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Analytic descriptions of stochastic bistable systems under force ramp
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Solving the two-state master equation with time-dependent rates, the ubiquitous driven bistable system, is a
long-standing problem that does not permit a complete solution for all driving rates. Here we show an accurate
approximation to this problem by considering the system in the control parameter regime. The results are
immediately applicable to a diverse range of bistable systems including single-molecule mechanics.
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I. INTRODUCTION

There are plenty of examples of physical systems which
appear to switch between two stable states when subject to
environmental or experimental forcing. These include both
macroscale systems, such as ocean circulation [1] and social
behavior [2], and several microscale systems, such as neuron
firing [3], bond dissociation [4], and biopolymer unfolding [5].
In reality, few precious examples exist which truly possess
only two states. But when a system’s phase space can be
reduced to two discrete states and transitions from one state
to another are memoryless, the process can be described
by the master equation with instantaneous transition rates.
It should then be possible to predict the collective behavior
of normally complex systems from well-defined transition
rates. However, the master equation with time-dependent rates,
which is required for dynamic forces, cannot be solved for
most relevant statistical quantities. Since the solution contains
the important link between equilibrium and nonequilibrium
behavior, approximations within those limits have been carried
out [4,6–9]. Here we derive a complete analytic approximation
which emerges only by considering the system within the
control-parameter domain.

We consider a bistable system which is embodied by the
two-state master equation,

dp1(t)

dt
= −k1(t)p1(t) + k2(t)p2(t), (1)

where ki(t) is the instantaneous transition rate out of state i

and pi(t) represents the probability of finding the system in
state i at time t . The transition rates are assumed to follow an
Arrhenius rate of escape,

ki(t) = k0
i exp{−β[V (xt ,t) − V (xi,t)]}, (2)

where V (x,t) is an external biasing potential and β−1 = kBT

is the inverse thermal energy. The positions xi and xt represent
the ith state minimum and transition state, respectively, and
k0
i is the rate of escape from state i in the absence of an

external potential. For the derivation that follows we consider
the process as a function of the control parameter, here force,
f = −∂V (x,t)/∂x, where the rate of changing force ḟ (t) =
df/dt is not necessarily constant in time. When the force is
held fixed for long times, the left side of Eq. (1) vanishes, and
we have the steady-state equilibrium probability,

p
eq

1 (f ) = k2(f )

k1(f ) + k2(f )
= 1

1 + exp{β[�V (f ) − �μ]} ,
(3)

where �μ = β−1ln k0
2

k0
1

is the unperturbed free energy difference

and �V (f ) = V (x1,f ) − V (x2,f ) is the applied bias between
the two state minima. When the external bias increases,
the function p

eq

1 (f ) decreases from 1 to 0, passing through
p

eq

1 (f1/2) = 1/2, where f1/2 marks the coexistence force at
which the two rates are equal,

k1(f1/2) = k2(f1/2). (4)

It will prove useful to rewrite the master equation [Eq. (1)]
such that p

eq

1 (f ) is explicit. Using p1 + p2 = 1 and Eq. (3),
we express the differential system as the excess probability
�(f ) = p1(f ) − p

eq

1 (f ) driven by the derivative of the equi-
librium probability,

d�(f )

df
+ kT (f )

ḟ
�(f ) = −dp

eq

1 (f )

df
, (5)

where

kT (f ) = k1(f ) + k2(f ) (6)

is the total relaxation rate of the system. To remove the effects
of particular initial conditions we start the process at infinite
negative force, f0 → −∞, and with p1(−∞)=p

eq

1 (−∞)=1
we have the probability of finding the system in state 1 at
force f ,

p1(f ) = p
eq

1 (f ) −
∫ f

−∞

dp
eq

1 (f ′′)
df ′′

× exp

[
−

∫ f

f ′′

kT (f ′)
ḟ

df ′
]
df ′′. (7)

Equation (7) is convenient in that it decomposes the
distribution into a sum of two essential terms: the quasistatic,
adiabatic (equilibrium) limit of the process p

eq

1 (f ) and the
nonequilibrium contribution. For finite loading rates (ḟ > 0)
the second, nonequilibrium term in Eq. (7) enables state 1
to persist to higher forces; how high depends on the ratio
kT (δf )δf/ḟ , where δf is a characteristic force scale for the
transition. When the loading rate is significantly slower than
the relaxation rate [ḟ � kT (δf )δf ], the exponent forces the
second term to zero, which physically means the system is
able to adapt to the relatively slowly changing force. At faster
loading rates the potential changes before the system can relax,
and thus the second term describes the lag of the system’s
relaxation behind the changing potential landscape [10].

As graphically illustrated in Fig. 1, the equilibrated distri-
bution p

eq

1 (f ) is a sigmoid which transitions from 1 to 0 over
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FIG. 1. The total distribution p1(f ) as expressed in Eq. (7) is a
sum of the equilibrium distribution p

eq

1 (f ) and a nonequilibrium
process which lags behind the changing force in proportion to
the loading rate (dashed line). The derivative of the equilibrium
distribution appearing in Eq. (7) acts as an aperture, allowing a
narrow band of forces around f1/2 to initialize the nonequilibrium
term of the process (upper curve). In the limit of very small width
(FWHM ∼ f1/2kBT /�μ) a single force is sifted out, effectively
initializing the nonequilibrium term at f1/2.

a relatively narrow band of the control parameter, centered
at f1/2. Assuming a sufficiently large barrier (β�μ � 1),
we can approximate the equilibrium distribution as a step
function at the expense of a coarser resolution of p1(f )
around f1/2,

p
eq

1 (f ) ≈ θ (f1/2 − f ), θ (x) =
{

1, x > 0,

0, x � 0,
(8)

where θ (x) is the Heaviside step function. Inserting Eq. (8)
in (7), we see that the derivative dp

eq

1 (f )/df → dθ (f1/2 −
f )/df functions to sift out the lower integration limit within
the exponent at f1/2 (see Fig. 1),

p1(f ) ≈ θ (f1/2 − f ) +
∫ f

−∞

dθ (f ′′ − f1/2)

df ′′ df ′′

× exp

[
−

∫ f

f1/2

kT (f ′)
ḟ

df ′
]
. (9)

Completing the integration, we have

p1(f ) ≈ θ (f1/2 − f ) + θ (f − f1/2)exp

[
−

∫ f

f1/2

kT (f ′)
ḟ

df ′
]
.

(10)

Equation (10) is a key result of this article. It shows that
the two-state master equation [Eq. (1)] can be approximated
as a delayed first-order rate process, with rate kT (f ) =
k1(f ) + k2(f ) provided that the derivative of the equilibrium
distribution is sharply peaked relative to the forces explored
in the system (and, more practically, narrow relative to the
experimental force resolution). The delay is not in time, but
force, and is approximately equal to the coexistence force
f1/2. Thus the effect of both forward and reverse transitions is
to maintain the population of state 1 until f1/2 is overcome.

FIG. 2. Exact and approximate solutions to the master equation
using the transition rates in Eqs. (11). Solid curves are numeric
solutions to the differential equation (1). Circles show Eq. (10). The
hatched region denotes the area under the quasistatic distribution,
p

eq

1 (f ). Parameters used are k0
1 = 1, β�μ = 15, βkx2

t /2 = 0.01.
The coexistence force is thus f1/2 ≈ 0.775kBT /xt . The noted loading
rates are normalized according to R = ḟ xt /kBT k0

1 .

The opposite step functions ensure this by imposing p1(f <

f1/2) = 1. In cases where k2(f ) decreases rapidly beyond f1/2,
its contribution can be regarded as negligible. This leads to a
simpler expression with kT (f ) ≈ k1(f ), and thus the effects of
k2(f ) are entirely contained in f1/2. As an example, we show
in Fig. 2 a plot of Eq. (10) using the rates defined in Eqs. (11)
below for a range of loading rates extending from equilibrium
to far from equilibrium.

II. FORCE RAMP INTERMOLECULAR BOND RUPTURE

Here we will treat the case of intermolecular bonding
under force, where two interacting species are pulled apart
by a spring-like potential: the archetype of single-molecule
dynamic force spectroscopy (DFS). In this scenario, state
1 designates the formed intermolecular bond, while state 2
designates the unbonded case which is energetically defined
by the external pulling potential. Therefore k1(t) represents the
rate of a particle escaping a potential well under force, while
k2(t) represents the rate of the particle escaping the potential
defined by the pulling spring.

In a previous publication [11] we used heuristic arguments
to find an interpolation to the mean rupture force of this two-
state process. Here we will show that the solution found in [11]
is directly obtained from Eq. (10).

We apply an external potential given by V (xi,f ) = 1
2k(xi −

f/k), with transition state xt , state 1 placed at the origin x1 =
0, and x2 = f/k moving with the applied potential minimum.
Hence f is defined as the force on state 1. The loading rate ḟ

is constant. Using the prescription from the previous section,
we have the quantities

k1(f ) = k0
1e

β(f xt− 1
2 kx2

t ),

k2(f ) = k0
2e

−β k
2 (f/k−xt )2

, (11)

f1/2 =
√

2k�μ,
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and the equilibrium distribution follows as

p
eq

1 (f ) = 1

1 + exp
[
β
(

f 2

2k
− �μ

)] . (12)

Figure 2 shows Eqs. (12) and (10) plotted using Eqs. (11).
The derivative of this distribution, dp

eq

1 (f )/df , has a FWHM
of approximately 0.88f1/2kBT /�μ. Therefore from the def-
inition of f1/2 in this scenario, the requirement of Eq. (10)
for a narrow FWHM is satisfied with decreasing transducer
stiffness k and increasing �μ/kBT .

In the quasistatic limit the mean force, 〈f 〉eq =∫ ∞
0 p

eq

1 (f )df , is not analytic. We can approximate the integral
by recognizing that the term f 2/2k is the energy that the bound
state is raised with force. Changing the variable of integration
to dimensionless energy, ε = βf 2/2k,

〈f 〉eq =
√

k

2β

∫ ∞

0

ε−1/2dε

1 + exp[(ε − β�μ)]
(13)

=
√

k

2β
F−1/2(β�μ), (14)

where Fj (x) is the Fermi-Dirac integral of order j . Assuming
strong bonds (�μ � kBT ), we use the asymptotic series
expansion for the integral limx→∞ F−1/2(x) → 2

√
x [12],

〈f 〉eq ∼=
√

2k�μ = f1/2. (15)

We see that for β�μ significantly larger than unity, the
mean force recovered under quasistatic pulling coincides with
the coexistence force which balances the populations of the
bound and unbound states. To evaluate the nonequilibrium
component to the mean we take k2(f ) ≈ 0 for f > f1/2.
Therefore, using kT (f ) ≈ k1(f ) in Eq. (10), the mean rupture
force

∫ ∞
0 p1(f )df evaluates to our previous result [11],

〈f 〉 =
√

2k�μ

+ kBT

xt

exp

[
k1(f1/2)kBT

ḟ xt

]
E1

[
k1(f1/2)kBT

ḟ xt

]
, (16)

where E1(z) = ∫ ∞
z

e−s

s
ds is the first-order exponential integral

[E1(z) ≈ e−zln(1 + e−γ /z), where γ = 0.577 . . . is Euler’s
constant].

III. FORCE RAMP INTRAMOLECULAR TRANSITIONS

Transitions within the molecule under study, such as config-
urational switching in protein folding and RNA/DNA hairpins,
have been extensively studied thermodynamically and kineti-
cally and very often are reducible to a two-state system [13].

In this case we again set x1 = 0; however, unlike
intermolecular bond rupture, the second state is a fixed
distance away from the first, x2 = �x. As before, the external
potential is parabolic V (xi,t) = 1

2k(xi − vt)2, and from
Eqs. (2)–(4) we have

k1(f ) = k0
1e

β(f xt− 1
2 kx2

t ).

k2(f ) = k0
2e

−β[f (�x−xt )− 1
2 k(�x2−x2

t )], (17)

f1/2 = �μ

�x
+ 1

2
k�x.

The equilibrium distribution follows as

p
eq

1 (f ) = 1

1 + exp
[
β
(
f �x − 1

2k�x2 − �μ
)] . (18)

The FWHM of the derivative, dp
eq

1 (f )/df , is approxi-
mately 1.76f1/2kBT /�μ. Note f1/2 is defined immediately
above and differs from that of the intermolecular bond
rupture case discussed in the previous section. Here again the
derivative of p

eq

1 becomes narrower with decreasing transducer
stiffness k and increasing energy, �μ/kBT . The FWHM is
not monotonic in �x. It decreases with increasing �x until
a minimum is reached at �x∗ = √

2�μ/k, then gradually
increases.

Owing to the same form of k1(f ) for both the intramolecular
and intermolecular cases, under the approximation kT (f ) ≈
k1(f ) the mean rupture force for this intramolecular switching
example is identical to that found in Eq. (16), with the
exception of the definition of the coexistence force,

〈f 〉 = �μ

�x
+ 1

2
k�x

+ kBT

xt

exp

[
k1(f1/2)kBT

ḟ xt

]
E1

[
k1(f1/2)kBT

ḟ xt

]
. (19)

IV. DISCUSSION

Realizing an approximation such as that of Eq. (10) would
not be possible in the time domain. This is due to problems
which arise near equilibrium, where a quasistatically driven
process requires infinite time to complete, and hence critical
parameters like coexistence, t1/2 = f1/2/ḟ , are undefined
when ḟ → 0. The same quasistatic process in the control
parameter domain is well defined at every relevant parameter
value, regardless of rate.

How reasonable are these assumptions for the single-
molecule examples treated here? Approximating p

eq

1 (f ) as a
step function and its derivative as a δ function brings negligible
error if the experimental force resolution is much greater
than the spread around the transition, typically defined as the
FWHM of the derivative (see Fig. 1). The error is manifested
as a small overestimate of p1(f ) around f1/2 due to a sharp,
instead of gradual, transition near f1/2. Figure 3 illustrates this
error at the most problematic loading rate, the loading rate ḟ×
which marks the crossover from near-equilibrium to kinetic
regimes. In the approximations of Eqs. (16) and (19) this rate
is essentially where the external energy exerted on the system
ḟ xt matches the energy exchanged between the system and
the thermal bath, k1(f1/2)kBT [14],

ḟ×xt = k1(f1/2)kBT . (20)

Figure 4 shows the error with loading rate for large and
small values of the free energy. For loading rates less than ḟ×
the error is less than 4% even for the nonideal case of low free
energy (β�μ = 5).

Using typical laboratory parameters for the intermolecular
adhesion case of atomic force microscope (AFM) cantilever
stiffness k = 0.1 N/m and �μ = 10 kBT , the FWHM equals
8 pN. For the intramolecular switching case, we consider the
unfolding of RNA [5] as an example; with optical trap stiffness
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FIG. 3. (a) The probability of state 1 vs normalized force,
evaluated at the crossover loading rate, ḟ×xt/kBT k1(f1/2) = 1, for
three values of the energy barrier �μ. Exact solutions (thin lines) and
approximations (thick lines) are shown using Eq. (10) with the rates
defined in Eqs. (11). The area between the curves equals the difference
in mean force for that loading rate. (b) The error as a percent of the
exact solution is shown for three different free energy values. An
exponential fit (dashed line) is shown as a guide. Parameters used are
k0

1 = 1 and βkx2
t /2 = 0.01.

k = 0.01 pN/nm, �μ = 10kBT , and �x = 20 nm we find a
FWHM of 0.5 pN. Both of these widths are below the typical
noise floor of their respective experimental techniques.

It is also important to recognize that one cannot derive a
probability density function (PDF) for the above processes
from the approximation in Eq. (10). Away from equilibrium
the PDF is trivial since the probability becomes a first-escape
time distribution. In general, however, the PDF of the total
force expended to drive a transition is not simply the negative
derivative of p1(f ) as it is defined in the master equation (1).
Such a relationship would require that p1(f ) is a cumulative
distribution function (CDF) of the total exerted force, which
it is not. Instead, p1(f ) is only the probability of finding the
system in state 1 at force f . As a result, the mean force 〈f 〉
found in (16) from integrating over p1(f ) has an important
distinction. Since, in principle, the system may transition any
number of times between the two states before finally resting
in state 2, the transition force for any individual realization
of the process should be defined as the sum of increasing
force increments while in state 1. This is the force analog to
the total sojourn time of a two-state process. Therefore the

FIG. 4. Normalized mean force vs loading rate evaluated by
Eq. (10) compared against the exact numerical solution for large
and small free energy values. The error, (〈f 〉model − 〈f 〉exact)/〈f 〉exact,
is greatest at a normalized loading rate of unity, ḟ xt /k0

1kBT ≈ 1, and
diminishes with higher free energy values. Parameters are the same
as in Fig. 3.

mean transition force is the ensemble average of the sum of
force increments exerted on state 1 while the system resides in
state 1.

In summary, the two-state master equation with time-
dependent rates, the stochastic model often used in describing
driven bistable processes, has a simple approximation when
considering the process in terms of the control parameter. The
process can be reduced to a first-order rate process with a delay
set by the coexistence force. While the applied examples here
deal with single-molecule transitions (DFS), the approach can
be extended to other driven systems whose phase space can be
reduced to a two-state Markov process.
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