to the energy, so that

H = Eb

N/2∑
n=1

l2n−1, (79)

with the constraint
∑N

n=1 ln = L. Here Eb < 0 is the binding
energy, N is the total number of segments and we assumed that
the first segment is bound. Denatured segments, also known as
loops, carry no energy, but instead contribute to the entropy of
a configuration, due to the flexibility of single stranded DNA.
Treating the strands in a loop as random walkers which must
meet implies that the entropy of a loop of size l takes the form

S = �̃ + sl − c log l. (80)

Here �̃ and s are constants which depend on the geometry of
the embedding space and the chemical properties of the DNA,
and c—the loop exponent—is a universal parameter, which
depends only on dimensionality of the embedding space and
topological properties of the DNA such as self avoidance.
Therefore, the Boltzmann weight of a specific configuration
{l1,l2, . . . ,lN } can be written as

e−βEbl1
e�̃+sl2

lc2
e−βEbl3

e�̃+sl4

lc4
. . . . (81)

This Boltzmann weight is equivalent to the one derived from
an effective Hamiltonian

Heff =
N/2∑
n=1

Ebl2n−1 − 1

β

N/2∑
n=1

(sl2n − c log l2n). (82)

Comparing Eq. (82) and Eq. (6) implies that the TIDSI can
be presented as a variant of the PS model in which all
segments are loops (and then the linear term can be gauged
out). An important difference between the models is that
in the PS model c is a universal parameter, while in the

TIDSI C is a parameter in the Hamiltonian. Actually, as is
discussed below, the role of c is played in the TIDSI by βcC,
where βc is the inverse critical temperature. Other than this
difference, the models are very similar, both in their definition
and in their phenomenology. From the phenomenological
perspective, the main difference is that in the TIDSI we
consider the magnetization order parameter, for which the
Hamiltonian is symmetric. The natural order parameter of the
PS model is the fraction of loop base pairs, which have no such
symmetry. Because of this difference, in the PS model, the
regime 1 < c < 2 is considered to be a continuous transition,
as the natural order parameters are continuous, while in the
TIDSI the corresponding regime (1 < βcC < 2) exhibits a
mixed-order transition. The reason is that the magnetization in
the paramagnetic phase is protected by symmetry and hence
cannot be different than 0, while no such symmetry protects
the order parameters of the PS model (and the density of
domains in the TIDSI model). Another difference between the
phase diagrams, is that in the PS model, for c < 1 there is
no transition (and there is also a condition on s and �̃). The
TIDSI model, on the other hand, supports a transition for any
value of its parameters, but the effective parameter c = βcC

satisfies c > 1.
From the perspective of extreme-value theory, the EVS of

loops in the PS model should be very similar to the EVS of
the TIDSI model. Bound segments, however, are microscopic
for any T < Tc, and hence their EVS follow the Gumbel
distribution.

V. CONCLUSION

To summarize, in this paper we have presented a thorough
study of fluctuations of the size of the largest domain lmax in
the TIDSI model. We found that above the critical temperature
T > Tc for any c > 1, and for c > 2 also at criticality T =
Tc, the asymptotic EVS is similar to that of i.i.d. variables,
indicating that the correlations are effectively weak. However,
for c < 2 at Tc as well as in the ferromagnetic phase T < Tc for
any c > 1, we have found novel extreme-value distributions,
which we have computed exactly (see Table I for a summary
of the main results).

Studying the extreme value statistics of correlated variables
is an active field of research, and a specifically intriguing
avenue is the EVS of variables at criticality. In this work
we focus on a novel aspect of this topic, namely the EVS
at mixed-order transitions. As discussed in Sec. IV, it will be
interesting to test the universality of the results found here,
by studying EVS for different models exhibiting MOT phase
transition. In particular, as mentioned above, the TIDSI model
has many similarities to the Poland-Scheraga (PS) model for
DNA denaturation, and it is easy to extend the results above for
the EVS for the case of loop sizes in the PS model. It would
be therefore interesting to study experimentally whether the
actual loop sizes distribution resembles the EVS that was found
in this paper. A related question is how real-world details, such
as base-pair heterogeneity [40] and topological constraints
[41] affect the EVS of loops.
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APPENDIX A: A BRIEF REMINDER ON EVS FOR I.I.D.
RANDOM VARIABLES

Given N i.i.d random variables {xi}Ni=1, if the properly
shifted and scaled distribution of the maximum m = maxi {xi}
is nondegenerate, then it can only be one of three max-stable
types, depending on the tail of the parent PDF of xi’s, p(x):

(i) If the support of p(x) has an upper cutoff x∗, such
that p(x) ∼ (x∗ − x)α−1 when x → x∗, with α > 0, then the
limiting cumulative distribution of the maximum is given by
the Weibull distribution:

P1(z) = Pr (m � z) ≈
{

exp
[
−

(
x∗−z
aN

)α]
z < x∗

1 z � x∗ , N → ∞,

(A1)
where aN depends on p(x).

(ii) If the support of p(x) is unbounded and if it has a
power-law tail, p(x � 1) ∼ x−α−1, then the limiting cumu-
lative distribution of m is given by the Fréchet distribution:

P1(z) ≈
{

0 z � 0
exp

[−(
z

aN

)−α]
z > 0

, N → ∞, (A2)

where aN depends on p(x).
(iii) If the support of p(x) is unbounded and decays faster

than any power law for large x, then the limiting cumulative
distribution of m is given by the Gumbel distribution

P1(z) ≈ exp

{
− exp

[
−

(
z − bN

aN

)]}
, N → ∞. (A3)

Here again aN and bN depend on p(x). This also includes some
examples with a finite upper cutoff x∗, for instance with the
PDF p(x) vanishing with an essential singularity at the cutoff
x∗, p(x) ∝ e−1/(x∗−x)α , with α > 0.

APPENDIX B: ANALYSIS OF THE FUNCTION H1(u)

In this Appendix, we study the function H1(u) and derive its
explicit expression for 1 < u < 2 given in Eq. (19). We recall
that H1(u) is defined by the following relation [see Eq. (18)]:∫ ∞

0
e−wuH1(u) uc−2du = 	(c − 1)

wc−1

	(1 − c,w)

	(1 − c,w) − 	(1 − c)
,

(B1)
where 	(α,z) = ∫ ∞

z
xα−1e−x dx is the incomplete gamma

function. To analyze H1(u) it is convenient to expand the
right-hand side of Eq. (B1) and write the inverse Laplace

transform as

H1(u)uc−2 =
∫ a+i∞

a−i∞

dw

2πi
ewu 	(c−1)

wc−1

	(1−c,w)

	(1 − c,w)−	(1−c)

= −
∞∑

n=1

∫ a+i∞

a−i∞

dw

2πi
ewu 	(c − 1)

wc−1

[
	(1−c,w)

	(1−c)

]n

,

(B2)

where a > 0 such that the singularities of the integrand,
namely the negative real axis, which is a branch cut, and w = 0,
which is a branch point (for noninteger values c) or a pole (for
integer values of c), are to the left of the Bromwich contour.
Apart from that, the integrand has no other singularity. On the
other hand, for large complex w it is easy to see that

	(1 − c,w) ∼ e−w

wc
, |w| → ∞. (B3)

Therefore, this implies that∫ a+i∞

a−i∞

dw

2πi
ewu 	(c − 1)

wc−1

[
	(1 − c,w)

	(1 − c)

]n

= 0, for u < n,

(B4)

since the integral over w can be computed by closing the
Bromwich contour to the right. Therefore, from Eqs. (B2)
and (B4) one obtains (i) that H1(u) = 0 for u < 1, which is
expected since lmax � L, and (ii) that, for 1 < u < 2, H1(u) is
determined only by the term n = 1 in Eq. (B2). This yields,
for 1 < u < 2:

H1(u) uc−2 = −	(c − 1)

	(1 − c)

∫ a+i∞

a−i∞

ewu

wc−1

∫ ∞

w

e−η

ηc
dηdw

= −	(c − 1)

	(1 − c)

∫ a+i∞

a−i∞

ewu

wc−1

×
∫ ∞

0

e−(wz+w)

(wz + w)c
wdzdw

= −	(c − 1)

	(1 − c)

∫ ∞

0

∫ a+i∞

a−i∞

ew(u−z−1)

w2c−2(z + 1)c
dzdw

= −	(c − 1)

	(1 − c)

∫ ∞

0

(u − z − 1)2c−3

	(2c − 2)(z + 1)c

×�(u − z − 1)dz

= − 	(c − 1)

	(1 − c)	(2c − 1)
(u − 1)2c−2

2

×F1(1,c,2c − 1,1 − u), (B5)

which yields the result announced in Eq. (19). In particular, it
behaves as H1(u) ∼ u2c−1 when u → 1 from above.

The expansion in Eq. (B2) shows that H1(u) has actually
singularities at any integer values of u. One can indeed show,
from Eq. (B2), that H1(k + ε) − H1(k − ε) ∼ ε(k+1)c−2, with
k an integer, as ε → 0.

APPENDIX C: EXACT NUMERICAL EVALUATION OF
EVS FOR TIDSI

The simple structure of the TIDSI model allows us to
calculate efficiently the distribution of its largest domain. The
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basic object is the truncated partition function W0(x|L), which
is the sum of weights of TIDSI configurations of size L for
which the maximal domain is smaller than x. The formula for
W0(x|L) is given in Eq. (25), and it can be used to derive
a recursion relation for W0(x|L). For any x � 1 one has
indeed

W0(x|L = 0) = 1 (C1)

W0(x|L = 1) = e−β� (C2)

W0(x|L) =
min(x,L)∑

l=1

W0(x|L − l)e−β�l−c. (C3)

Using this together with Eq. (24), recalling that Z(L) =
limx→∞ W0(x|L) = W0(L|L) the distribution of the largest
domain of the TIDSI model P1(x|L) can be numerically
evaluated in a straightforward way.
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