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Linear response approximation in effective field theory for the calculation of elastically mediated
interactions in one dimension
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The linear response approximation, used within effective field theory to calculate mediated interactions between
inclusions, is studied for an exactly solvable one-dimensional model. We show that it works poorly in the case
of inclusions imposing absolute deformations to the field, while it works well for massless theories in the case of
inclusions imposing relative deformations to the field.
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I. INTRODUCTION

Particles that deform an elastic, correlated medium, or
alter its fluctuations, experience mediated interactions [1]. A
famous example is the Casimir effect by which two metal
plates in vacuum attract each other due to the constraints they
impose on the quantum fluctuations of the electromagnetic
field [2]. Mediated interactions also occur between surfaces,
colloids, or proteins in soft-matter media such as critical
binary mixtures [3,4], liquid crystals [5,6], capillary interfaces
[7,8], and biomembranes [9–11]. The calculation of these
interactions is usually made difficult by the extended character
of the inclusions deforming the medium by the imposition of
constraints along their boundary. One needs to compute the
medium deformation that matches the boundary conditions
(BCs) and the distribution of the fluctuations around this
average deformation [9,12].

A few years ago, Deserno and Rothstein have imported
from high-energy physics a powerful method that provides an
alternative to such calculations: the effective field theory (EFT)
[13–18]. In general, in order to determine the mediated interac-
tion between embedded inclusions, one needs to calculate the
free energy of the field describing the medium’s deformation,
in the presence of the inclusions, and to extract the dependence
in their separation R. Here, we shall consider, to simplify, that
the system is Gaussian (this is a standard approximation in
soft matter when working in the small deformation limit).
For Gaussian systems, the interaction free energy can be
decomposed exactly into a mean-field contribution Fmf(R),
obtained by minimizing the Hamiltonian H[φ] functional
of the field describing the medium’s deformation subject
to the BCs imposed by the embedded inclusions, and a
fluctuation-induced contribution FC(R), often called Casimir-
like contribution. To compute the mean-field configuration
�(x), that coincides with the average profile 〈φ(x)〉 in a
Gaussian model, one needs to solve the linear equation
δH/δφ(x)|� ≡ L�(x) = 0 in the body of the medium, subject
to the BCs set by the inclusions. The idea of EFT [19] is
to replace the embedded inclusions by an equivalent set of
pointlike charges and polarizabilities, the amplitude of which
are called Wilson coefficients. To determine the latter, one first
considers a background mean-field configuration �bg(x) that
minimizes the Hamiltonian for some set of distant boundary
conditions (DBCs) applied far away from the region of interest.
We thus have L�bg(x) = 0 subject to the DBCs. These DBCs
are taken arbitrarily, in the most general way, in order to

explore all the possible background distortions. When an
extended inclusion is placed at the origin, and the same
DBCs are kept, the field that matches the inclusion’s BCs
is �tot = �bg + �r , with �r (x) the mean-field response. It
satisfies L[�bg(x) + �r (x)] = 0 subject to the BCs and the
DBC’s. By virtue of linearity, and since L�bg vanishes, the
response field satisfies

L�r (x) = 0, (1)

subject on the one hand to the BCs for the total field and on
the other hand to the condition that it must vanish at the distant
boundary. The actual BCs for �r depend therefore on �bg,
and one has thus to calculate the response �r as a function of
the DBCs. This is in general feasible since there is only one
inclusion.

The idea of EFT is to determine equivalent pointlike parti-
cles that yield the same �r for all the possible DBCs, and to
deduce their Wilson coefficients (to be used further in complex
situations where two or more inclusions are present). Calling
α,β, etc., the Wilson coefficients, the EFT equation describing
the response produced by the effective pointlike inclusion is of
the form L�(x) = [α + β�(x) + γ�2(x)]δ(x) + . . ., which
needs to be solved subject to the DBCs only. The equation
equivalent to Eq. (1), in EFT, is thus

L�r (x) = [α + β�tot(x) + γ�2
tot(x)]δ(x) + . . . , (2)

subject to the sole condition that �r must vanish at the distant
boundary. Replacing �tot in the above equation by �bg + �r ,
one sees that the equation for the response �r is nonlinear.

If the response field is sufficiently small with respect to the
background field, it may be justified to replace �tot by �bg in
the right-hand side of the equation:

L�r (x) � [α + β�bg(x) + γ�2
bg(x)]δ(x) + . . . . (3)

The equation for �r thus becomes linear. This linear response
approximation (LRA), which makes the calculations much
easier, has been successfully used in the literature [13,15–18].
The real conditions of its validity, however, are unclear. It is
the aim of this work to examine this issue.

Our paper is organized as follows. In Sec. II, we introduce
a generic one-dimensional (1D) Gaussian model and we
consider either inclusions that impose the value of the field
(absolute deformation, type A inclusions) or inclusions that
impose a jump of the field (relative deformation, type B
inclusions). We calculate their interaction exactly. The latter
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can be decomposed into a mean-field contribution and a
Casimir-like, fluctuation-induced contribution. In Sec. III, we
apply the nonlinear EFT method, thereby determining the
Wilson coefficients for both types of inclusions. We compute
the interaction between the EFT particles and we show that
there is a perfect agreement with the results of the exact
treatment, both for inclusions of type A and inclusions of
type B. In Sec. IV, we apply the EFT method within the linear
response approximation (LRA) and we compare our results
with the exact results. We find that the LRA doesn’t work in
the case of inclusions of type A, nor does it work in general
for inclusions of type B, except when the theory is massless.
In Sec. V, we summarize our results. We try to characterize
the conditions that make the LRA successful and we briefly
discuss the 2D situation.

II. DEFINITIONS AND EXACT TREATMENT

Let us consider a 1D generic elastic medium whose
deformation is described by a field φ(x). We assume that the
associated Hamiltonian is Gaussian, given by

H0[φ] =
∫ ∞

−∞
dx

(
m

2
φ2 + K

2
φ′2

)
. (4)

Then the correlation length of the field is ξ = √
K/m and

ε = √
mK = K/ξ has the dimension of an energy.

This Hamiltonian is classical in the description of soft
matter. It may describe the interface profile between two
immiscible fluids due to the combined effects of gravity and
surface tension [7]. In this case K is the surface tension and
m is the gravitational field multiplied by the difference of the
fluids densities. It may also describe a semiflexible polymer,
with φ the angle that the monomers make with a fixed direction
[20]. In this case K is the bending stiffness and m originates
from an applied tension.

In the following we shall define two types of inclusions
that will locally affect the field: inclusions of type A fixing the
value of the field and inclusions of type B imposing a jump
of the field. We shall calculate the elastic deformation that
they produce together with the associated mediated interaction.
For instance, inclusions of type A correspond in the capillary
case to particles that pin the meniscus [21]. Inclusions of
type B correspond in the polymer case to adsorbed proteins
that locally bend the polymer. Similar types of Hamiltonians
and inclusions are also used in the description of biological
membranes [17,22–24].

A. Type A inclusions imposing a field value

We define the inclusions of type A as objects of length 2a,
located at x = xi , that impose the value φ(x) = φi on their
boundary:

φ(xi − a) = φ(xi + a) = φi. (5)

Note that the field is not defined in the interval [xi − a,xi + a],
i.e., the inclusions effectively expel the field. We show below
that the field-mediated interaction free energy F (R) = εF̃ (R)
between two such inclusions, separated by a distance R, is

FIG. 1. Average elastic deformation produced by two inclusions
imposing the value of the field (type A). The parameters are φ1 =
2,φ2 = 3,a = 1,R = 5, and ξ = 5. The inclusions are drawn in red.

given exactly by

F̃ (R̃) = (φ1 + φ2)2

2
coth R̃ − φ1φ2 coth(R̃/2)

+ kBT

2ε
ln(1 − e−2R̃), (6)

where R̃ = (R − 2a)/ξ is the dimensionless separation be-
tween the inclusions. This interaction is strongly repulsive at
short separations and it is asymptotically attractive (repulsive)
when φ1φ2 > 0 (φ1φ2 < 0). Note that it includes the effects of
the thermal fluctuations (term proportional to kBT ).

Let the first inclusion be placed at x = 0 and the second
one at x = R. Because the field is Gaussian, the average
profile 〈φ(x)〉 coincides with the mean-field profile �(x)
that minimizes the Hamiltonian. The latter is solution of the
Euler-Lagrange equation δH0/δφ(x)|� = L�(x) = 0, where

L = d2/dx2 − ξ−2 (7)

is the Euler-Lagrange operator. In the whole paper, capital
Greek letters such as � will denote average, mean-field
profiles, and lowercase Greek letters such as φ will denote
fluctuating fields. Solving Eq. (7) subject to the boundary
conditions �(a) = φ1 and �(R − a) = φ2 yields, in between
the inclusions:

�(x) = 〈φ(x)〉 = φ1
sinh(R̃ − x̃)

sinh R̃
+ φ2

sinh x̃

sinh R̃
, (8)

where x̃ = (x − a)/ξ is the dimensionless distance to the left
inclusion’s boundary, and a simple exponential decay in the
outer regions (Fig. 1).

The energy of the mean-field profile H0[�] between
the inclusions can be directly calculated from Eq. (4), by
integrating in the interval [a,R − a], and yields the first two
terms in the interaction F̃ (R) given by Eq. (6). Note that the
deformation in the regions [−∞, − a] and [R + a,∞] do not
depend on the separation between the inclusion and therefore
do not participate to the interaction.

Because the model is Gaussian, the total interaction free
energy F (R) can be exactly decomposed into the above
mean-field contribution H0[�] and a Casimir-like contribution
FC(R) arising from the fluctuations around the average profile.
Indeed, writing the field as φ(x) = �(x) + ψ(x), it is easy
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to show that H0[φ] = H0[�] + H0[ψ], and thus we have
F (R) = H0[�] − kBT ln Zψ , with Zψ the partition function of
the field ψ . Let us compute the latter Casimir-like contribution
to the interaction free energy.

The eigenfunctions of the Hamiltonian H0[ψ] in the
interval between the inclusions are solutions of the equa-
tion ξ−2�n(x) − � ′′

n (x) = λn�n(x) subject to the boundary
conditions �n(0) = �n(L) = 0, where L = R − 2a is the
separation between the boundaries of the inclusions. The
solutions are quantified sine waves, and using them as a basis
we can write ψ(x) = L−1/2 ∑

n ψn sin(nπx/L), which yields

H0[ψ] = K

4

∞∑
n=1

λnψ
2
n , λn = ξ−2 +

(
nπ

L

)2

. (9)

Hence,

FC = −kBT ln Zψ = 1

2
kBT

∞∑
n=1

ln [βKλn/(4π )]. (10)

To extract the R-dependent, regular part of this diverging
series, we integrate with respect to x2 the quantity S(x) =∑∞

n=1[x2 + (nπ/L)2]−1 = L coth(Lx)/(2x) − 1/(2x2)
obtained by differentiating the series with respect to x2.
Setting then x = 1/ξ , multiplying by kBT/2 and removing
unimportant contributions, we obtain the third term of Eq. (6).

B. Type B inclusions imposing a field jump

We define the inclusions of type B as objects of length 2a,
located at x = xi , that impose a jump of the field on their
boundary:

φ(xi + a) − φ(xi − a) = αi. (11)

These inclusions constrain the field less than the previous
ones since they impose only one condition instead of two.
In particular, the average of the boundary fields is free. Again,
the field is not defined within the inclusion, i.e., in the inter-
val [xi − a,xi + a]. We show below that the dimensionless
interaction free energy F̃ (R) = F (R)/ε between two such
inclusions, separated by a distance R, is given exactly by

F̃ (R̃) = α1α2

2
e−R̃, (12)

where R̃ = (R − 2a)/ξ . It is attractive (repulsive) for α1α2 <

0 (α1α2 > 0).
Placing the two inclusions as previously, we compute the

mean-field, average profile �(x), by minimizing the Hamilto-
nian H0. We thus need to solve the equation L�(x) = 0 within
the intervals ] − ∞, − a],[a,R − a] and [R + a,∞[. We need
six BCs: two are provided by the asymptotic vanishing of �(x)
as |x| → ∞, two are provided by the BCs set by the inclusions,
i.e., �(a) − �(−a) = α1 and �(R + a) − �(R − a) = α2,
and the last two are obtained from minimizing the total energy
with respect to 1

2 [�(a) + �(−a)] and 1
2 [�(R + a) + �(R −

a)]. It is straightforward to show that the latter conditions are
equivalent to �′(−a) = �′(a) and �′(R − a) = �′(R + a).
We thus obtain

�(x) = 〈φ(x)〉 = α1

2
e−x̃ − α2

2
ex̃−R̃, (13)

FIG. 2. Average elastic deformation produced by two inclusions
imposing a jump of the field (type B). The parameters are α1 = 1,α2 =
1.5,a = 1,R = 5, and ξ = 5. The inclusions are drawn in red.

where x̃ = (x − a)/ξ , and simple exponential decays in the
outer regions (Fig. 2).

As in the preceding section, because the model is Gaussian,
the total interaction free energy is composed of the energy
of the mean-field profile and a Casimir-like correction.
Calculating H0[�] within the intervals outside the inclusions
yields the interaction term given in Eq. (12). As for the
contribution arising from the fluctuations, i.e., the Casimir-like
contribution, it actually vanishes for inclusions of type B.
Indeed, as shown in the preceding section, this contribution
is given by −kBT ln Zψ , with Zψ the partition function of
the field ψ = φ − �. Because � satisfies the BCs given
by Eq. (11), the remaining BCs applying to ψ are merely
continuity condition across the inclusions. As a consequence,
the inclusions play no physical role for ψ ; removing them and
joining together the boundary of the inclusions, ψ becomes
a free field fluctuating in ] − ∞,∞[ and its free energy is
independent of R.

III. NONLINEAR EFFECTIVE FIELD THEORY
TREATMENT

Let us apply the EFT method sketched in Sec. I to the
particles of type A and B. We shall design pointlike particles
of type A′ and B′ that mimic the particles of type A and B. The
most general form of the Hamiltonian associated to a pointlike
particle placed at x = xi is given by

Hi =
∫ ∞

−∞
dxf [φ(x),φ′(x), . . .]δ(x − xi), (14)

where f is an arbitrary function. In high-energy physics, Hi

is called a worldline [19]. Because our theory is Gaussian, we
keep only the terms that are linear or quadratic in φ. Besides,
we limit ourselves in the expansion of f to derivatives of order
less than two: theories eliminating derivatives that would be
redundant at the saddle point, i.e., for φ′′ = −ξ−2φ in our
case, are termed on-shell and are standard [17]. We therefore
consider for f a linear combination of the five monomials
φ(x),φ′(x),φ2(x),φ′2(x) and φ(x)φ′(x). Note that in higher
space dimensions, the set of Wilson coefficients is in general
infinite, even for on-shell theories [17].
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A. Effective pointlike inclusions of type A′

Since the type A inclusions are invariant under the trans-
formation x → −x, the Hamiltonian of the type A′ inclusions
must be of the form:

Hi

2ε
=

∫
dx

[
c1φ(x) + c3

2
φ2(x) + c5ξ

2

2
φ′(x)2

]
δ(x − xi),

(15)

where, defined in such a way, the Wilson coefficients ci

are dimensionless. Let us consider an arbitrary background
deformation �bg(x) produced by some distant boundary
conditions (DBCs):

�bg(±L) = φ±. (16)

Being solution of L�bg = 0, it is given by �bg(x) =
φ+ sinh(x̃ + L̃)/ sinh(2L̃) − φ− sinh(x̃ − L̃)/ sinh(2L̃), with
now x̃ = x/ξ and L̃ = L/ξ . Then, we add an inclusion at the
origin and we require that the same DBCs (or same asymptotic
profile for large L) be satisfied for the total deformation. The
latter may be written as φtot = �bg + φr , which defines the
response field φr , of average, mean-field profile �r . The DBCs
for the total and the response fields are thus �tot(±L) = �±
and thus

�r (±L) = 0. (17)

Identifying, for all possible backgrounds, the response pro-
duced by a real type A inclusion to that produced by its
effective type A′ counterpart fixes the Wilson coefficients
(Fig. 3).

1. Matching between inclusions of types A and A′

The response �r of a real, type A inclusion fixing the
value φ0 of the field (Fig. 3, thick gray line) satisfies L�r =
0 with the boundary conditions �r (±L) = 0 and �r (±a) =

FIG. 3. In a background (thin black line) set by the boundary
values φ± separated by a distance 2L, either a real inclusion of
type A or its effective counterpart of type A′ are placed at the
origin. The Wilson coefficients of the effective inclusion are such
that the deformation produced by the type A inclusion (thick gray
line) and that produced by the type A′ inclusion (dashed black line)
match whatever the background. The discontinuity of the dashed line
at the origin can be much larger for other parameter values. The
parameters are φ− = 2,φ+ = 3,L = 12,φ0 = 3.5,a = 2, and ξ = 8.
The inclusions are drawn in red.

φ0 − �bg(±a). The solution is of the form

�r (x) =
{
A1 sinh(x̃ + L̃), for x ∈ [−L, − a],
A2 sinh(x̃ − L̃), for x ∈ [a,L],

(18)

where again x̃ = x/ξ and L̃ = L/ξ . Satisfying the
boundary conditions yields the constants A1,2 in the
form Ai = Ai0 + Ai+φ+ + Ai−φ−, which we shall not
explicate.

In the case of an effective pointlike inclusion of type A′

placed at x = 0 (Fig. 3, dashed line), the Euler-Lagrange
equation associated with the minimization of H0 + H1, with
H1 given by Eq. (15), is

L�r (x) = 2[c1 + c3�tot(0)]ξ−1δ(x) − 2c5ξ�′
tot(0)δ′(x).

(19)

The solution has the same form as Eq. (18), with new constants
A′

i instead of Ai , and intervals now corresponding to [−L,0[
and ]0,L]. Because �tot(x) and �′

tot(x) are discontinuous
in x = 0, we replace them by their average value at the
discontinuity. To determine the constants A′

i , we integrate
the differential Eq. (19) around the singularity, either di-
rectly or after multiplying both sides by x. This yields the
system

(A′
2 − A′

1) cosh L̃ = 2c1 + c3(φ+ + φ−)

cosh L̃

− c3(A′
2 − A′

1) sinh L̃, (20)

(A′
2 + A′

1) sinh L̃ = c5(φ+ − φ−)

sinh L̃

+ c5(A′
2 + A′

1) cosh L̃. (21)

We thus obtain the constants A′
1,2 in the form A′

i = A′
i0 +

A′
i+φ+ + A′

i−φ−, which again we shall not explicate.
Matching the profiles for all values of φ± cor-

responds to solving for {c1,c3,c5} the system {A′
i0 =

Ai0,A
′
i+ = Ai+,A′

i− = Ai−}, which reads after some
simplifications

φ0

sinh(ã − L̃)
= c1

c3 sinh L̃ + cosh L̃
, (22)

1 + c3c5

(c5 − tanh L̃)(1 + c3 tanh L̃) cosh L̃
= 0, (23)

2 sinh(L̃ + ã)

sinh(2L̃) sinh(L̃ − ã)

= c3 tanh L̃ + c5 coth L̃

(cosh L̃ + c3 sinh L̃)(sinh L̃ − c5 cosh L̃)
, (24)

where ã = a/ξ . Although this system is nonlinear, it is quite
easy to determine its exact solution. We obtain

c1 = φ0

sinh ã
, (25)

c3 = − coth ã, (26)

c5 = tanh ã. (27)

Note that these Wilson coefficients do not depend on the
distance L at which the DBCs are applied. This is probably
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a peculiarity of the 1D character of this problem. Note also
that the value of the field fixed by the inclusion, i.e., φ0, only
appears in c1. The whole matching process is illustrated in
Fig. 3.

2. Interaction free energy between inclusions of type A′

Let us now determine the interaction free-energy between
two inclusions of type A′. We assume that they mimic two
type-A inclusions of size 2a and imposed field values φ1 and
φ2. We thus have the exact counterpart of the problem treated
in Sec. II A. As previously, we place the first inclusion at x = 0
and the second one at x = R. From Eqs. (25)–(27), we see that
the two inclusions have the same c3 and c5 coefficients, but
their first coefficients are different, equal to c1 = φ1/ sinh ã

and c′
1 = φ2/ sinh ã, respectively.

We need to calculate the free-energy F (R) = −kBT ln
Z(R) associated with the total Hamiltonian H0 + H1 + H2,
where the latter two terms correspond to the contributions
given by Eq. (15). However, because the mean-field profile
�(x) will be discontinuous at x = 0 and x = R, just as in
the case of Fig. 3, we cannot proceed as previously and
calculate separately the mean-field part of the interaction and
the Casimir-like correction. Indeed, the quantity �′(x)2 that
would appear in H0 contains a squared Dirac distribution,
which is not integrable. Let us emphasize that given the form
of the Hamiltonian, the fields φ(x) sampled by the fluctuations
are necessarily continuous. It is thus only the average 〈φ(x)〉
that will develop discontinuities (in the limit, actually, where
the ultraviolet cutoff is sent to infinity).

We need, thus, to compute the partition function

Z(R) =
∫

D[φ] e−β[H0+H1+H2], (28)

where β = 1/(kBT ) is the inverse temperature. Mak-
ing use of the Green’s function �(x) = (2ε)−1e−|x|/ξ , we
may write H0 = 1

2

∫
dxdy φ(x)�−1(x,y)φ(y). Then call-

ing c̄1 = 2εc1,c̄
′
1 = 2εc′

1,c̄3 = 2εc3, and c̄5 = 2εξ 2c5, we
have

H1 + H2 = S +
∫

dx[c̄1δ(x) + c̄′
1δ(x − R)]φ(x), (29)

where

S = c̄3

2
φ2(0) + c̄3

2
φ2(R) + c̄5

2
φ′2(0) + c̄5

2
φ′2(R). (30)

Applying four Hubbard-Stratonovich transformations to lin-
earize the four quadratic terms in S, i.e.,

exp

[
− β

2
c̄3φ(0)2

]
∝

∫
dk1 exp

[
− k2

1

2βc̄3
+ ik1φ(0)

]
,

(31)

and so on, we can integrate out the field φ, which yields

Z =
∫

d4k exp

[
−k2

1 + k2
2

2βc̄3
− k2

3 + k2
4

2βc̄5

+ β

2

∫
dxdy T (x)�(x − y)T (y)

]
, (32)

with

T (x) =
(

c̄1 − i

β
k1

)
δ(x) + i

β
k3δ

′(x)

+
(

c̄′
1 − i

β
k2

)
δ(x − R) + i

β
k4δ

′(x − R). (33)

Note that we shall systematically discard in Z any multiplica-
tive constants independent of R. Ordering the terms, we obtain

Z =
∫

d4k exp

(
βc̄1c̄

′
1�(R) + kiNi − 1

2β
kiMij kj

)
, (34)

with

M =

⎛
⎜⎜⎜⎝

1
c̄3

+ �(0) �(R) 0 �′(R)
�(R) 1

c̄3
+ �(0) −�′(R) 0

0 −�′(R) 1
c̄5

− �′′(0) −�′′(R)
�′(R) 0 −�′′(R) 1

c̄5
− �′′(0)

⎞
⎟⎟⎟⎠,

(35)

and

N = −i

⎛
⎜⎝

c̄1�(0) + c̄′
1�(R)

c̄′
1�(0) + c̄1�(R)

−c̄′
1�

′(R)
c̄1�

′(R)

⎞
⎟⎠. (36)

Note that several components of M vanish due to the even
character of �(x). We therefore obtain

F (R) = −kBT ln Z

= −1

2
NiM

−1
ij Nj − c̄1c̄

′
1�(R) + kBT

2
ln det M, (37)

which yields F̃ (R) = F (R)/ε in the form

F̃ (R) = F̃mf + F̃C, (38)

where F̃C corresponds to the third term of Eq. (37), i.e., the
Casimir-like contribution, and F̃mf to the first two terms of
Eq. (37), i.e., the mean-field contribution.

Taking into account the precise form of �(x) given above,
and calculating the determinant of M , we obtain after some
simplifications:

F̃C(R) = kBT

2ε
ln

(
1 − (c3 + c5)2

(c3 + 1)2(c5 − 1)2
e−2R/ξ

)
. (39)

Now, replacing the Wilson coefficients by their value given by
Eqs. (25)–(27), we recover exactly the Casimir-like contribu-
tion to the interaction between two real inclusions of type A,
i.e., the third term of Eq. (6).

Concerning the mean-field part, the calculations yield a
form similar in structure to the first two terms of Eq. (6):

F̃mf(R) = (c1 + c′
1)2f̃1(R) − 2c1c

′
1f̃2(R), (40)

f̃1(R) = (c5 − 1)(c3 + c5)

(c3 + 1)(c3 + c5)2 − (c3 + 1)3(c5 − 1)2e2R/ξ
, (41)

f̃2(R) = c5 − 1

(c3 + 1)[c3 + c5 + (c3 + 1)(c5 − 1)eR/ξ ]
. (42)

Again, replacing the Wilson coefficients by their values given
by Eqs. (25)–(27), with c1 = φ1/ sinh ã and c′

1 = φ2/ sinh ã,
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we recover exactly the mean-field contribution to the interac-
tion between two real inclusions of type A, i.e., the first two
terms of Eq. (6).

The EFT method thus captures exactly—in the nonlinear
framework—the interaction free energy of the type-A parti-
cles.

B. Effective pointlike inclusions of type B’

Since the type-B inclusions are invariant under the simul-
taneous transformations x → −x and φ → −φ, the Hamilto-
nian of the type-B′ inclusions must be of the form:

Hi

2ε
=

∫
dx

[
c2ξφ′(x) + c3

2
φ2(x) + c5ξ

2

2
φ′(x)2

]
δ(x − xi),

(43)

where, again, the Wilson coefficients ci are dimensionless.

1. Matching between inclusions of types B and B′

As previously, we consider an arbitrary background �bg(x)
satisfying L�bg = 0 together with the DBCs �bg(±L) = φ±,
and we place a real inclusion of type B at the origin, imposing
a jump α of the field. Calling again �tot = �bg + �r , we solve
L�r = 0 with the boundary conditions �r (±L) = 0 and

�tot(a) − �tot(−a) = α, (44)

�′
tot(−a) = �′

tot(a). (45)

The solution is still of the form (18) but with coefficients B1

and B2.
In the case of an effective pointlike inclusion of type B′

placed at x = 0, the equation for the response field �r becomes

L�r (x) = 2c3�tot(0)ξ−1δ(x) − 2[c2 + c5ξ�′
tot(0)]δ′(x).

(46)

The solution satisfying �r (±L) = 0 has again the same form
as Eq. (18), however with constants B ′

i instead of Ai . Matching
the two profiles for all values of φ± yields a nonlinear system
for the unknowns {c2,c3,c5}, the exact solution of which is

c2 = − α

2 cosh ã
, (47)

c3 = − tanh ã, (48)

c5 = tanh ã, (49)

with, again, ã = a/ξ . The matching process is illustrated in
Fig. 4.

2. Interaction free energy between inclusions of type B′

The calculations proceed exactly as in the case of the
inclusions of type A′, yielding

Z =
∫

d4k exp

(
− βc̄2c̄

′
2�

′′(R) + kiNi − 1

2β
kiMij kj

)
.

(50)

FIG. 4. In a background (thin black line) set by the boundary
values φ± separated by a distance 2L, either a real inclusion of
type B or its effective counterpart of type B′ are placed at the
origin. The Wilson coefficients of the effective inclusion are such
that the deformation of the type-B inclusion (thick gray line) and
the deformation of the type-B′ inclusion (dashed black line) match
whatever the background. Here, the parameters are φ− = 2,φ+ =
3,L = 12,α = 1,a = 2, and ξ = 8. The inclusions are drawn in red.

The matrix M is unchanged, while N is now given by

N = i

⎛
⎜⎝

−c̄′
2�

′(R)
c̄2�

′(R)
c̄2�

′′(0) + c̄′
2�

′′(R)
c̄′

2�
′′(0) + c̄2�

′′(R)

⎞
⎟⎠, (51)

where c̄2 = 2εξc2 and c̄′
2 = 2εξc′

2. This yields now

F (R) = −kBT ln Z

= −1

2
NiM

−1
ij Nj + c̄2c̄

′
2�

′′(R) + kBT

2
ln det M, (52)

and thus the normalized interaction free energy is

F̃ (R) = F̃mf + F̃C, (53)

with the Casimir-like contribution F̃C corresponding to the
third term of Eq. (52) and the mean-field contribution F̃mf

corresponding to the first two terms of Eq. (52).
It follows that the Casimir-like energy is still formally given

by Eq. (39), but since we have now c3 = −c5, it vanishes, just
as in the case of the real type-B inclusions.

In a way similar to Eq. (40), we obtain for the mean-field
part the result:

F̃mf(R) = (c2 + c′
2)2g̃1(R) − 2c2c

′
2g̃2(R), (54)

g̃1(R) = (c3 + 1)(c3 + c5)

(c5 − 1)(c3 + c5)2 − (c3 + 1)2(c5 − 1)3e2R/ξ
, (55)

g̃2(R) = c3 + 1

(c5 − 1)(c3 + c5) − (c3 + 1)(c5 − 1)2eR/ξ
. (56)

Because c3 = −c5 for type-B′ inclusions, we see at once that
g̃1 vanishes; hence the interaction is going to be proportional
to c2c

′
2, that is to α1α2. Replacing the Wilson coefficients by

their values given by Eqs. (47)–(49), with c2 = −α1/(2 cosh ã)
and c′

2 = −α2/(2 cosh ã), we recover exactly the mean-field
contribution to the interaction between two real inclusions of
type B, i.e., Eq. (12).
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Again, the EFT method captures exactly—in the nonlin-
ear framework—the interaction free energy of the type-B
particles.

IV. EFFECTIVE FIELD THEORY TREATMENT IN THE
LINEAR RESPONSE APPROXIMATION

We now start again the construction of the EFT pointlike
inclusions mimicking the inclusions of type A and B, but we
apply this time the linear response approximation (LRA). We
shall denote the resulting inclusions by A′′ and B ′′.

A. Effective pointlike inclusions of type A′′

Let us thus consider again the problem of replacing the
inclusions of type A by pointlike inclusions. By symmetry,
their Hamiltonian still has to be of the form Eq. (15). However,
as explained in Sec. I, we shall neglect the feedback terms in
the resulting Eq. (19). In other words we shall replace �tot

by �bg in this equation. We thus proceed as in Sec. III A 1;
the only difference is that the equation for the response field
becomes

L�r (x) = 2[c1 + c3�bg(0)]ξ−1δ(x) − 2c5ξ�′
bg(0)δ′(x)

(57)

instead of Eq. (19). As a consequence, the term containing A′
1

and A′
2 in the right-hand side of the system (20) disappears,

and the matching system becomes linear. The solutions of this
system are

− cosh L̃

sinh(L̃ − ã)
φ0 ∼ −√

γφ0 ≡ c1, (58)

cosh(L̃) cosh(ã)

sinh(L̃ − ã)
∼ 1

2
(γ + 1) ≡ c3, (59)

sinh(L̃) sinh(ã)

sinh(L̃ − ã)
∼ 1

2
(γ − 1) ≡ c5. (60)

where ã = a/ξ and γ = exp(2ã). These values converge to
finite limits as L → ∞, as indicated above. We shall thus
naturally define the Wilson coefficients as those limits. Indeed,
the idea of EFT is to match at least asymptotically any
background.

At this point, it looks unlikely that the type-A′′ inclusions
will reproduce exactly the interaction free energy between
two inclusions of type A. This is because the matching is
only asymptotic, while there is a finite number of Wilson
coefficients. We may however expect the correct asymptotic
interaction. The response to a background of an inclusion of
type A′′ is illustrated in Fig. 5. It is apparent that this response
is bad: the inclusions of type A′′ do not respond like the type-A
inclusions, contrary to the type-A′ inclusions (see Fig. 3 for
comparison).

Interaction free energy between inclusions of type A′′

Because the Hamiltonian of the type-A′′ inclusions still
has the general form given by Eq. (15), all the calculations of
Sec. III A 2 hold. Hence the Casimir part of the interaction free
energy is still given by Eq. (39) and the mean-field part of the
interaction free energy is still given by Eq. (40). Inserting the
new Wilson coefficients, given by Eqs. (58)–(60), we obtain

F̃C = kBT

2ε
ln

(
1 − 16

(γ 2 − 9)2
e−2R/ξ

)
. (61)

Fmf = 16(γ − 3)

16(γ + 3) − (γ − 3)2(γ + 3)3e2R/ξ
(φ1 + φ2)2

− 8(γ − 3)

(γ + 3)[4 + (γ 2 − 9)eR/ξ ]
φ1φ2. (62)

Clearly, these formulas do not match the interaction between
two inclusions of type A, given by Eq. (6). The structure is
similar, but the prefactors are different.

Let us look at the asymptotic behavior. From Eq. (6),
we have for the interaction between two type-A inclu-
sions F̃ ∼ −kBT/(2ε)z2 + (φ1 + φ2)2z2 − 2φ1φ2z, with z =
exp(−R/ξ ). Hence, even the asymptotic behaviors differ.
Even in the case ξ → ∞, which corresponds to γ = 1, we
obtain for the type-A′′ inclusions F̃ ∼ −kBT/(8ε)z2 + (φ1 +
φ2)2z2/8 − φ1φ2z/2 that differs from the interaction between
type-A inclusions. We conclude that the LRA never provides
the correct interaction for inclusions fixing the value of the
field.

(a) (b)

FIG. 5. Response of an inclusion of type A′′ (LRA) to a background, and comparison with the response of a real type-A inclusion. (a) The
parameters are φ− = 2,φ+ = 3,L = 12,φ0 = 3.5,a = 2, and ξ = 8, exactly as in Fig. 3. (b) Same parameters except that ξ = 25 instead of
ξ = 8. In both cases the discrepancy between the real field profile (thick gray line) and the effective one (dashed line) is large.

052128-7



GOCE KOLESKI AND JEAN-BAPTISTE FOURNIER PHYSICAL REVIEW E 93, 052128 (2016)

B. Effective pointlike inclusions of type B′′

We proceed exactly as in Sec. IV A. Neglecting the feedback
terms in Eq. (46), the equation for the response field becomes
in the LRA:

L�r (x) = 2c3�bg(0)ξ−1δ(x) − 2[c2 + c5ξ�′
bg(0)]δ′(x),

(63)

and the matching system that allows to determine the Wilson
coefficients becomes linear. Its solutions are

− sinh L̃

2 sinh(L̃ − ã)
α ∼ −1

2
√

γα ≡ c2, (64)

− cosh(L̃) sinh(ã)

cosh(L̃ − ã)
∼ 1

2
(1 − γ ) ≡ c3, (65)

sinh(L̃) sinh(ã)

sinh(L̃ − ã)
∼ 1

2
(γ − 1) ≡ c5, (66)

where, again, ã = a/ξ and γ = exp(2ã). These values con-
verge to finite limits as L → ∞, as indicated above. As in
the previous section, since the idea of EFT is to match at
least asymptotically any background, we define the Wilson
coefficients as those limits.

The response of an inclusion of type B′′ is illustrated in
Fig. 6(a). It is apparent that this response is bad (see Fig. 4
for comparison). It becomes however satisfying in the case
where ξ/L 
 1, as shown in Fig. 6(b). We might thus expect
a correct interaction behavior in this limit.

Interaction free energy between inclusions of type B′′

Again, because the Hamiltonian of the type-B′′ inclusions
still has the general form given by Eq. (43), all the calculations
of Sec. III B 2 hold. Hence the Casimir part of the interaction
free energy is still given by Eq. (39) and the mean-field part of
the interaction free energy is still given by Eq. (54). Inserting
the new Wilson coefficients, given by Eqs. (64)–(66), we obtain

F̃C = 0, (67)

Fmf = 2

(γ − 3)2
α1α2e

−R̃ . (68)

First, we see that the Casimir contribution vanishes, just as
in the case of the real type-B inclusions. The mean-field
part, however, differs. Indeed, comparing with Eq. (12), we
have a prefactor 2/(γ − 3)2 instead of 1/2. However, the
mean-field contribution to the interaction becomes now exact,
at all distances, in the case ξ → ∞ for which the prefactor
2/(γ − 3)2 → 1/2. Note that the error in the prefactor of the
interaction is of order 2a/ξ , therefore ξ 
 a is required for a
good accuracy of the interaction law.

We have thus found that the type-B′′ inclusions do not
capture the interaction between real type-B inclusions, except
in the limit ξ → ∞, i.e., for massless theories, where it
becomes exact at all distances.

V. SUMMARY AND DISCUSSION

In this paper, using a one-dimensional (1D) Gaussian field
φ(x) with a mass term ∝ξ−2φ2 and a squared gradient term
∝φ′2, we have investigated the interaction between two types
of extended embedded particles of length 2a: inclusions of
type A that fix the value of the field, and inclusions of type B
that fix a jump in the value of the field.

Applying the principles of effective field theory (EFT),
and using an exact nonlinear formalism, we have determined
pointlike inclusions of type A′ and B′ that produce the
same response as the real type A and B inclusions to any
underlying background field. We have verified that these
effective inclusions behave exactly as the type-A and type-B
inclusions and produce the same exact interaction free energy,
that can be decomposed into a Casimir-like contribution and a
mean-field contribution.

We have then applied the EFT principles within the
linear response approximation (LRA), which is in general
easier to achieve. We have found that the resulting pointlike
inclusions of type A′′ and B′′ do not reproduce the interaction
free energy of the real type-A and type-B particles—even
asymptotically—except in one case: for type-B particles when
the mass term goes to zero, i.e., when the correlation length ξ

goes to infinity.
Regarding the interaction free energy between two in-

clusions, the LRA should obviously work better when one
inclusion does not perturb much the background field created
by the other inclusion. This is clearly not the case for the

(a) (b)

FIG. 6. Response of an inclusion of type B′′ (LRA) to a background, and comparison with the response of a real type-B inclusion. (a)
The parameters are φ− = 2,φ+ = 3,L = 12,α = 1,a = 2, and ξ = 8, exactly as in Fig. 4. (b) Same parameters except that ξ = 25 instead of
ξ = 8. In the latter case the response of the type-B′′ inclusion is very good (agreement between the thick gray line and the dashed line).
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type-A inclusions, since they set a value of the field that is
independent of the background. One can see indeed in Fig. 5
that the type-A′′ inclusion lies far away from the background
(thin solid line). This is true whatever the value of ξ , as can be
seen by comparing Figs. 5(a) and 5(b).

The situation is more favorable, however, for the inclusions
of type B. Since they set only a difference, i.e., a jump, in
the value of the field, while the average field value is free to
adjust to equilibrium, these inclusions are less constraining. In
order to minimize the total free energy, the type-B inclusions
naturally tend to adjust to the background. One can see indeed
in Fig. 6 that the type-B′′ inclusion lies relatively close to
the background (thin solid line), especially in the case where
the correlation length is very large [Fig. 6(b)]. This is most
probably the reason why the type-B′′ inclusions produce the
correct interaction free energy in the limit where ξ goes to
infinity.

We conclude that in 1D systems, one needs to use nonlinear
EFT in order to work out properly the two-body interaction,
and by extension also the many-body interaction, between
inclusions. As an example, this might be useful for inclusions
in polymers.

In 2D systems, the EFT method is more difficult to apply,
as in general an infinite series of Wilson coefficients is needed
[17]. Working with the nonlinear EFT equations is very

challenging. The EFT method, within the simplified LRA
framework, has successfully been applied by Rothstein to
lacunae in free bosonic fields [14], and by Deserno et al. to
protein inclusions in membranes [17] and colloids in tense
interfaces [15]. These inclusions are similar to the type-B
inclusions discussed above, because they fix a local curvature
of the membrane, or contact angle of the interface, or simple
Neumann boundary conditions, without any absolute position
or tilt constraints. In all cases, the theory was also massless.
The EFT in the linear response approximation was shown to
work very well in these cases, as verified by comparing the
results with those of exact calculations up to six orders in the
inverse particles separation [12,17], and to exact calculations
obtained from conformal field theory [14]. The situation for
2D systems with more constraining particles, or massive fields,
seems less clear to us, although it is generally believed that in
two dimensions the matching of the Wilson coefficients may
be performed in any way, even linear [25].
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