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We present a framework for describing the evolution of stochastic observables having a nonstationary
distribution of values. The framework is applied to empirical volume-prices from assets traded at the New
York Stock Exchange, about which several remarks are pointed out from our analysis. Using Kullback-Leibler
divergence we evaluate the best model out of four biparametric models commonly used in the context of financial
data analysis. In our present data sets we conclude that the inverse � distribution is a good model, particularly
for the distribution tail of the largest volume-price fluctuations. Extracting the time series of the corresponding
parameter values we show that they evolve in time as stochastic variables themselves. For the particular case
of the parameter controlling the volume-price distribution tail we are able to extract an Ornstein-Uhlenbeck
equation which describes the fluctuations of the highest volume-prices observed in the data. Finally, we discuss
how to bridge the gap from the stochastic evolution of the distribution parameters to the stochastic evolution of
the (nonstationary) observable and put our conclusions into perspective for other applications in geophysics and
biology.
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I. INTRODUCTION AND MOTIVATION

When assessing the behavior of a complex system, such
as the ones described by stochastic time series, one typically
tries to uncover the nonlinear interactions and the strength of
fluctuating forces by means of extracting an evolution equation
from the data [1]. When the underlying value distributions of
the observables are stationary, this approach is, in principle,
possible [2]. However, in real systems the distributions are
often nonstationary or, at least, it is not possible to ascertain
how reasonable the assumption of stationarity is.

In this paper we address the evolution of nonstationary
value distributions of stochastic observables and describe a
framework that enables one to derive their evolution directly
from measurements of empirical data recordings. We apply
our framework to financial asset volume-prices, though the
framework is general enough for many other systems, as
we also discuss at the end. In particular, we show that
volume-price distributions evolve in a nonstationary way but
follow a typical functional shape, properly parameterized.
By keeping track of the series of parameter values at each
time step, we show that they follow a well-defined stochastic
evolution equation, which helps to establish the evolution of
the nonstationary distribution. It is known that even power laws
may be derived from stochastic equations driven by Gaussian
noise [3]. Further, we show how to use these findings to derive
possible distribution tail boundaries that enable the estimation
of risk measures. Finally, we put our results in perspective and
propose a framework to fully describe the stochastic dynamics
of a nonstationary variable under a few weak assumptions.

The choice of considering volume-price distributions, for
example, is not arbitrary. There is an old Wall Street adage
which says that “It takes volume to move price” [4]. This

adage holds today. Indeed, if one considers volume or price
separately from each other, one fails to grasp the behavior
of the capital exchanged, which combines both variables.
Therefore we consider here both variables combined, namely,
the volume-price, which measures the total capital exchanged,
providing information about the entire capital traded in the
market.

Several articles have been written about stochastic volatility
models [5–7] in order to attempt to characterize the dynamics
of the stock price returns. Such models have emerged due to
the well-established non-Gaussian character of financial time
series [8]. For instance, asymptotic behavior consistent with a
power-law decay can be found not only in price fluctuations
but also in trading volumes [4,9]. Here, we find a strong
competition or coexistence between a Gaussian model (log-
normal) and heavy tails (inverse �). For computing accurate
tail parameters, there is already an established panoply of tools
[10–12] that can be used. Here we focus on a different approach
to model the dynamics of the distribution tail and how it can
be used for assessing the associated risk of gain and loss due
to such large fluctuations.

We start in Sec. II by introducing four biparametric models
that are typically used in finance to fit the empirical data.
In Sec. III we investigate which models are best suited to
explaining the empirical distributions, introducing one variant
of the Kullback-Leibler divergence. In Sec. IV we reveal
the time evolution of the nonstationary distribution of the
volume-price based on a framework that enables one to extract
a stochastic motion equation for the distribution parameters.
This approach was used in the financial context recently [13]
when accessing clustering states of the stock market [14]. In
Sec. V we use our results to derive the evolution equations for
the original nonstationary variable. Finally, in Sec. VI, we put
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our approach into perspective and discuss possible applications
in other situations, before summarizing the main conclusions
of this paper.

II. NONSTATIONARY MODELS FOR STOCHASTIC
VARIABLES

Some of the most typical statistical models for stochastic
variables in different fields, ranging from physics [15,16]
and biology [17,18] to finance [19], medicine [20,21], and
even sociology, among other fields [22], are biparametric.
Moreover, they account for a range where a polynomial ansatz
dominates and another which behaves exponentially. Four
of the most used such biparametric distributions are the �

distribution,

p�(s) = sφ�−1

θ
φ�

� �[φ�]
exp

[
− s

θ�

]
, (1)

the inverse � distribution,

p1/�(s) = θ
φ1/�

1/�

�[φ1/�]
s−φ1/�−1 exp

[
− θ1/�

s

]
, (2)

the log-normal distribution,

pln(s) = 1√
2πθlns

exp

[
− (log s − φln)2

2θ2
ln

]
, (3)

and the Weibull distribution,

pW (s) = φW

θ
φW

W

sφW −1 exp

[
−

(
s

θW

)φW
]
. (4)

Next, we consider all these four distributions as candidate
models for our data.

In each case one has two parameters, represented here
by φ and θ , with a specific meaning. In the � distribution
φ� characterizes the left power tail and θ� accounts for the
decaying time on the right-hand side as indicated in Fig. 1(a).
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FIG. 1. The four biparametric distributions in Eqs. (1)–(4): (a) �

distribution, (b) inverse � distribution, (c) log-normal distribution,
and (d) Weibull distribution. For each model, a graphic illustration of
its parameters is sketched.
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FIG. 2. Illustration of the time series of the volume-price s of
one company listed in the NYSE during a period of approximately
3 days. (I) The 8-h period of normal trading; (II) afterhours trading
period (after closing), which is discarded from our analysis. During
the night (nontrading period) we set s = 0 .

In the inverse � distribution φ1/� characterizes the right
power tail and θ1/� accounts for the decaying time on the
left-hand side of the distribution as indicated in Fig. 1(b). In the
log-normal distribution φln accounts for the mean and θln for
the standard deviation of the variable logarithm, as indicated
in Fig. 1(c). In the Weibull distribution φW characterizes the
left power tail when the exponential term goes to 1 and θW

accounts for the decaying time on the right-hand side of the
distribution as indicated in Fig. 1(d).

In the following we analyze the volume-price (s) series of
around 2000 companies having listed shares on the New York
Stock Exchange (NYSE), with a sampling frequency of 10
min, during a total of 976 days, which, after removing all the
afterhours trading and discarding all the days with recording
errors [23], contains around 1.8 × 104 data points. See the
illustration in Fig. 2. All data were collected from the Web
[24] and more details concerning their preprocessing may be
found in Refs. [23,25,26]. Also note that in Fig. 2 it is possible
to observe a U pattern, typically found in intraday volume time
series [27].

In order to fit the empirical distribution of the volume-price
we use the maximum likelihood scheme. The maximum
likelihood scheme was applied to the probability density
function above, Eqs. (1)–(4). Since in the case of stock market
volume-prices the tail in the range of large values is associated
with the largest fluctuations, i.e., the largest gains and losses,
we concentrate our analysis on the tail of the volume-price
distribution. Therefore, we use the parameters obtained from
the maximum likehood scheme for the probability density
functions (PDFs) to fit the corresponding empirical cumulative
density function (CDF) of each one of the four models above.
Figures 3(a) and 3(b) show, respectively, the probability and
cumulative density function of each model (lines) that fit
the empirical distribution (circles) in one particular 10-min
snapshot.

When one considers the distributions in Eqs. (1) to (4) to
be stationary, the parameters of each distribution are taken
to be constants. In the following we introduce a different
assumption: while we take a constant functional shape, i.e., one
of the particular forms above, the corresponding parameters
are allowed to vary in time, between two successive 10-min
snapshots. In other words, we assume that for the general
case of a nonstationary distribution or density function, the
parameters φ and θ of the four models above are in fact
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FIG. 3. Illustration of the volume-price s distribution in one par-
ticular 10-min snapshot: (a) probability density function (PDF) and
(b) cumulative density function (CDF). Different colors correspond
to different models used to fit the empirical data (circles).

variables of the distribution itself that include all the time
dependency. In Fig. 4, we show a representation of the resulting
time series of each parameter, φ and θ , characterizing the
four models, (1)–(4), obtained from the maximum likelihood
scheme. The corresponding errors σθ̂ and σφ̂ of the parameter
estimators θ̂ and φ̂, respectively, are listed in Table I. Typically,
the relative errors are below 10%, 0.01 � max (σθ̂ )

〈θ̂〉 ,
max (σφ̂ )

〈φ̂〉 <

0.1. Large errors, such as the one for φ� , indicate that the
underlying distribution is probably not a good model for the
empirical volume-price distribution.

III. SEARCHING FOR AN OPTIMAL MODEL OF
VOLUME-PRICE DISTRIBUTIONS

In this section, we ascertain which model described previ-
ously is the best for the empirical set of volume-prices. To that

TABLE I. Maximum values of the standard errors σ (φ̂) and
σ (θ̂) of each estimator parameter, φ̂ and θ̂ , for the different models,
obtained using the maximum-likelihood estimation. Compared to the
typical values of the parameters shown in Fig. 4 one can see that
typical relative errors are typically between 1% and 10%.

max (σφ̂) max (σθ̂ )

� distribution 0.5 3.4 × 105

Inverse � distribution 0.51 8.3 × 105

Log-normal 0.05 0.04
Weibull 0.07 2.3 × 105
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FIG. 4. Time series of the two parameters characterizing the
evolution of the cumulative density function of the volume-price
s: (a) � distribution (b) inverse � distribution, (c) log-normal
distribution, and (d) Weibull distribution. Each point in these time
series corresponds to a 10-min intervals. Periods with no activity
correspond to the period when the market is closed and, therefore,
is not considered in our approach. In all plots, different colors
correspond to different distributions. Each parameter shows a typical
daily pattern, which supports the detrending considered in Fig. 6 (see
text).

end, we evaluate the accuracy of the fit of each model using a
“distance” between the empirical distribution and the modeled
one, which we define as

D(F )(P |Q) =
∫ smax

smin

F (s) ln

(
P (s)

Q(s)

)
ds,

∼
∑

i

F (si) ln

(
P (si)

Q(si)

)
�si, (5)

where i labels a succession of bins, covering the region
of volume-price values [smin,smax], si and �si represent,
respectively, the mean value and the width of bin i, P (si) is the
empirical distribution, Q(si) is the modeled PDF, and F (si) is a
weighting function. The region within which the distributions
are compared is accounted for by the values of i in the sum
and can cover the entire state space or a delimited subregion
of it. In our case, we consider solely the tail, i.e., the values of
i larger than the median of the empirical distributions.

The sum in Eq. (5) is weighted by the function F (si).
For F (si) = P (si) one obtains the standard Kullback-Leibler
divergence [28], where the values occurring at a higher
frequency have larger weights than those occurring rarely
(extreme events). Figure 5(a) shows the rankings of all
four models, evaluated according to the Kullback-Leibler
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FIG. 5. What is the best model? Ranking of the four distribu-
tions in Eqs. (1)–(4) used to fit the empirical tails in two cases:
(a) using the Kullback-Leibler divergence D(p), i.e., F (si) = P (si) in
Eq. (5); and (b) weighting the extreme events more strongly, with a
different distance D(1/p) with F (si) = 1/P (si). Rank 1 indicates the
best model.

divergence in Eq. (5). As we can see, the best fit is almost
always the inverse � distribution. In rank 2 one finds the
log-normal distribution with only a slightly larger average
distance (see Table II).

Because of the choice for the weighting function F (si) =
P (si), the Kullback-Leibler divergence accounts for a good
fit in the central region, which is more heavily weighted than
the tails. Of course, that standard case stems from information
theory, where the divergence is interpreted directly from the
information entropy: it is the difference between the cross
entropy of P and Q and the entropy of P [29].

However, to focus on modeling the extreme events in a
given empirical distribution, one needs to weight the events
occurring more rarely with heavier weights, and a different
weight function would be a better choice. In the following,
we choose the function F (i) = 1/P (i) to account for these
weights.

Figure 5(b) shows the ranking for this divergence D1/p. The
results are now significantly different: the best models are the
log-normal and the inverse � distributions. When considering
the tails, there is therefore coexistence of log-normal and
inverse �.

Table II lists the mean value and standard deviation of the
value distributions of the Kullback-Leibler divergence D(p)

and of the tail distance D(1/p) for all 10-min time spans.
Rank 1 is dominated by the inverse � distribution, followed
by the log-normal distribution when considering the usual
Kullback-Leibler function. When the variant D(1/p) is chosen,
one observes codominance between the log-normal and the

TABLE II. Average and standard deviation for the Kullback-
Leibler divergence D(p) and for the tail distance D(1/p). The inverse
� model was chosen for further analysis (see text).

D(P ) D(1/P )

Average SD Average SD

� distribution 0.80 0.03 2.39 2.45
Inverse � distribution 0.68 0.02 0.51 0.36
Log-normal 0.70 0.02 0.51 0.54
Weibull 0.73 0.03 1.40 1.51
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FIG. 6. Illustration of the time series of (a) φ (red) and (b) θ

(blue), both parameters of the inverse � distribution in Eq. (2). (c, d)
The corresponding detrended time series, φ∗ and θ∗, are plotted (see
text). In this figure we plot approximately 12 trading days, cutting
out the afterhours and closing periods.

inverse � distributions. Furthermore, the inverse � distribution
is parameterized in such a way that one single parameter, φ1/� ,
controls the tail of the largest values [see Eq. (2) and Fig. 1(b)].
For all these reasons, we henceforth choose the inverse �

distribution as our model for the evolution of the volume-price
distribution tail.

IV. STOCHASTIC EVOLUTION OF THE DISTRIBUTION
TAILS

In this section we extract the stochastic evolution of the
distribution tail, choosing the inverse � distribution as the
model. For simplicity we write φ and θ only for the parameters
φ1/� and θ1/� .

For the analysis we first study the average time evolution of
each parameter during one single day. Indeed, as we can see
from Figs. 6(a) and 6(b), there is clearly a daily pattern φ̄ and
θ̄ , which, after being removed from the original series, yields
the detrended data series of fluctuations, φ∗ and θ∗, shown
in Figs. 6(c) and 6(d), respectively. Our ansatz is therefore
defined by the decomposition of the original parameter series
into their daily pattern and their fluctuations:

φ(t) = φ̄(t) + φ∗(t), (6a)

θ (t) = θ̄ (t) + θ∗(t). (6b)

Since the series is nonstationary, we consider average daily
patterns for a set of 20 days. The series of fluctuations were
extracted by removing the 20-day moving average pattern from
the original series. This was done by centering the windows in
each point of the original series and subtracting the average of
the points on 10 days before and after that event.

Figure 7 shows the daily pattern of each parameter,
approximated as a cubic polynomial of time,

φ̄(td ) = aφt3
d + bφt2

d + cφtd + dφ, (7a)

θ̄ (td ) = aθ t
3
d + bθ t

2
d + cθ td + dθ , (7b)

where td = (t (mod 144)) − 54 in units of u = 10 min.
Note that the market is only open for normal trading during 6
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FIG. 7. Average over all trading days of parameters φ and θ .
Here we see that both φ̄ and θ̄ seem to follow the cubic law.
In the fitting function φ̄(td ) the coefficients have the values aφ =
3.4 × 10−5 u−3, bφ = −1.7 × 10−3 u−2, cφ = 3.5 × 10−2 u−1, and
dφ = 1.5. In the fitting function θ̄ (td ) the coefficients have the values
aθ = 3.9 × 102 u−3, bθ = −1.4 × 104 u−2, cθ = 5.7 × 104 u−1, and
dθ = 3.0 × 106 (see text), all in units of u = 10 min.

h 30 min (39 × 10 min). Outside of the normal trading period
we define the φ̄ and θ̄ to be 0. From the average pattern of
φ it is clear that large volume-prices on the NYSE tend to
concentrate in the beginning of the day (low φ̄ values).

Figures 8(a) and 8(b) show the marginal PDFs of the
variables φ and θ , which can be compared with the detrended
variables separately [Figs. 8(c) and 8(d)]. Clearly, the detrend-
ing does not have a significant effect on the shape of the PDF
of these two parameters. Figure 8(e) shows the joint PDF
of φ∗ and θ∗, from which one sees that the two parameters
can be assumed to be independent of each other. Since the
observed fluctuations of θ do not play a significant role in
the distribution tail, we approximate parameter θ by its daily
pattern, θ (t) ∼ θ̄ (td ) .

Under these assumptions, to fully derive the evolution
equations of both parameters [Eqs. (6)] one only needs to
define, additionally, the fluctuations φ∗(t), which will be
modeled according to the Langevin process

dφ∗ = D1(φ∗)dt +
√

2D2(φ∗)dWt, (8)

where D1(φ∗) and D2(φ∗) are the so-called drift and diffusion
coefficients, respectively, and dWt is one Wiener process
satisfying 〈dWt 〉 = 0 and 〈dWtdW ′

t 〉 = δ(t − t ′) .
A necessary ingredient of this approach is that φ∗ series

must be Markovian. In order to test the Markov property
we compute the transition probabilities p(x1,τ1|x2,τ2) and
p(x1,τ1|x2,τ2; x3 = 0,τ3). In Fig. 9(a) we show the contour
plot of these two probabilities for τ1 = τmin, τ2 = 5τmin, and
τ3 = 10τmin, with τmin = 10 min. The proximity of the contour
lines suggests that the Markovian property holds. Moreover,
in Figs. 9(b) and 9(c), two cuts through the conditional
probability densities are provided for fixed values of x1,
namely, at 〈x1〉 ± 0.4 standard deviations of the one-point
distribution p(x1), which also seems to support this statement.

In order to create a quantitative understanding of whether
or not the two conditional probabilities p(x1,τ1|x2,τ2) and
p(x1,τ1|x2,τ2; x3 = 0,τ3) are equal, the Wilcoxon rank-sum
test [30] is employed. The value of t value/t0 value = 1
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FIG. 8. Probability density function (PDF) of the fitting param-
eters, (a) φ and (b) θ , before the detrending, compared to the PDFs
of their fluctuations, (c) φ∗ and (d) θ∗, after detrending (see text).
(e) The joint PDF of both detrended variables after proper normaliza-
tion, φn = (φ∗ − φmin)/(φmax − φmin) and θn = (θ∗ − θmin)/(θmax −
θmin): both detrended variables can be taken as independent of one
another (see text).

indicates that the process is Markovian. As we can see in
Fig. 10, this test seems to further confirm that a proper Markov
length τM = 50 min can be reasonably assumed.

For a Markovian stochastic process, the evolution of the
associated stochastic variable is defined by the two functions
in Eq. (8), namely, D1 and D2, given by

Dk(φ∗) = lim
τ→0

Mk(φ∗,τ )

k!τ
∼ Mk(φ∗,τl)

k!τl

(9)

for k = 1,2 and where the conditional moments Mk(φ∗,τ ) are
defined as

Mk(φ∗,τ ) = 〈(Xt+τ − Xt )
k〉Xt=φ∗ . (10)

In Figs. 11(a) and 11(b) we represent the conditional
moments M1 and M2, respectively, as a function of τ .
Computing the slopes of M1 and M2 for each bin in variable
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FIG. 9. (a) Contour plots of the conditional PDF p(x1,τ1|x2,τ2)
(solid lines) and p(x1,τ1|x2,τ2; x3 = 0,τ3) (dashed lines) for τ1 =
τmin, τ2 = 5τmin, and τ3 = 10τmin, with τmin = 10 min. Dashed vertical
lines at standard deviations of 〈x1〉 = 0.4 and 〈x1〉 = −0.4 indicate
the cuts shown in (b) and (c), respectively.
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FIG. 10. Wilcoxon test to verify the Markovian property of the
φ∗ time series, showing the Markov length of τM = 50 min.
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FIG. 11. Conditional moments extracted from the time series of
φ∗. (a) First conditional moment M1 and (b) second conditional
moment M2, both as functions of τ in units of 10 min.
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FIG. 12. Here we see that (a) the drift coefficient is linear in
φ∗, while (b) the diffusion coefficient is a quadratic function of
the stochastic variable φ∗. See Eqs. (11). These two coefficients
characterize the stochastic evolution of the parameter φ, which
describes the tail of the inverse � distribution.

φ yields a complete definition of both the drift D1 and the
diffusion D2 coefficients for the full range of observed φ∗
values.

Figures 12(a) and 12(b) show the drift and diffusion,
respectively. The drift is linear on φ∗ with a negative slope,
while the diffusion is a quadratic polynomial of φ∗,

D1(φ∗) = −γφ∗, (11a)

D2(φ∗) = α(φ∗)2 + βφ∗ + δ, (11b)

with γ = 1.9 × 10−4 s−1, α = 1.9 × 10−4 s−1, β = 2.4 ×
10−6 s−1, and δ = 3.3 × 10−6 s−1. Therefore the evolution of
φ∗ follows Eq. (8) with the functions as defined in (11).

V. ACCESSING THE EVOLUTION OF THE
NONSTATIONARY VOLUME-PRICE

To end this paper, we present two possible applications of
our framework. The first is specifically aimed for the dynamics
of volume-price tails, where we provide a simple quantitative
measure of the expected bounded values of the tail parameters
also discussed in other contexts [31]. The second is to suggest
a broader perspective, developing a framework that provides
the full statistics of a nonstationary variable, based on the
dynamical model of all its moments.

The first remark deals with the evolution of the original
(nondetrended) φ parameter, following the assumption that
the inverse � distribution is the best model for the tail at
the highest volume-prices. Indeed, from the results shown in
Fig. 12 and Eqs. (11) the evolution of the fluctuations φ∗ is
governed by

dφ∗ = −γφ∗dt +
√

2(α(φ∗)2 + βφ∗ + δ)dWt, (12)

where γ = 1.9 × 10−4 s−1 is the inverse response time from
the market to perturbations in the largest range of fluctuations.
Note that γ corresponds to a response time 1/γ = 5.3 × 103

s, i.e., about 1 h 30 min, a value of the same order as the
Markov length τM calculated in the previous section: The
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FIG. 13. Autocorrelation of φ∗ as a function of the delay τ . A
short-term and a long-term regime exist, with autocorrelation times
of τs 	 0.5 h and τl 	 4.5 h, respectively, with dotted lines indicating
corresponding exponential fits. At the time scale of our Markov
modeling, the intermediate scale τi = 1/γ 	 1.7 h, compatible with
the time scale of the stochastic process modeled by Eq. (13), with the
solid line representing its time scale.

market responds to perturbations at a time scale close to the
time scale at which the parameter φ experiences stochastic
variations.

As Fig. 13 indicates, the autocorrelation of φ∗ does not
follow a simple exponential decay but presents two distinct
short-term and long-term regimes, one at ∼30 min, associated
with the trading operations, and another at ∼4.5 h, which
completes approximately 1 trading day. The Markov analysis
captures an intermediate regime, reflecting a mixture of both
time scales simultaneously and avoiding the non-Markovian
properties of the short-time scale, which has an autocorrelation
time of ≈ 1/γ , compatible with the stochastic process in
Eq. (12).

According to Eq. (6a) we can now write the evolution
equation for the tail parameter φ, according to dφ = dφ̄ +
dφ∗, which, from Eq. (12), reads

dφ = −γ (φ − φf )dt +
√

2D̃2(φ)dWt, (13)

where D̃2(φ) is also a quadratic function of the argument φ,
of course with different coefficients, and φf is a fixed point
depending only on the average tail slope φ̄ :

φf = φ̄ + 1

γ

dφ̄

dt
. (14)

From Eq. (14) it is clear that φf depends exclusively on
the time of day, td , since it is completely defined by the
daily pattern φ̄. From the coefficients of φ̄ [see Fig. 7 and
Eq. (14)] one sees that the drift term is larger at the beginning
and end of each trading-day. At the market opening, the
strong drift reflects the strong herd reaction from the market
accumulated during the night, pushing the distribution tail
towards the median value of φ̄. As stated above, the cumulative
buy and sell demands during the night also explain the lower
average tail slope, i.e., the higher volume-prices observed in
the corresponding distribution tail. At closing, a stronger drift
occurs, again reflecting the pressure of buyers and sellers to

0 5 10 15 20 25 30 35
td

0

50

100

150

200

250

φf

1.4

1.6

1.8

2

2.2

φ
_

FIG. 14. For the NYSE, while the average tail slope, φ̄, varies
cubically within 1 day, the corresponding fixed point φf [see Eq. (14)]
varies mostly quadratically, since its cubic coefficient is vary small
compared to the other terms in the polynomial. Such findings lead to
insight into the average volume-price behavior on the NYSE.

match the present state and tendency of the market before
closing. Note that all together the drift term in Eq. (14) is
typically positive only because of the average pattern, whose
dynamics is ruled by the large term in φf , namely, 1

γ

dφ̄

dt
. See

Fig. 14.
It is also important to note that the standard deviation σ of

the distribution of observed φ values can be estimated from
and compared with

σ 2 =
∫ ∞

0
(φ − φf )2Pstat(φ)dφ, (15)

where Pstat(φ) is the stationary distribution of φ, in the sense
that there exists a stationary distribution when averaged over
multiples of the 1-day periods, for given drift and diffusion
functions. In our approach drift and diffusion are defined in
Eq. (13), with φ given in Eq. (12), the average φ̄ defined by the
cubic polynomial in Eq. (7a), and the fluctuation φ∗ governed
by drift and diffusion in Eqs. (11).

As shown in the Appendix, the integral in Eq. (15) exists if

γ

α
> 1, (16)

which is intuitive: the standard deviation of the φ distribution
only exists when the drift is strong enough, i.e., when the
slope −γ [see Fig. 12(a)] is steep enough to dominate the
diffusion (γ > α). For the NYSE this is not the case: α = γ

within numerical accuracy. Therefore, we may claim that for
the highest range of volume-prices on the NYSE, an estimate
of the risk associated with the predictions of the distribution
tail is doubtful.

The second remark deals with the description of the
(nonstationary) evolution of the original stochastic variable,
in this case the volume-price s. As we have seen, while for
the large-value tail the inverse � model yields a good and
simple description of its evolution, the log-normal distribution
is found to be a good model for the tail as well. In this case, both
parameters of the distribution in Eq. (3) must be considered
together. In general, the distribution changes with time, due
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to the fluctuations of φ and θ , but still we can assume that all
time dependency is incorporated in the distribution parameters,
Pln(s,t) ≡ P (s,φ(t),θ (t)).

If one is able to write all the moments of s as a function
of the distribution parameters φ(t) and θ (t), one is able to
fully characterize the nonstationary evolution of s. Indeed, the
moments of s can be generally written as

〈sn〉 =
∫ +∞

0
snP (s,φ(t),θ (t))ds ≡ Fn(φ(t),θ (t)) (17)

when the integral exists. In the most general case, both
parameters can be taken as stochastic variables coupled to
each other and, therefore, obeying the Langevin system of
equations [2,32],

dφ = h1(φ,θ )dt + g11(φ,θ )dW1 + g12(φ,θ )dW2, (18a)

dθ = h2(φ,θ )dt + g21(φ,θ )dW1 + g22(φ,θ )dW2, (18b)

where (h1,h2)(T ) = D1 and ggT = D2. Deriving function
F in Eq. (17) one extracts the evolution equation of all
statistical moments by differentiating Eq. (17) using Itô-Taylor
expansion and incorporating the Eqs. (18), namely [32],

d〈sn〉 = An(φ(t),θ (t))dt + Bn(φ(t),θ (t))dW1

+Cn(φ(t),θ (t))dW2, (19)

with

An(φ(t),θ (t)) = ∂Fn

∂φ
h1 + ∂Fn

∂θ
h2 + ∂2Fn

∂φ∂θ
(g11g21 + g12g22)

+ 1

2

∂2Fn

∂φ2

(
g2

11 + g2
12

) + 1

2

∂2Fn

∂θ2

(
g2

21 + g2
22

)
,

(20a)

Bn(φ(t),θ (t)) = ∂Fn

∂φ
g11 + ∂Fn

∂θ
g21, (20b)

Cn(φ(t),θ (t)) = ∂Fn

∂φ
g12 + ∂Fn

∂θ
g22. (20c)

Equation (19) is a nonhomogeneous stochastic differential
equation with “drift” and “diffusion” functions which depend
on time.

VI. DISCUSSION AND CONCLUSIONS

In this paper we study the stochastic evolution of the
volume-price distributions of assets traded on the New York
Stock Exchange as a prototypical example of nonstationary
distributions of stochastic variables. We have shown that
these distributions are nonstationary, in the sense that the
parameters characterizing the distribution are themselves
stochastic variables. In order to find the best fit for the
volume-price distribution we tested four biparametric models
commonly used in modeling the price of financial assets [19],
namely, the � distribution, inverse � distribution, log-normal
distribution, and Weibull distribution.

To weight each value in the volume-price spectrum ac-
cording to some density function we use the Kullback-Leibler
divergence and one new variant, Eq. (5), which accounts
for extreme events, and present evidence that the inverse �

distribution is at least a very reasonable choice for modeling
the region of the spectrum of highest values. Moreover,
attending to the fact that in the inverse � distribution the two
parameters decouple, we focus our study on the parameter
φ, which characterizes the large fluctuations of the volume-
price distribution. By applying the framework in Ref. [2],
we are able to extract a stochastic differential equation that
describes the evolution of this parameter, Eq. (13). In general,
taken together with previous investigations, e.g., agent-based
models for studying transitions between different regimes of
trading in a financial network [33], this will eventually permit
the derivation of risk measures for the largest fluctuations.
However, for the specific case of the NYSE, we have provided
evidence that diffusion of the volume-price tail is too large
to enable bounded values of its slope fluctuations. Thus, risk
estimates associated with the tail distribution are, at most,
difficult and perhaps doubtful or not possible.

We have also provided a framework for deriving the
stochastic evolution of a nonstationary variable, under the
assumption that it follows a biparametric model whose param-
eters are themselves stochastic variables in time incorporating
all the time dependency of the nonstationary process. By
computing all the moments as a function of these distribution
parameters, one is able to fully characterize the nonstationary
evolution of the stochastic variable. In particular, this approach
may be helpful in other situations and applications, such as
in biology, when accessing the evolution of heart interbeat
intervals, or in energy sciences, to address nonstationary
measurement series in energy power production of wind
turbines.

Finally, the tail alone of one distribution can alternatively
be modeled through a generalized Pareto distribution (GPD),
which yields three parameters (location, shape, and scale).
While in this work we have shown a model for the fundamental
dynamics of volume-price distribution tails using one single
parameter, in a step forward approach, the generalized Pareto
distribution could be used, yielding a three-dimensional
system of coupled stochastic equations for the evolution of
all three parameters. While such an approach increases the
complexity of our approach considerably, which reduces the
fundamental dynamics of the distribution tail to the stochastic
modeling of one single parameter, new insight could be extract
from this more generalized model and add criticism to the com-
mon models used for volume-price distribution and dynamics.
These issues will also be considered in forthcoming studies.
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APPENDIX: IS THERE A RISK ESTIMATE FOR THE TAIL
OF NYSE VOLUME-PRICE DISTRIBUTIONS?

As sketched in Fig. 15, having φf in Eq. (14) and σ

in Eq. (15), one can establish the upper and lower bounds
for the tail of the empirical distribution, namely, −φf − σ

and −φf + σ , respectively, which may be helpful to de-
rive risk measures for large fluctuations. In this Appendix,
we show that, for our NYSE data, no standard deviation
exists.

We, first, write the drift and diffusion functions in
Eq. (13), which follow directly from substituting φ∗ = φ − φ̄

in Eqs. (11), yielding

D̃1(φ,td ) = −γ (φ − φf ), (A1a)

D̃2(φ,td ) = α(φ − φ̄)2 + β(φ − φ̄) + δ

= α̃φ2 + β̃φ + δ̃, (A1b)

with

α̃ = α, (A2a)

β̃ = β − 2αφ̄, (A2b)

δ̃ = αφ̄2 − βφ̄ + δ, (A2c)

all coefficients now depending on the time of day td .
It is known [1] that the stationary probability density func-

tion Pstat(φ) of a nonlinear Langevin process φ(t), governed
by drift D1(φ) and diffusion D2(φ), is given by

Pstat(φ) = N

D2(φ)
exp

(∫
φ

D1(φ′)
D2(φ′)

dφ′
)

, (A3)

where N is a normalization constant. Thus, substituting
Eqs. (A1) into (A3) yields

Pstat(φ) = N (α̃φ2 + β̃φ + δ̃)−
γ

2α̃
−1 exp

×
(

2φf√
α̃δ̃ − β̃2

arctan

(
2α̃φf + β̃√

α̃δ̃ − β̃2

))
. (A4)

Note that the radicals in the expression above always exist,
since the randicands are positive, i.e., D̃2 always has a negative
discriminant.

Finally, substituting Eq. (A4) into Eq. (15) yields

σ 2 = N

∫ ∞

0

(φ − φf )2

(α̃φ2 + β̃φ + δ̃)
γ

2α̃
+1

exp

×
(

2φf√
α̃δ̃ − β̃2

arctan

(
2α̃φf + β̃√

α̃δ̃ − β̃2

))
dφ. (A5)

Clearly, the exponential function is limited in the range of
integration. Thus, the integral exists and σ has a finite value if
the difference in the degrees of each polynomial is larger than
1, 2( γ

2α̃
+ 1) − 2 > 1, yielding the condition in Eq. (16).

While for the specific case of the NYSE there is a diverging
standard deviation, it may be the case that similar stochastic
processes governing the distribution tail of volume-prices in
other stock markets have a stronger drift force or a weaker
diffusion, enabling us to estimate bounding values for the slope
of the distribution tail as sketched in Fig. 15.
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