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Attractor nonequilibrium stationary states in perturbed long-range interacting systems
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4Laboratoire de Physique Théorique de la Matière Condensée, UPMC, CNRS UMR 7600, Sorbonne Universités,

4 place Jussieu, 75252 Paris Cedex 05, France
(Received 14 January 2016; published 16 May 2016)

Isolated long-range interacting particle systems appear generically to relax to nonequilibrium states
(“quasistationary states” or QSSs) which are stationary in the thermodynamic limit. A fundamental open question
concerns the “robustness” of these states when the system is not isolated. In this paper we explore, using both
analytical and numerical approaches to a paradigmatic one-dimensional model, the effect of a simple class of
perturbations. We call them “internal local perturbations” in that the particle energies are perturbed at collisions
in a way which depends only on the local properties. Our central finding is that the effect of the perturbations is to
drive all the very different QSSs we consider towards a unique QSS. The latter is thus independent of the initial
conditions of the system, but determined instead by both the long-range forces and the details of the perturbations
applied. Thus in the presence of such a perturbation the long-range system evolves to a unique nonequilibrium
stationary state, completely different from its state in absence of the perturbation, and it remains in this state
when the perturbation is removed. We argue that this result may be generic for long-range interacting systems
subject to perturbations which are dependent on the local properties (e.g., spatial density or velocity distribution)
of the system itself.

DOI: 10.1103/PhysRevE.93.052129

I. INTRODUCTION

Systems of large numbers of interacting particles are subject
in their physical analysis to a fundamental distinction based
on whether they are short range or long range, depending on
the rapidity of the decay with separation of the two body
interaction potential. The distinction in its canonical form
arises from the presence or absence of the property of additivity
of the macroscopic energy, which plays a fundamental role
in equilibrium statistical mechanics. While most of familiar
laboratory systems studied in physics are short range—notably
any system constituted of neutral atoms or molecules—there
are numerous examples also of long-range systems, ranging
from self-gravitating systems in astrophysics and cosmology,
to vortices in turbulent fluids, laser cooled atoms, and even bio-
logical systems (for a review, see, e.g., [1,2]). Study of various
isolated long-range systems has shown that they evolve from
generic initial conditions to microscopical non-Boltzmann
equilibria, known as “quasistationary states” (QSSs) because
they evolve towards the system’s true statistical equilibrium
on time scales which diverge with the number of particles
(see, e.g., [3–8]). The evolution to such states appears not
to be characteristic of all long-range interactions, but only
of the subclass of these interactions for which the pair force
(rather than pair potential) is nonintegrable at large distances
(see [7,9]). As these systems remain in a QSS indefinitely in
the thermodynamic limit, these states can be considered to
be the fundamental relevant macroscopic equilibria of such
systems, just as Maxwell-Boltzmann (MB) equilibria are for
short-range systems. Theoretically they are understood to be
stationary solutions of the Vlasov equation which in principle
describes these systems in the relevant thermodynamic limit.
Unlike MB equilibria, they are infinitely numerous at given

values of the global conserved quantities, and the actual
equilibrium reached depends strongly on the initial condition
of the system.

A basic question which arises about QSSs in long-range
interacting systems concerns the “robustness” of such states.
They are strictly defined only for isolated Hamiltonian systems
and the question is whether they continue to exist when the
system is not exactly isolated, or exactly Hamiltonian, or
both. For attempts to observe these intriguing equilibria in
laboratory systems, which are necessarily perturbed by and
coupled to the external world in some way, it is essential to
know whether these states can be expected to survive. When
the external perturbation is infinitesimal, it is possible to apply
linear response theory for long-range interacting systems in
QSSs [10–12], or even nonlinear response theory [13], but
such approaches do not allow one to conclude about the effect
of a coupling to an environment which persists indefinitely in
time. Studies of toy models coupled to a thermal bath (see,
e.g., [14]) show, unsurprisingly, that such a coupling sends
the system to its thermal equilibrium, on a time scale which
depends on the coupling. However, much more generally, it has
been suggested on the basis of study of the one dimensional
HMF model (see, e.g., [15,16]) that QSSs will disappear in
the presence of any generic stochastic perturbation to the
dynamics. A study of the effect of external stochastic fields
with spatial correlation applied to the same model (see, e.g.,
[17,18]) shows however that interesting nonequilibrium steady
states can be obtained in this case.

In this paper we explore the question of the robustness
of QSS in long-range systems to weak perturbations using
a paradigmatic toy model of long-range interactions—a one
dimensional self-gravitating system—subjected to a particular
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class of perturbations, which we refer to as “local internal
perturbations.” The perturbations to the purely self-gravitating
dynamics occur when particles collide, and are described by
simple collision rules for the colliding particles, which may
be stochastic or deterministic. The perturbations we study are
weak in the sense that we consider that the regime in which the
characteristic time scales on which the macroscopic evolution
of the long-range system is modified by the collisional
effects is long compared to the characteristic time of the
mean-field dynamics of the long-range interaction itself. The
perturbations can thus be considered to model physical effects
at very small scales which come into play on such time scales,
e.g., due to very short scale forces and/or internal degrees
of freedom. Different from the study of [17,18] there are
therefore no external forces, and indeed we will build our
collision rules so that they conserve total momentum. The
choice of the two specific models we study is then guided
by simplicity: once momentum conservation is imposed, a
nontrivial collision rule in one dimension cannot conserve
energy (as an elastic collision gives rise simply to an exchange
of particle velocities). As we wish to focus here on the effect
of the perturbations on QSSs, which have fixed energy, we
choose to define collision rules which can conserve energy
on average and lead (in principle) to a steady state. The two
models we study are then simple choices with this property,
corresponding to collision rules drawn from the literature on
granular gases arising from simple considerations of energy
balance. In the one dimensional self-gravitating model these
collision rules are both very simple to implement numerically,
and, as we will see, also admit a straightforward analytical
development of kinetic theory in an appropriate mean-field
limit.

Our analytical results on kinetic theory allow us to de-
termine a well defined large N (mean field) limit for both
models, and to determine the parameter range in which the
perturbations are indeed weak (i.e., in which the evolution
of the phase space density due to the inelastic collisions
is on a time-scale long compared to the mean-field time
scale for the long-range forces). Further it provides us with
calculable analytical predictions for the short time evolution
of certain macroscopic parameters away from an initial QSS.
Our numerical study confirms that both models indeed show an
evolution consistent with the scalings with N predicted by the
kinetic theory, and in good agreement with the predicted short
time behavior. Further our numerical results show evolution,
from different initial conditions, through a family of states,
until a truly stationary state is reached. The evolution is through
QSSs and the final state is also a QSS: if the perturbation is
removed the system remains in this state. Further the final
stationary state in each case appears to be an attractor for
the perturbed long-range system; i.e., starting from different
initial conditions which evolve to very different QSSs the
perturbation drives them all finally to the same nonequilibrium
state. This “attractor” QSS is thus determined essentially by
the detailed nature of the small perturbation and the long-range
force itself.

The paper is organized as follows. We first define the two
models we study of self-gravitating particles perturbed in a
specific manner when particles collide. In the following section
we describe analytical approaches to these models which are

valid in an appropriate mean-field limit. These give rise to
kinetic equations which allow us to determine a well defined
large N limit. They also provide predictions for the early time
evolution of the system. In the next section we present results
of numerical studies of the two models. In our conclusions we
compare our results with other relevant works in the literature,
and comment on the possible generality of the behaviors we
observe in a broad class of perturbed long-range systems.

II. MODELS

A. Sheet model

We consider a system of identical particles of mass m

moving in a one dimensional space and interacting by a force
independent of their separation, i.e., the force on a particle i

due to a particle j is

Fij = gm2sgn(xj − xi), (1)

where g is the interaction strength. The model is known as the
“sheet model” because these particles in one dimension are
equivalent to infinite, infinitely thin, parallel sheets moving in
three dimensions interacting by Newtonian gravity, in which
case gm = 2π�G, where G is Newton’s constant and � is
the mass per unit surface area of the sheets. This model dates
back at least to the early study of Camm [19] and has been
studied quite extensively by numerous authors since (see, e.g.,
[20–22] and references therein).

For a finite system of N particles, the total force acting on
the ith particle at any time is simply given as

Fi = gm2[N+
i − N−

i ], (2)

where N+
i and N−

i denote the numbers of particles on the right
and on the left of the ith particle, respectively.

The dynamics of this system has been extensively studied
(see, e.g., [20–22]) and shows that the time evolution of the
system displays long-lived QSSs before reaching equilibrium.
More precisely the relaxation time associated with QSSs is
diverging with the system size τ ∼ AN , where the coefficient
A depends strongly on the initial states [22].

We consider now two variants of this model, in which the
particle collision still conserves the momentum but not the
total energy. On the other hand, as we wish the system to be
able to attain a stationary state at constant energy, we constrain
the exact collision rules to allow this. Both collision laws are
taken from simple models of granular systems which have
been studied in the literature (see references below).

B. Model A: Collisions with random coefficients of restitution

Let us denote vij = vi − vj the relative velocity of particles
i and j which undergo a collision with precollisional velocities
vi and vj . We adopt the rule that the postcollisional velocities,
v∗

i and v∗
j , are given by

v∗
i = vj + 1 − c

2
vij , v∗

j = vi − 1 − c

2
vij , (3)

where the coefficient of restitution c is a non-negative
random variable. Equivalently it corresponds to momentum
conservation combined with the rule

v∗
ij = −cvij . (4)

052129-2



ATTRACTOR NONEQUILIBRIUM STATIONARY STATES IN . . . PHYSICAL REVIEW E 93, 052129 (2016)

Granular models of this kind, incorporating a random coef-
ficient of restitution, have been introduced by [23] in order
to include the effect of energy injection in a vibrated two-
dimensional granular gas.

In each collision the change of the kinetic energy is
given by

δK = m

4
[(v∗

ij )2 − (vij )2] = c2 − 1

4
(vij )2, (5)

i.e., the collision is inelastic if 0 � c < 1 and superelastic
if c > 1. In order that the applied perturbation may admit
stationary states, we choose c from a bimodal probability
distribution in which c takes two values, cA and c̃A, with equal
weight, with 0 < cA < 1 and

c̃A =
√

2 − c2
A. (6)

The latter relation imposes that, for a collision at the same
initial relative velocity, the energy lost with c = cA is the same
as the energy gained when c = c̃A. Thus, in the ensemble of
realizations of the stochastic perturbations, the average energy
is constant, with the energy loss of the inelastic collisions (0 <

cA < 1) balanced by the energy gain in superelastic collisions
(c̃A > 1). We expect that in this case the system may be able
to reach a stationary state with constant energy (modulo finite
N fluctuations).

C. Model B: Inelastic collisions with energy injection

In this model the self-gravitating particles undergo colli-
sions specified by the following rule:

v∗
i = vj + 1 − cB

2
vij − εij�,

(7)

v∗
j = vi − 1 − cB

2
vij + εij�,

where the constant cB has a fixed value in the range 0 < cB < 1
(i.e., as for an inelastic collision), � is a positive constant
(with dimensions of velocity) and εij = sgn(vij ). The collision
manifestly still conserves total momentum, and corresponds
to

v∗
ij = −sgn(vij )[cB |vij | + 2�], (8)

and therefore the energy change is

δK = m

[
c2
B − 1

4
v2

ij + cB�|vij | + �2

]
. (9)

The term in � in the collision rule thus leads to an energy
injection, which can be smaller or larger than the energy loss
due to the inelastic term: more precisely, the collision leads to
an energy gain if |vij | < v0, and an energy loss if |vij | > v0,
where

v0 = 2�

1 − cB

(10)

is the value of the relative velocity for which the collision is
elastic.

This collision rule is the one dimensional version of that
introduced in two dimensions by [24] in a phenomenological
model of quasi-two-dimensional experiments of agitated

granular particles: the particles are confined between two
horizontal plates, and the vibrating bottom plate transfers the
kinetic energy to the particles by collisions [25–27]. In this
quasi-two-dimensional geometry, the period of the vertical
vibrations is much shorter than the typical time scale of
the horizontal dynamics. The collision rule, Eq. (7), then
represents a time coarse-grained description of the energy
transfer of particle-bottom plate collisions to horizontal
particle-particle collisions.

In this paper we have chosen this collision rule simply
because it provides a simple way, quite different to that in
the first model, to obtain a nontrivial two body collision rule
which can be expected to lead to a stationary state. More
specifically if the particle velocities at collisions are assumed
to be uncorrelated, the kinetic energy of the system gives
a direct measure of the typical relative velocity of colliding
particles: 〈(vi − vj )2〉 = 2〈v2

i 〉. The kinetic energy would then
be expected to be driven towards a value of order Nmv2

0, as
above this energy scale energy will be dissipated while below
it energy will be injected. Indeed in the case in which gravity
is turned off, and the particles are enclosed in a box with re-
flecting walls, if all particles have velocity ±v0/2 all collisions
are elastic and the velocity distribution does not evolve at all.

Model B is in fact microscopically deterministic, while
model A is explicitly stochastic. One other notable difference
is that the phase space volume occupied by particles involved in
a collision strictly contracts in model B, while it can contract
or increase in model A depending on whether the collision
is inelastic or elastic. Indeed for a collision with coefficient
of restitution c in either model we have dv∗

i dv∗
j = cdvidvj

which is always a contraction in model B. This property leads
to distinctive features of the long time behavior of this model
which we observe below.

III. KINETIC THEORY

A. Mean field limit without collisions

For the purely self-gravitating model the dynamics in the
appropriate large N mean field limit is described by the Vlasov
equation [9,28,29]. This limit is obtained by taking N → ∞
at fixed values of the total system mass M and energy E.
Denoting the mass density in phase space, f (x,v,t), the Vlasov
equation reads

∂tf (x,v,t) + JV [f ] = 0, (11)

where JV [f ], the Vlasov operator, is

JV [f ] = v∂xf (x,v,t) + ā(x,t)∂vf (x,v,t), (12)

where ā(x) is the mean field acceleration given by ā(x,t) =
g

∫
sgn(x − x ′)f (x ′,v′,t)dx ′dv′. The mass density obeys the

normalization condition∫∫
dxdvf (x,v,t) = M, (13)

where M is the total mass of the system.
QSSs are interpreted as stable stationary solutions of

Eq. (11). There is an infinite number of such solutions,
including as a particular case the statistical equilibrium of
this model (see below).
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B. Model A

1. Collision operator in Boltzmann approximation

The Vlasov equation can be derived starting from the
BBGKY hierarchy and making the approximation that the
two point correlations can be neglected. The collisions in our
model can be treated in the same approximation, and are then
described by a canonical Boltzmann operator. We thus expect
our model in the mean field limit to be described by a kinetic
equation

∂tf (x,v,t) + v.∂xf (x,v,t) + ā[f ](x,t).∂vf (x,v,t)

=
∑

q

P (q)Jq [f,f ](x,v,t), (14)

where, for convenience, we introduce the parameter q =
1−c

2 to characterize binary collisions with a coefficient of
restitution equal to c, and Jq[f,f ](x,v,t) is a collision operator
accounting for such collisions which are assumed to occur
independently with a probability P (q). Initially we will leave
P (q) undetermined and then replace it with the specific
bimodal form for Model A at the appropriate point below.

Assuming the particles to be pointlike, the collision operator
is a homogeneous Boltzmann operator accounting for binary
collisions, which is the sum of two contributions:

Jq[f,f ](x,v,t) = Gq(x,v,t) − L(x,v,t) , (15)

where Gq is the gain term corresponding to collisions where
a particle has a postcollisional velocity equal to v,

Gq(x,v,t) = N

M

∫∫
dv′dv′′|v′ − v′′|f (x,v′,t)f (x,v′′,t)

× δ[v − qv′ − (1 − q)v′′], (16)

and L(x,v,t) is the loss term corresponding to collisions where
a particle with a velocity v undergoes a collision at time t ,

L(x,v,t) = N

M
f (x,v,t)

∫
dv′|v′ − v|f (x,v′,t). (17)

Note that the loss term does not depend explicitly on the
coefficient of restitution, and indeed we can write

Jq[f,f ](x,v,t) = Gq(x,v,t) − G0(x,v,t). (18)

Let us introduce a series expansion of the δ function in
terms of the parameter q:

δ[v − qv′ − (1 − q)v′′] =
∑
n�0

[q(v′′ − v′)]n

n!
δ(n)(v − v′′),

(19)
where δ(n) denotes the nth derivative of the δ function.

The Boltzmann operator is then expressed as

Jq[f,f ](x,v,t) = N

M

∑
n�1

∫∫
dv′dv′′|v′ − v′′|q

n(v′′ − v′)n

n!

× δ(n)(v − v′′)f (x,v′,t)f (x,v′′,t). (20)

To determine whether the parameters characterizing the
collisions can be rescaled with N so that the collision term
remains well defined (and nontrivial) in the mean field
(Vlasov) limit, we consider the limit q → 0 of the model, i.e.,
the quasielastic limit. Physically this is clearly the relevant

limit: to obtain an N independent evolution in presence of
the collisions on time scales characterizing the mean field
dynamics (e.g., the time a particle typically takes to cross
the system) one must clearly “compensate” the effect of the
divergent growth of the number of collisions with N by making
the effect of each collision arbitrarily weak.

2. Expansion of kinetic equation

Inserting Eq. (20) in the right hand side of Eq. (14) and
integrating by parts term by term we obtain (following [30–
32]) the collision operator given as a series of differential
operators:

JA[f ] = N

M

∑
n�1

[〈qn〉∂n
v (f (x,v,t)an[f ](x,v,t)) , (21)

with

an[f ](x,v,t) =
∫

|v′ − v| (v′ − v)n

n!
f (x,v′,t)dv′, (22)

where the brackets 〈. . .〉 indicate an average over the proba-
bility distribution P (q). Note that a1[f ](x,v,t) has a simple
physical meaning as the opposite of the average effective force
due to the collisions [33,34].

Let us consider now the specific P (q) of model A:

P (q) = 1
2δ(q − qA) + 1

2δ(q − q̃A), (23)

where qA = 1−cA

2 and, from the average energy conserving
condition Eq. (6),

q̃A = 1 − √
1 + 4(1 − qA)qA

2
. (24)

Expanding in qA (as qA → 0 in the quasielastic limit) we have

q̃A = −qA + 2q2
A − 4q3

A + O
(
q4

A

)
, (25)

and thus, to leading order in powers of qA we obtain

〈qn〉 = nqn+1
A n odd

〈qn〉 = qn
A n even.

Defining now

γA ≡ qA

√
N = (1 − cA)

√
N

2
(26)

we have, at leading order in 1/N ,

〈q〉 = 〈q2〉 = γ 2
A

N
,

〈q3〉 = 3〈q4〉 = 3γ 4
A

N2
,

while, for n > 4, 〈qn〉 decreases with N more rapidly than
1/N2. Thus taking the mean-field limit N → ∞ at constant
γA, the full expansion of the collision term reduces to the sum
of the two first derivatives of f (x,v,t):

JA[f ] = γ 2
A

M
[∂v(f (x,v,t)a1[f ](x,v,t))

+ ∂2
v (f (x,v,t)a2[f ](x,v,t))]. (27)
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Note that the nonlinear structure of the integral collision
operator Eq. (21) is conserved because the velocity-dependent
functions an(v) are functionals of f (x,v,t).

We note that the crucial relation leading to the result (27)
for this model is 〈q〉 = 〈q2〉, which is simply the condition of
average energy conservation. Indeed from Eq. (5) it follows
that the energy change in a collision at any given relative
velocity is proportional to q − q2. Thus the same mean-field
limit for the kinetic theory will be obtained for any variant of
this model in which P (q) is such that energy is conserved on
average.

We note further that in this derivation we have assumed
implicitly that f (v) has the convergence properties required
for the validity of the Taylor expansion, which requires clearly
sufficiently rapid decay of f (v) at large v to ensure the
finiteness of the coefficients. Indeed we see that while the
finiteness of Eq. (16) requires only that f (v) be integrable at
large |v| [i.e., f (v) ∼ 1/|v|α with α > 2], the definiteness of
the expression Eq. (27) requires α > 4. As we will discuss
below the latter assumption turns out to break down at longer
times in the model.

3. Evolution of moments of velocity distribution

We now discuss some properties of the collision operator
by considering the evolution of the moments of the velocity
distribution. Multiplying both sides of the kinetic equation by
vn, and integrating over v, we obtain

d

dt
[ρ(x,t)vn(x,t)] +

∫
dv vnJV [f ] =

∫
dv vnJA[f ], (28)

where ρ(x,t) = ∫
dvf (x,v,t) is the spatial mass density, and

vn(x,t) is the nth moment of the velocity distribution at x, i.e.,

vn(x,t) =
∫

dv vnpx(v,t), (29)

where

px(v,t) = f (x,v,t)

ρ(x,t)
.

It is straightforward to show, either directly from the exact
collision operator, or for each of the two terms in Eq. (28), that∫

dvJA[f ] = 0,

∫
dv vJA[f ] = 0, (30)

which express, respectively, the conservation of particle
number and conservation of momentum in the collisions.
Indeed it is straightforward to show that the left-hand side
of Eq. (28) corresponds for n = 0 to the continuity equation,
and n = 1 to the Euler equation.

For the case n = 2, integration by parts using Eq. (27) gives∫
dv v2JA[f ] = 2

γ 2
A

M

∫
dv(va1[f ] + a2[f ])f (x,v,t),

(31)
from which it follows using Eq. (22) that∫

dv v2JA[f ] = 0, (32)

which expresses the conservation of the kinetic energy by
the collisions. Thus the local pressure ρv2 can change only

due to the mean field gravitational force (through the Vlasov
flow term JV [f ]). Note that while the vanishing of the zero
and first moments hold for any P (q), it can be verified from
Eq. (21) that the second moment vanishes only if 〈(q − q2)〉 =
0 which is, as noted above, just the condition of average energy
conservation.

For any n � 2 it is straightforward to show that
∫

dv vnJA[f ]

= nγ 2
A

4M

∫
dv

∫
dv′|v − v′|(v − v′)

× [(n − 3)(vn−1 − v′n−1) − (n − 1)vv′(vn−3 − v′n−3)]

× f (x,v,t)f (x,v′,t), (33)

from which we recover the previous result for n = 2, and
further find that the first nonzero moment is for n = 4, and it
has the simple expression

∫
dv v4JA[f ] = γ 2

A

M

∫
dv

∫
dv′|v − v′|5f (x,v,t)f (x,v′,t).

(34)
The fact that the right hand of this expression is strictly

positive has an important consequence: if this kinetic equation
is valid, the system cannot reach a stationary state. Or,
conversely, if the system reaches a stationary state, it must be
such that the assumptions necessary for the derivation of the
kinetic equation break down. As noted above we will see that
our numerical study shows that the system generically evolves
to such a regime. In fact, we will see that when the system
reaches a stationary state it is characterized by a non-Gaussian
velocity distribution with tails decaying as a power law. Indeed
the estimated exponent of the velocity distribution is such that
the fourth moment is not defined and thus the above equation
is not applicable in this state.

On the other hand if the system is prepared in an initial
state which is a QSS, and which does satisfy the conditions
necessary for the validity of the derivation leading to Eq. (27),
we can use Eq. (34) to infer nontrivial information about
the temporal evolution at sufficiently short times. Indeed in
this case

d

dt
(ρ(x,t)v4(x,t)) = γ 2

A

M

∫
dv

∫
dv′|v−v′|5f (x,v,t)f (x,v′,t).

(35)

In practice we measure the integrated quantity, i.e., the rescaled
fourth moment of velocity (the kurtosis), defined by

β2(t) = M
∫

dx
∫

dv v4f (x,v,t)

(
∫

dx
∫

dv v2f (x,v,t))2 , (36)

i.e., the fourth rescaled moment of the full velocity distribution
P (v,t) = 1

M

∫
dxf (x,v). For a Gaussian distribution, the value

of β2 is constant, independent of the temperature of the system
and equal to 3. The time evolution β2(t) characterizes deviation
of the distribution from a Gaussian distribution.

Integrating Eq. (35) over x and, assuming that the time
evolution of the second moment (i.e., of the total kinetic
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energy) can be neglected, we have

dβ2(t)

dt
� γ 2

A

∫
dx

∫
dv

∫
dv′|v − v′|5f (x,v,t)f (x,v′,t)

(
∫

dx
∫

dv v2f (x,v,t))2 .

(37)
We will test this prediction below for the case where the

initial state is the statistical equilibrium of the system.

C. Model B

Following exactly the same approach we write the kinetic
equation, in the Boltzmann and mean field approximations, for
this model as

∂tf (x,v,t) + JV [f ] = JB[f,f ](x,v,t), (38)

where JB[f,f ](x,v,t) is the collision operator with the same
structure as Eq. (15), but with the gain operator now given by

Gq(x,v,t) = N

M

∫ ∫
dv′dv′′|v′ − v′′|f (x,v′,t)f (x,v′′,t)

× δ[v−qv′−(1−q)v′′−sgn(v′−v′′)�], (39)

where q = 1−cB

2 is a fixed positive parameter less than unity.
Following the same arguments as above, it is clear that

to obtain a collision operator JB[f,f ](x,v,t) which is inde-
pendent of N in the mean field limit, we must consider a
quasielastic limit, with q → 0 and � → 0 as N → ∞. Further
if the evolution to a stationary state is to be described in such
a limit, the energy of this state, which we have inferred must
be ∼ Mv2

0, must be extensive (like the energy in the mean
field limit), and therefore v0 must be taken independent of
N . Now, since � = qv0, holding v0 fixed and taking q → 0
indeed defines a quasielastic limit.

Proceeding as in the previous case, we perform again an
expansion of the Boltzmann operator in powers of q about
q = 0. This gives

JB[f,f ] = N

M

∑
n�1

qn∂n
v [an(x,v,t)f (x,v,t)], (40)

where

an[f ](x,v,t) = 1

n!

∫
|v′ − v|[v′ − v − sgn(v′ − v)v0]n

× f (x,v′,t)dv′. (41)

Defining now

γB ≡ qN = (1 − cB)N

2
, (42)

and taking N → ∞ at constant γB , we obtain a finite limit
for the collision operator which corresponds to the mean field
limit. In this case only the leading linear term of the expansion
contributes, and the effect of collisions corresponds to the
presence of an effective velocity dependent force −a1(x,v)
a1(x,v):

JB[f ] = γB

M
[∂v(f (x,v,t)a1[f ](x,v,t))]. (43)

We note that the diffusive term which was nonzero in the
mean-field limit of model A thus vanishes for model B.

As for model A, we can calculate the velocity moments
of the collision operator JB[f ]. The first two moments again

vanish as a consequence of conservation of particle number
and momentum, while∫

dvv2JB[f ] = 2
γB

M

∫
dvva1[f ]f (x,v,t). (44)

Different from model A, this is not zero, in general: indeed
the model does not necessarily conserve energy on average.
On the other hand we expect the system to be able to reach a
stationary state in which the collision operator is zero, and in
this case Eq. (44) will vanish.

IV. NUMERICAL RESULTS

A. Simulation method and units

1. Code

The molecular dynamics of a one dimensional self-
gravitating model is conveniently simulated using an event-
driven algorithm as between particle collisions trajectories
can be calculated explicitly. Such an algorithm is exact up
to the machine rounding error in computing the solutions of
quadratic equations giving the collision times (see [20,22,35]
and references therein). Further the algorithm may be sped
up using a “heap structure” [36] and by updating at each step
only the positions of particles involved in each collision. It
is straightforward to modify this algorithm to implement the
simple collision rules of our two models instead of elastic
collisions (equivalent to particle crossings). We use a modified
version of the code described in [32] (and greater detail in [35])
[37]. Model A is characterized by the choice of the parameter
cA < 1, and each collision is then chosen with probability 0.5
to be inelastic (with c = cA) or superelastic (with c = c̃A).
Model B is characterized fully by the values of cA and �.

2. Initial conditions

For both models we study evolution starting from two kinds
of initial conditions:

(i) “Rectangular waterbag”: particles are randomly dis-
tributed with uniform probability in a rectangular region of
phase space, [−L0/2,L0/2]× [−V0/2,V0/2]. For the case of
gravity only, which has no characteristic length scale, this is
a one parameter family of initial conditions which may be
conveniently characterized fully by the initial virial ratio R0

(and the particle number N ), where the virial ratio R (at any
time) is defined as

R = 2K

U
, (45)

where K is the kinetic energy and U is the potential energy. A
virialized system thus has R = 1.

(ii) Thermal equilibrium: the statistical equilibrium of
the purely self-gravitating system in the microcanonical and
canonical ensemble has been derived for any finite N by [38]
and its mean field limit (derived earlier by [19]) is

f (x,v) = M

2
√

πσ�
e−v2/σ 2

sech2

(
x

�

)
, (46)

with σ 2 = 4E
3M

, � = 4E
3gM2 , and E is the total energy.
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3. Units

For our study the only dimensional parameters of relevance
are the time, and, in model B, the velocity (because of the
parameter �). A natural choice of units for both are those
characteristic of the mean field dynamics. For the time unit we
choose

τdyn = 1√
gρ0

, (47)

where ρ0 is the initial mass density of the system, and for the
velocity

vdyn =
√

2E0

3M
, (48)

where E0 is the initial energy. With this definition v2
dyn is the

velocity dispersion of a virialized system with energy E0.
Previous studies (see, e.g., [22]) of evolution from this first

class of initial conditions for the self-gravitating system show
that the system evolves, in a time of order 10–100 τdyn, to
QSSs of which the properties depend strongly on R0. At longer
times, of order (102–103)Nτdyn, the different QSSs all relax to
thermal equilibrium [4].

4. Additional macroscopic observables

To monitor in a simple way the evolution of the global
properties of the system, we measure in addition to the energy
and the virial ratio that of a global parameter which is a simple
measure of the “phase space entanglement” of the state of the
system:

φ11 = 〈|xv|〉
〈|x|〉〈|v|〉 − 1. (49)

As shown in [22] the only stationary solution of the Vlasov
equation which is a separable function of position and velocity
is that corresponding to thermal equilibrium. Thus if φ11 is
constant and nonzero this indicates that the system is in a QSS
distinct from thermal equilibrium, and its amplitude can be
taken roughly as a measure of “proximity” to the latter. We
also monitor the evolution of the kurtosis β2 as defined in
Eq. (36).

B. Model A

As seen in Sec. III B, the relevant parameter characterizing
the perturbations due to collisions in the mean field limit is
γA defined in Eq. (26). If this limit describes accurately the
dynamics of the system, the term arising from the perturbations
is proportional to γ 2

A, and thus the time scale on which they are
expected to modify the evolution of the system is ∼τdyn/γ

2
A.

In order to study the desired range of weak perturbation, and
assess the validity of the mean-field limit, we will thus consider
small values of γA and vary N keeping γA fixed. We report
here results for γA = 0.03 and γA = 0.1, and for N in the
range N = 128 to N = 1024. We average our results over a
large number of realizations in each case.

1. Evolution of energy and virial ratio

We have constructed this model so that the fluctuations
in energy of the system should become arbitrarily small for

FIG. 1. Model A. Top panel: Dimensionless energy 〈E〉/E0 (E0

is the initial energy). Bottom panel: dimensionless variance (〈E2〉 −
〈E〉2)/E2

0 vs dimensionless time t/τdyn averaged over 100 realizations
with γA = 0.03, of rectangular waterbag initial conditions for N =
128,256,512 particles.

sufficiently large N . Indeed in the mean field limit we have
derived above the energy is exactly conserved, and this limit
evidently thus does not describe effects associated with the
energy fluctuations at finite N . In our numerical study, at finite
N , we therefore need to check whether, on the time scale
simulated, the energy fluctuations are indeed small. Figure 1
shows the evolution as a function of time of the mean energy,
for a model with γA = 0.03, in an ensemble of realizations
starting from waterbag initial conditions with the different
indicated N , over a time scale roughly an order of magnitude
greater than τdyn/γ

2
A. We see, on these time scales, that in

all cases, the ensemble averaged energy is indeed very close
to constant, but (lower panel) the variance of the normalized
energy (i) grows almost linearly in time, as indicated by the
dashed straight lines and (ii) monotonically decreases as N

increases. Thus, as we would expect, taking N sufficiently
large at any given time, we can in principle converge to
arbitrarily precise conservation of the energy in any single
realization. In our numerical simulations at (relatively small)
finite N , we have, however, significant finite N fluctuations
developing in all cases at times a few times τdyn/γ

2
A, so

we might anticipate that such effects may begin to play a
significant role on these time scales.

Figure 2 shows the evolution of the mean (upper panel) and
standard deviation (lower panel) of the virial ratio in the same
ensemble of simulations as in the previous figure. Because of
the equilibrium initial conditions, the system remains always,
as we would expect, very close to virialized, with only finite
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FIG. 2. Model A. Top panel: virial ratio R as a function of
time t/τdyn averaged over 100 realizations with equilibrium initial
conditions and for γA = 0.03 and N = 512. Bottom panel: variance
of the virial ratio for N = 512 and N = 256 with the same initial
conditions.

small N fluctuations which (lower panel) clearly decrease
monotonically as N increases. We will see below that the
nontrivial time dependence of these fluctuations are a reflection
of the macroscopic evolution of the system on the same time
scales.

2. Macroscopic evolution due to perturbation

Figure 3 shows the time evolution of the entanglement
parameter φ11 and the rescaled kurtosis β2 (both defined
above), averaged over 100 realizations of equilibrium initial
conditions with N = 1024 particles. As expected, at t = 0,
φ11 = 0, and β2 = 3: the equilibrium state phase space density
is a separable function of space and velocity, and the velocity
distribution has a Maxwell-Boltzmann shape. The single curve
plotted up to t = 300τdyn, and the upper (dashed) curve starting
from this time, represent the evolution in model A with
γA = 0.1. Note that in line with what would be expected from
mean field theory, the characteristic time for the evolution is
about ten times shorter than in the data in the previous figures,
for the case γA = 0.03. The lower (filled) curve corresponds to
the case in which the perturbation of model A is “switched off”
at the time t = 300τdyn, i.e., it corresponds to the evolution of
a purely self-gravitating system starting from this time. The
stabilization of the value of the parameters—which is likewise
observed at any time when the perturbation is switched
off—indicate that the evolution induced by the perturbation
is through a continuum of QSS, i.e., at all times the system
remains very close to a stationary and stable state of the Vlasov
equation. This is indeed what we would anticipate because the

FIG. 3. Model A: Evolution of the entanglement parameter φ11

(top panel) and of the dimensionless kurtosis β2 averaged over 100
realizations with γA = 0.1 and equilibrium initial conditions for N =
1024. The black curves correspond to a modified simulation in which
the perturbation is switched off for t � 300τdyn.

perturbation modifies the system macroscopically on a time
scale which is long compared to τdyn. Further we note that both
time scales are also short compared to the time scale [of order
(102 − 103) Nτdyn, see [4]] on which finite N corrections to
the Vlasov dynamics play a role, causing the system to evolve
to statistical equilibrium. What is particularly noteworthy of
the observed behaviors is the following:

(i) The effect of the small perturbation is not, at sufficiently
long times, perturbative: the system is clearly progressively
driven very far from its initial state. This is qualitatively similar
to the effect of finite N effects on QSSs of the purely self-
gravitating system, but contrasts strongly to the behavior of
familiar short-range systems subjected to a small perturbation
which evolve to an out of equilibrium state close to the initial
one (in the sense that all macroscopic quantities are changed
perturbatively).

(ii) The parameter φ11, which in the absence of the
perturbation would remain stable at its initial value φ11 = 0,
evolves to a final value φ11 ≈ 2–3 depending on N , i.e.,
towards a state in which the correlation between position and
velocity is ever stronger. The perturbation clearly drives the
system away from statistical equilibrium.

3. Validity of mean field kinetic theory

Let us now consider the degree to which the evolution
in our simulations of the system are described well by the
mean-field limit of the kinetic equations derived above. The
most basic prediction of this theory is that, when we adopt the
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FIG. 4. Model A: Entanglement parameter φ11, dimensionless
kurtosis of the velocity distribution β2 and 〈|v|〉/vdyn, averaged over
300 realizations, as functions of time t/τdyn for γA = 0.03 and N =
128,256,512 (from top to bottom).

associated scalings of the parameters with N , we observe an
evolution which is independent of N . The upper two panels
of Fig. 4 show respectively the evolution of φ11 and β2, in
each case averaged over 300 realizations of the model with
γA = 0.03 starting from equilibrium initial conditions, and for
the different particle numbers indicated: N = 128,256,512.
In both cases we observe that at sufficiently early times there
is a nontrivial evolution of the system which is very well
superimposed for the different N , indicating the validity of the
mean field theory. Further the evolution of β2 at these times
agrees well with that predicted by the mean field kinetic theory
at early time, shown as a straight line obtained using Eq. (37)
with f (x,v) taken equal to the initial thermal equilibrium
phase space density Eq. (46). At longer times however we see
that the evolution changes: for each N , the evolution breaks
away, at a time scale which appears roughly to increase with
N , from the common behavior, and shows on a similar time
scale a tendency to reach a plateau, indicating in principle the
attainment of a stationary state. By measuring the velocity and
spatial distributions below we will verify that this is indeed
the case, and in so doing also find the explanation for the
N dependence and the noisiness of the evolution of φ11 and
β2 at longer times: the stationary state to which the system
evolves is in fact one for which these particular macroscopic
variables become ill defined in the mean field limit. This is
the case because these states are characterized by velocity and
spatial distributions which have slowly decaying power-law
tails at long distances, for which both 〈|x|〉 and 〈v4〉 diverge.

Their values in a finite simulation are then regulated by the
cutoff due to the finite particle number, and are thus highly
fluctuating. Shown in the lower panel of Fig. 4 is the evolution
of 〈|v|〉, which, in contrast, is a well defined quantity in the
final state. In this case we see that the evolution for different
N in the mean-field scaling agrees well, and fluctuates little,
right up to the time at which the stationary state is attained. The
small deviation at the latest times for N = 128 is a result of the
large fluctuations of the total energy in this case (see Fig. 1).

4. Dependence on initial conditions

Figure 5 shows the evolution of φ11 and 〈|v|〉/vdyn for γA =
0.03 and N = 512 and with two different initial conditions:
thermal equilibrium, and two rectangular waterbags, R0 = 1
and R0 = 0.01. The number of realizations are 300, 100, 200
respectively. At long times, these quantities evolve towards the
same mean value, independently of the initial conditions. Note
that for φ11, fluctuations increase with time and are associated
with the long tails of position and velocity distributions.

In the presence of the perturbation, the system goes at long
times to a nonequilibrium stationary state which is an attractor
of the dynamics, i.e., the perturbed dynamics of this long-range
system has an “attractor” stationary state.

5. Properties of the final state

Let us consider now the properties of this apparently
stationary state, and check in particular whether the phase
space distribution is indeed stationary and the same in the
different cases.

FIG. 5. Model A: φ11 (top) and of 〈|v|〉/vdyn (bottom) as a func-
tion of time t/τdyn, with γA = 0.03 and N = 512 for different initial
conditions: thermal equilibrium (averaged over 300 realizations),
rectangular waterbags with R0 = 1 (100 realizations), and R0 = 0.01
(200 realizations).
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FIG. 6. Model A: Velocity distribution at different times (t = 500,1500,3500τdyn) averaged over 100 realizations for γA = 0.1, N = 1024
with initial thermal distribution. Velocities are normalized by v(t), the standard deviation of the velocity distribution. The left panel is a linear
plot and the right panel is a log-log plot. The two straight lines indicate the range of the exponents of power law fits to the tails of the distribution.

Figure 6 shows the velocity probability distribution aver-
aged over 100 realizations, for γA = 0.1 and N = 1024 and
with an initial thermal distribution (black curve in the left
panel). The analogous spatial distributions are shown in Fig. 7
for the same data. In both cases the relevant variable has been
normalized to the square root of its variance at the given time.
Except for the initial distribution [cf. Eq. (46)] and the next
time plotted (t = 500τdyn), all the curves are thereafter very
well superimposed. The tail of the corresponding velocity
distribution is well fitted by a simple power-law behavior
∼v−κ , with κ = 3.5 ± 0.5, while that of the spatial distribution
by ∼x−ε , with ε = 2 ± 0.25 (where the error bars are estimates
of the range of compatible exponents; see Figs. 6 and 7). We
find consistent behaviors for our different initial conditions,
and for the different N in the range we have considered.
Further we note that we find these behaviors to be stable
even if we extend our analysis to data at longer times, in
which the fluctuations of energy become large. Thus the state
appears to be a very robust attractor even when the energy
can vary considerably. As anticipated above, these asymptotic
behaviors of the evolved system explain why we observed the

strongly N dependent behaviors of the parameters φ11 and
β2: for such asymptotic behaviors of the velocity and space
distribution these quantities are divergent, and thus in practice,
when measured in a system with a finite number of particles,
they are dominated by the contribution from just a few of the
highest energy particles.

We note that the velocity distribution observed is very
similar to that found for the original purely granular model (i.e.,
without gravity) [23]. As in this case one must in fact suppose
that κ > 3 to ensure that the kinetic energy (proportional to the
velocity dispersion) of the state is finite. Further it is interesting
to note that the measured exponents are compatible with the
relation κ = 2ε which can be inferred in the hypothesis that
the phase space density is a function of the (mean field) energy
only (as the mean field potential at large x is dominated by the
monopole contribution proportional to |x|).

C. Model B

We have seen that the contribution from collisions in model
B is characterized in the mean field limit by the dimensionless

FIG. 7. Model A: Position distribution at different times (t = 500,1500,3500τdyn) averaged over 100 realizations for γA = 0.1, N = 1024
with initial thermal distribution. Positions are normalized by x(t), the standard deviation of the position distribution. The left panel is a linear
plot and the right panel is a log-log plot. The two straight lines indicate the range of the exponents of power law fits to the tails of the distribution.
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parameter γB , and the velocity scale v0, with both being
held fixed in the mean field limit. As the mean field scaling
leaves invariant also the characteristic velocity vdyn defined in
Eq. (48), we can define the dimensionless ratio

uB = v0

vdyn

, (50)

which also remains fixed in the mean field limit. We then can
characterize our simulations by the dimensionless parameters
γB , uB , and N , and the results will then be N independent at
sufficiently large N if the mean field treatment is valid.

1. Macroscopic evolution due to perturbation

Figure 8 shows results for the evolution of the dimensionless
energy E/E0 (E0 is the initial value), of the virial ratio R, φ11,
and β2, for N = 512, uB = 1, and rectangular waterbag initial
conditions with R0 = 0.01. The two curves correspond to the
different values of γB = 0.01,0.005 with an average over 20
realizations. We observe that, as expected, the system reaches
virial equilibrium on a time scale ∼10τdyn and remains,
to an extremely good approximation, virialized thereafter.
Compared to model A, the finite N fluctuations are extremely
small. As we will see in further detail below, this is a result
of the presence of a well defined energy scale in the model
to which the system is efficiently driven. Thus the system
evolves on a time scale ∼τdyn/γB as expected from the mean
field kinetic theory, through a continuum of QSSs. Indeed, to
test this conclusion, we have performed again simulations in
which we “turn off” the perturbation at different times. We

FIG. 8. Model B: Dimensionless energy E/E0 (E0 is the initial
energy), virial ratio R, entanglement parameter φ11, and dimension-
less kurtosis β2 vs t/τdyn for uB = 1, γB = 0.01,0.005, N = 512, and
initial rectangular waterbag conditions R0 = 0.01. Simulation results
are averaged over 20 realizations.

FIG. 9. Model B: E/E0 (top) and φ11 (bottom) vs time t/τdyn

for N = 512, γB = 0.01, uB = 1 with rectangular waterbag initial
conditions, R0 = 0.01,1.

find, as in model A, that the macroscopic parameters remain
essentially frozen at their values at this time.

For the chosen value of uB = 1 the simulations start with
an energy which turns out to be about an order of magnitude
larger than the energy in the stationary state. This means that
the characteristic velocities are initially so large that most
collisions are inelastic and the evolution depends little on the
presence of the term depending on v0. In this case the evolution
is then well approximated by the case of purely inelastic
collisions which we have studied in [32]. For smaller values of
γB than those shown here the validity of this approximation is
sufficiently extended in time so that one can see the presence
of an approximate plateau in φ11 corresponding to the “scaling
QSSs” derived in this work.

2. Dependence on initial conditions

Figure 9 shows the evolution of the energy E/E0, R, and
φ11 for γB = 0.01, uB = 1, N = 512, and for two different
rectangular waterbag initial conditions, R = 0.01 and R = 1.
We see, as indicated by the behavior of φ11, that each of the two
initial conditions initially evolves to a quite different QSS, but
then on the longer time scale both converge towards an iden-
tical value of φ11. That this indeed corresponds to evolution
to the same final state is confirmed, as we will detail further
below, by study of the final configuration in phase space.

3. Mean field limit of kinetic theory

To test the validity of the mean field limit derived in
Sec. III B, we have run sets of simulations for the same initial
conditions with fixed values of γB and uB , but different values
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FIG. 10. Model B: E/E0 (top) and φ11 (bottom) for γB = 0.01,
uB = 1, and for rectangular waterbag initial conditions, R0 = 0.01
with different system sizes, N = 128,256,512.

of the particle number N . Figure 10 shows the evolution of the
energy E/E0 (top) and φ11 (bottom) for γB = 0.01, uB = 1,
and for rectangular waterbag initial conditions, R0 = 0.01
with different system sizes, N = 128,256,512. We see in
the evolution of the energy an almost perfect superposition
of the curves, indicating thus an N independent evolution
corresponding to the mean field limit.

4. Properties of final state

We finally consider in greater detail the properties of the
apparently very well defined final state to which the system is
driven very efficiently in model B. Figure 11 shows snapshots,
at the indicated times, of the phase space of particle positions
in dimensionless units (where x0 = v0τdyn) in 20 realizations
with N = 128 of R = 0.01 waterbag initial conditions, for
a model with γB = 0.01 and uB = 1. The phases of the
evolution, already evident in the evolution of the energy and
φ11 as discussed above, are again clearly visible. However,
the phase space plot reveals that, from the time (here about
150τdyn) at which the macroscopic diagnostics indicate the
establishment of the stationary states, and do not themselves
appear to evolve anymore, there is a further nontrivial evolution
in phase space of the microscopic particle distribution: the
particles progressively “aggregate” onto distinct separated
curves. A study of the particle energies shows that they are, to
a very good approximation, constant on each curve, and take
well separated values on each curve i.e., they are effectively
discretized. Note that these phase space “rings” are time
independent, so the time average in a narrow time window

(e.g., of order τdyn) produces a plots essentially identical to
Fig. 11 at longer times.

Figure 12 shows phase space configurations at two times
(t = 1000τdyn on the left, t = 3500τdyn on the right) for 20
realizations of the same waterbag initial condition, and the
same γB and uB , as in the previous figure, for N = 128 (upper
panels), N = 256 (middle panels), and N = 512 (bottom
panels). In each plot the particle positions for a single chosen
realization are also plotted as red stars. These plots show
clearly that in all cases the system evolves towards a highly
ordered distribution, in which the particles are not only on
“shells” in phase space as noted above, but also have highly
ordered positions along these shells, i.e., the relative phases
of the particles’ motions on the shells are fixed in time and
completely coherent. Further the time scale to attain the final
state appears to grow strongly with N (in units of τdyn): the
N = 128 simulations have already attained the completely
ordered state at t = 1000τdyn, the N = 256 simulations are
close to attaining it for t = 3500τdyn, while the N = 512
systems are still evolving towards it at this later time.

This evolution of the system towards the “ordered” state
thus occurs on a time scale which diverges when we take
the mean field limit. Indeed it is an evolution intrinsically
characteristic of the finite N system which thus cannot be
described by the mean field kinetic theory we have developed
in Sec. IV. Conversely, in this mean field limit the system
should remain in the QSS to which it is driven by the collisions,
and the phase space density of this state is in principle a
stationary solution of the kinetic equations (38) and (43).
Interestingly we observe that these macroscopic properties
of the system in this mean field stationary state are apparently
unchanged, even on the very longest times scales simulated, by
the microscopic evolution, e.g., the total energy and parameters
φ11 and β2 do not evolve on average. This behavior can be
contrasted with the relaxation to thermal equilibrium of QSS
attained in the purely self-gravitating model. This relaxation
is likewise driven by finite N effects, (not described by the
Vlasov equation) but it also causes the system to evolve (on a
time scale ∼Nτdyn) through a family of QSSs until it finally
equilibrates.

As mentioned in Sec. IV C 1 above, we have verified that
the intermediate states the system evolves through from the
time it virializes are indeed a family of QSSs of the purely
self-gravitating model: when we turn off the perturbation any
time after virialization, the system’s macroscopic properties
do not change on mean field time scales. Thus the unique state
reached from different initial conditions should be not just a
stationary solution of the kinetic equations (38) and (43) but
one in which both sides of the equation are zero [39]. For a
few cases with N = 128 we have evolved the system, after
turning off the inelastic collisions, and found that it evolves, as
expected, towards thermal equilibrium on a time scale ∼Nτdyn.
However, when the same experiment is performed but the
inelastic collisions are turned off at a longer time at which
the system has evolved to the fully “ordered” microscopic
state we find an intriguing result: this ordered microscopic state
remains unchanged under the purely gravitational evolution,
not only on the mean field time scale (τdyn and τdyn/γB) but
even on the time scale much greater than Nτdyn. Thus the
microscopic state attained at long times in presence of the
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FIG. 11. Model B: Phase space snapshots in dimensionless units (x/x0 and v/v0) for N = 128, γB = 0.01, uB = 1, rectangular waterbag
initial conditions, R0 = 0.01 and 20 realizations at different times t ranging from t = 0 to t = 4000 τdyn.

perturbation appears to be a periodic or quasiperiodic solution
of the pure gravitational N -body system, and to belong to
a stable island in the N -body phase space which leads to a
breaking of ergodicity. We will investigate further both the
dynamics giving rise to and the properties of these intriguing
“ordered” states of the N -body system in future work.

V. DISCUSSION AND CONCLUSION

We have investigated the effects on the dynamics of
long-range interacting systems of a class of “local internal”
perturbations through the study of a canonical one dimensional
toy model subjected to such perturbations. More specifically
we consider two perturbations inspired by granular studies of
the dynamics of a one dimensional self-gravitating system
considering momentum conserving, and energy violating,
collisions which are designed so that they can, nevertheless,
conserve energy in an average sense. Our main focus has
been on the question of how the characteristic nonequilibrium
stationary states or QSSs of the long-range system are affected

by these perturbations. We consider the case that these
perturbations are weak, in the sense that the time scale on which
they affect the system macroscopically are long compared to
the time scales characteristic of the dynamics of the mean
gravitational field.

We have derived first kinetic equations for both models
which describe the system’s evolution in a large N mean
field and quasielastic limit. Our numerical study of the models
shows that this limit describes well the macroscopic evolution
due to the perturbations at sufficiently large N , but at given N

we see always also at sufficiently long times evolution in both
models which are finite N effects not captured by the mean
field treatment. In model A such effects are manifest in large
excursions of the energy at longer times, and in model B in
the appearance of a highly ordered microscopic phase space
distribution. Within the regime of validity of the mean field
approximation both models show at longer times evolution
towards an apparently unique virialized state. This state is not
the thermal equilibrium of the isolated model, and indeed is
typically “further away” (in terms of correlations measured by

052129-13



MICHAEL JOYCE, JULES MORAND, AND PASCAL VIOT PHYSICAL REVIEW E 93, 052129 (2016)

FIG. 12. Model B: Phase space snapshots in dimensionless units
(x/x0 and v/v0) for γB = 0.01, uB = 1, rectangular waterbag initial
conditions, R0 = 0.01, 20 realizations and at two different times
t = 1000τdyn (left panels), t = 3500τdyn (right panels). We compare
three different system sizes N = 128,256,512 (from top to bottom).
Red dots correspond to one chosen realization, small black dots
correspond to the other realizations.

φ11) from the thermal equilibrium. Therefore we observed
compelling evidence for the establishment of an attractor
nonequilibrium stationary state in both models. We note that,
in contrast to the HMF model with the modified stochastic
dynamics described in [15], our perturbed long-range models
show no tendency to relax toward thermal equilibrium.

Both perturbations, which act microscopically and locally,
thus completely modify the global organization of the system:
they drive the long-range system far from the QSS it is
in initially (due to mean field relaxation from the initial
conditions on time scales significantly shorter on which the
perturbations act). In this sense the QSSs are not robust to such
perturbations, and are modified macroscopically as soon as the
perturbation starts to act. However, the evolution which results
is through a succession of virialized states which are stable
stationary solutions of the Vlasov equation. In both models
the system is then driven finally to a nonequilibrium stationary
state (NESS), which is itself also a QSS of the unperturbed
long-range system. This final state does not depend on the
initial conditions, but does depend strongly on the details of the
perturbation. Indeed in the two models we have considered the
final state has completely different properties, with notably in
model A a power-law decaying space and velocity distribution

compared to a phase space distribution with compact support
for model B. Thus the perturbation, albeit apparently very
weak, turns out to completely dominate and determine the
behavior of the long-range system. This contrasts dramatically
with the effect such a weak perturbation would have on
a short-range system which relaxes efficiently to thermal
equilibrium: in this case the perturbation would indeed just
perturb slightly this equilibrium.

It is interesting to compare our results with related previous
work in the literature. In [15,16] the stochastic perturbation
applied to the long-range system (the HMF model) permutes
the momenta of triplets of particles chosen randomly in the
system, and drives the system to relax to thermal equilibrium
efficiently. Applied to a one dimensional self-gravitating
system, we have checked that we observe the same behavior.
Indeed it suffices in this case to consider exchanges of the
velocities of randomly chosen pairs of particles because the
QSSs are inhomogeneous. This drives the system efficiently
to equilibrium because it destroys directly, because of the
nonlocality of the perturbation, the entanglement in space and
velocity of the phase space distribution. In the models we have
presented here the perturbation, as we have underlined, has
the property of being local. This means that the instantaneous
change of the velocity distribution induced by the collisions
depends on the local properties, and as these typically vary
in space in a nontrivial manner there is no reason to expect
the system to evolve towards the same velocity distribution
everywhere. On the contrary, as we have seen, the system
tends to evolve towards configurations in which the space and
velocity distributions are ever more strongly entangled, until a
stationary state is reached in which the spatial organization
induced by the long-range forces “compensates” the local
modification of the velocity distributions by the perturbations.

Our study is complementary also to that of Refs. [17,18]
in which the effect of an external stochastic force acting
on a long-range system is studied. Indeed we can consider
the perturbations we have introduced at particle collisions as
stochastic forces, with the difference that they are internal, i.e.,
they are determined by the instantaneous microscopic state of
the system itself. As we have mentioned, our models are thus
appropriate to model the effects, for example, of additional
short-range interactions at play in the system, while that of
[40] models the effects of interactions with matter external to
the system. For their treatment with kinetic theory, our models
admit a considerable simplification compared to that required
for the models of [17,18]: as we have seen, we obtain in both
our models a nontrivial kinetic theory which includes the effect
of the perturbation in the mean field limit, i.e., by neglecting
two point correlations in phase space. As described in [17,18]
a nontrivial large N limit for the evolution induced by the
external perturbation is obtained going beyond the mean field
limit, and specifically can be obtained by including nontrivial
two point correlations. The reason for this difference is that the
action of the external forces on the system depend crucially
on the spatial correlations of these forces, and their effect on
the evolution cannot be described self-consistently without
incorporating the resultant correlations in the perturbations to
the phase space distributions. While [17,18] can obtain a range
of different behaviors from the external stochastic forces—
ranging from thermalization of the system to out of equilibrium
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states characterized by intermittency—our models display the
simpler phenomenology of attractive nonequilibrium steady
states we have described.

We have constructed our models so that they either conserve
energy on average (model A, in the large N limit) or can
attain states in which energy is stationary (model B). When
considering perturbations to such systems, there is no reason
in general to expect them to have such a property. What would
we expect the effect notably of net energy dissipation or
injection to be? In [32] we have considered a simple class
of perturbations which dissipate energy, and found that they
admit what we have called “scaling QSSs.” These are states
of such systems in which the dissipation of the energy leads
simply to an evolution in which the phase space density
remains unchanged other than to an overall rescaling of its
characteristic size and velocity. This study suggests that in
models like those considered here, but including a constant
energy dissipation, one might expect to see established an
“attractive scaling QSS,” i.e., evolution to a unique phase space
distribution in rescaled variables reflecting the dissipation
of energy. Indeed we note that in model A extrapolated to
the very long time scales where the macroscopic energy
strongly fluctuates due to finite N , we have found that, in
suitably rescaled coordinates, the system’s velocity and space
distributions remain very stable, with notably the same power
law tails measured in the mean field regime.

We have studied here only two very specific and simple
models, but the rich and interesting results they produce
motivate further study. First, concerning these specific models,
we have only explored the regime in which the perturbations
introduced are weak, in the sense that the characteristic
times scale of their dynamics is long compared to that of
the mean-field dynamics of gravity. The regimes in which
the two scales are comparable, or even that in which the
long-range interaction acts only on a longer time scale, may
produce interesting behaviors too. More generally it would
be interesting to explore, using other models, how generic
to long-range interacting systems the interesting behaviors
we have observed are—in particular the evolution towards
a unique stationary state which is a QSS of the unperturbed
system “selected” by the perturbation. In this respect it would
of course be interesting to study models analogous to those
considered here in two or three dimensions, and in particular

the case of gravity in either dimension. An important difference
with respect to the one dimensional case is that purely elastic
collisions of nongravitational origin do then have a nontrivial
effect on the dynamics driving it, in principle, to statistical
equilibrium (for a detailed treatment of the case of hard
core collisions, see [41]). Further, in three dimensions if the
system is to reach a truly stationary state (or in particular
statistical equilibrium) it must be enclosed in a box. On the
basis of what we have observed, we believe it is reasonable to
anticipate that qualitative behaviors like those observed here
may indeed be common to many long-range systems when
subjected to perturbations sharing the essential characteristics
of those in our models. Isolated long-range systems admit an
infinite number of QSSs, and which of these states the system
relaxes to on mean field time scales is determined by the initial
conditions, and depends on them in general in a way which
is extremely complex (see, e.g., [22,42–46]). The application
of a weak perturbation to the system can be understood as
providing a breaking of the degeneracy of the infinite number
of QSSs which drives the system to a QSS which is invariant
under its own action, i.e., in which, in our models, the collision
term induced by the perturbations is zero. As the perturbation
will generically violate all the conservation laws (Casimirs)
of the Vlasov dynamics, there would appear to be no reason
why the perturbed dynamics cannot explore the full space of
QSSs accessible from a given starting energy and mass, and
thus “find” the stable state starting from any initial condition.
Further generically we would not expect this final state to be
the thermal equilibrium of the system (which is a particular
QSS): as we have underlined, unless the perturbation applied
locally to the velocity distribution tends to drive the system
everywhere to the same velocity distribution, we expect the
long-range force to give rise to a stationary state in which
the velocity and space distributions are entangled in a manner
characteristic of nonequilibrium QSSs.
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