
PHYSICAL REVIEW E 93, 052119 (2016)

Intrinsic noise in systems with switching environments
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We study individual-based dynamics in finite populations, subject to randomly switching environmental
conditions. These are inspired by models in which genes transition between on and off states, regulating underlying
protein dynamics. Similarly, switches between environmental states are relevant in bacterial populations and
in models of epidemic spread. Existing piecewise-deterministic Markov process approaches focus on the
deterministic limit of the population dynamics while retaining the randomness of the switching. Here we go
beyond this approximation and explicitly include effects of intrinsic stochasticity at the level of the linear-noise
approximation. Specifically, we derive the stationary distributions of a number of model systems, in good
agreement with simulations. This improves existing approaches which are limited to the regimes of fast and slow
switching.
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I. INTRODUCTION

There is now a broad consensus that noise plays a crucial
role in most dynamical systems in biology, chemistry, and in
the social sciences. The theory with which to describe these
stochastic processes is well established and has its roots in
statistical physics. Modelling tools such as master equations,
Fokker-Planck equations, and Langevin dynamics are standard
and can be found in a number of textbooks [1–3]. Much of
this work focuses on processes between discrete interacting
individuals, which can be members of a population in
epidemiology [4–6], atoms or molecules in chemical reaction
systems [7,8], or proteins in the context of gene regulatory
networks [9,10]. Many of these models are Markovian and
their natural description is in terms of a master equation which
describes the time evolution of the underlying probability
distribution of microstates.

Solving the master equation analytically is often a difficult
task: Only very simple linear model dynamics allow further
treatment [1–3,11,12]. It is therefore common to employ
approximation techniques, most notably ones built around
the assumption that the size of the population is large but
finite. The inverse system size (or its square root) then
serves as a small parameter in which an expansion can be
performed. The lowest order in this expansion corresponds
to the limit of infinite systems and provides a deterministic
description devoid of stochasticity. The second-order term in
the expansion introduces some stochastic effects of noise in the
population but approximates the individual-level dynamics by
a simpler Gaussian process on a continuum domain [13]. These
techniques have been very successful in capturing elements of
noise-induced phenomena, for example, the weak selection
of competing species [14–18], cyclic behavior, patterns, and
waves [19–21]. The main techniques used to characterize these
effects are system-size expansion methods, most notably the
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Kramers-Moyal and van Kampen expansions. The latter is also
known as the linear-noise approximation (LNA) [1,2].

These methods are now used routinely for the analysis
of individual-based models with intrinsic noise in the weak-
noise limit. Most applications so far focus on systems in
which the reaction rates are set by constant model param-
eters, and the only time dependence is in the evolution
of the population of individuals itself. Recently, exceptions
have gained attention [6,22–26]. In these models, reaction
rates vary continuously and deterministically in time, for
example, to capture periodically varying infection rates to
model seasonal variation in epidemic spreading. Crucially,
no additional stochasticity is introduced in these dynamics by
the environment, and the only discreteness in the dynamics
is in the evolution of a finite population of individuals. Other
authors have considered models with an environment which
varies stochastically and continuously [27–29].

For many model systems it is more realistic to assume that
model parameters switch between different discrete states.
This includes phases of antibiotic treatment in the context
of bacteria [30,31], genetic switches [9,32–38], evolutionary
game theory [39], and predator-prey models in switching
environmental conditions [40,41]. Such models describe two
types of discreteness: that of the state of the environment and
that of the population of interacting individuals. In principle,
the environmental switching can occur stochastically or follow
a deterministic pattern (e.g., prescribed periods of antibiotic
treatment, regularly interspersed with periods of no antibiosis).

In the present work we focus on stochastically switching
environments. Assuming again a large but finite population,
the demographic noise in the population can be approximated
using the above expansion techniques. The noise relating to
switches in the environmental state, however, cannot be dealt
with in this way: There is no large parameter to expand in
when the number of environmental states is small.

In models with switching environments the lowest-order
expansion in the strength of the intrinsic noise leads to a
“piecewise-deterministic Markov process” (PDMP) [42,43].
In this approximation the dynamics of the population of
individuals is described by deterministic rate equations be-
tween stochastic switches of the environment. This approach
neglects all intrinsic stochasticity from the reaction dynamics
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within the population—the population scale is taken to be
infinite. The only type of randomness retained is that of
the switching of the environmental states. The application
of PDMPs has recently gained attention in the description
of genetic networks [32,44,45].

The PDMP approximation has been surprisingly effective
in modeling systems with very large populations [32,45,46];
however, it does not produce accurate results outside this
limit. Recently, an alternative approach has incorporated some
effects of demographic noise, but it is only valid if there is a
very large separation between the time scales of environmental
switching and that of the population dynamics [37,38]. Here,
we develop the theory further and construct a systematic
expansion in the noise strength about the PDMP.

The remainder of this paper is organized as follows: In
Sec. II we give a more formal introduction to the problem using
a relatively simple linear model. We show how the system-size
expansion can be applied in the presence of switching envi-
ronments and we analytically derive the resulting stationary
distribution for the linear model. In Sec. III we construct a more
general theory and describe how the method can be applied to a
larger set of model dynamics. Section IV contains applications
to a number of model systems with nonlinear reaction rates
and/or other additional features. In Sec. V we summarize our
findings and give an outlook on future work. The Appendix
contains further details of the relevant calculations.

II. INTRODUCTORY EXAMPLE

A. Model definition

We first focus on a simple example with linear reaction
rates. We consider a population of individuals of type A, and
we write n for the number of individuals in the population at
any given time. Individuals can be created and they can decay,
so the model describes a birth-death process. The death rate
per individual is assumed to be a constant d. The creation rate
is taken to depend on the state of the external environment;
individuals are born with rate �bσ , where σ represents the
state of the environment. This can be summarized as follows:

∅
�bσ−−→ A,

A d−→ ∅, (1)

for times at which the environment is in state σ . The parameter
� has been introduced as per normal convention to set a typical
scale of the population size [1,2]. If the environment were to
be fixed at σ , then the number of individuals in the system
would fluctuate around the value �bσ/d in the long run. These
fluctuations can be expected to be of order �1/2 and reflect the
demographic stochasticity.

At any given time, the state of the full system is completely
described by the state σ of the environment and the number
of individuals in the population n. We restrict ourselves to
cases in which the environment has two states, σ ∈ {0,1}. The
switching between these states is assumed to be independent
of the state of the population n and it occurs with constant
rates. We write λ+ for the rate of switching from state 0 to
state 1 and λ− for the rate of switching from state 1 to state 0.

This stylized model can be interpreted in the context
of genetic networks as follows [9]. The two states of the

environment, often labeled as G0 and G1, correspond to
regimes in which a certain promoter—a region on DNA which
initiates transcription—is either inactive (G0) or activated
(G1). A protein (A) is produced with rates b0 and b1 in the
corresponding state. Independently of the state of the gene,
proteins degrade at a constant rate d. This simple model has
been studied, for example, in Refs. [9,37,38,45,47], and it can
be written in the form

G0
�b0−−→ G0 + A, G1

�b1−−→ G1 + A,
(2)

G0
λ+−→ G1, G1

λ−−→ G0, A d−→ ∅.

The reaction rates of this model are linear in n. It is possible
to develop exact solutions to linear models of this type using a
generating-function approach [11,12,47–50]. However, such
solutions are often limited to simple model systems and
frequently they only provide limited insight into the actual
physical dynamics. We use this linear model to introduce our
approximation method. In later sections we will then apply
this approach to cases with nonlinear reaction rates, where an
exact solution is no longer feasible.

B. Simulation of results and general behavior

To illustrate the general behavior of the model, we first
show the outcome of a set of characteristic simulations in
Fig. 1. Figures 1(a), 1(c), and 1(e) depict individual simulation
runs. In each of these panels a trajectory of the population
density x(t) = n(t)/� is shown as a solid line, and the
switching of the environmental states is indicated by the
shading of the background. Figure 1(a) shows an example
of relatively slow switching. In each environmental state,
the population tends to a fixed point, φ∗

σ = bσ /d, specific to
the environment. It then fluctuates about this fixed point. The
stationary distribution [Fig. 1(b)] is bimodal. As the switching
rate is increased, Figs. 1(c) and 1(d), the stochastic dynamics
spends more time in between the two fixed points and the
bimodality of the stationary distribution is lost; we observe a
nearly flat distribution between the two fixed points. At very
fast switching, Figs. 1(e) and 1(f), the stationary distribution
becomes unimodal, peaked at a value between the two fixed
points. The system spends most of its time fluctuating about
a point in the interior of phase space, away from either of the
two fixed points.

We set out to characterize this behavior analytically, and our
aim is to approximate the stationary outcome of the dynamics.
We will develop a general approximation technique, which
is applicable to a wider class of models, in the next section.
Before we do this, it is useful to outline our approach and to
describe the main steps of the analysis in the simpler model
defined in Eqs. (2).

C. Master equation

We write n(t) for the number of individuals at time t

and σ (t) for the state of the environment. These follow
random-jump Markov processes [2]. We write P (n,σ,t) for
the probability to find the system and environment in state
(n,σ ) at time t . We will frequently suppress the explicit time
dependence to keep the notation compact.
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FIG. 1. Sample paths of the dynamics and the stationary distribution of the linear birth-death process described by Eq. (2). Panels (a)
and (b) show the regime of slow environmental switching (λ+ = λ− = 0.1), panels (c) and (d) show intermediate environmental switching
(λ+ = λ− = 1), and panels (e) and (f) show fast environmental switching (λ+ = λ− = 10). Panels (a), (c), and (e) show individual trajectories
(solid line) and the state of the environment (shaded background). Panels (b), (d), and (f) on the right show the stationary distribution from
simulations, averaged over multiple runs (histogram). We also plot the theoretical prediction for the stationary distribution �∗(x) obtained
from Eqs. (16), shown as solid lines for the three scenarios. The trajectories and stationary distributions have been obtained by application of
the Gillespie algorithm [51,52]. Model parameters are b0 = 1/3, b1 = 5/3, d = 1, and � = 150.

The master equation governing the time evolution of this
distribution then can be written as

d

dt
P (n,0) = L0P (n,0) − λ+P (n,0) + λ−P (n,1),

(3)
d

dt
P (n,1) = L1P (n,1) + λ+P (n,0) − λ−P (n,1).

These equations consist of two components. The operators L0

and L1 characterize the creation and removal of individuals
assuming a fixed state of the environment. They are given by

Lσ = �bσ (E−1 − 1) + d(E − 1)n, (4)

where E is the shift operator [1]: Ef (n) = f (n + 1). It is
important to note that operators, such as E or Lσ , act on
everything that follows to their right throughout our paper,
e.g., Enf (n) = (n + 1)f (n + 1). The latter two terms in the
master equation describe the switching between the two
environmental states.

The master equation (3) describes the time evolution of
the full process, and in our analysis, we wish to calculate the

joint stationary distribution of the number of individuals n and
environmental state σ , P ∗(n,σ ).

D. Approximation of the master equation

We now proceed to approximate the above master equation.
To this end, it is useful to define the population density x(t) =
n(t)/�. Assuming that the typical system size � is large but
finite, the operators, L0 and L1, can be approximated by a
Taylor expansion with respect to �−1,

Lσ ≈ Lσ = −∂x(bσ − xd) + 1

2�
∂2
x (bσ + xd). (5)

This is the Kramers-Moyal expansion [1,2] in terms of the
variable x = n/�, while keeping the state of the environment,
σ , discrete. We write Lσ for the operators obtained from this
expansion, retaining only leading and subleading orders in
�−1. The state of the system is now expressed in terms of x

and σ , and we will write �(x,σ ) for the resulting probability
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density. The explicit time dependence is again suppressed in
this notation.

Substituting this into the master equation (3) allows us to
approximate the process by

∂t�(x,0) = L0�(x,0) − λ+�(x,0) + λ−�(x,1),
(6)

∂t�(x,1) = L1�(x,1) + λ+�(x,0) − λ−�(x,1).

This expansion differs from the standard Kramers-Moyal
expansion in that the environmental states are not included
in the expansion. Equation (6) accordingly is not a standard
Fokker-Planck equation; it retains the discrete switching
terms, akin to terms in the master equation of a conventional
telegraph process. Equations (6) describe a diffusion process
with a Markovian switching in between two sets of drift and
diffusion [53,54].

Since Eqs. (6) contain multiplicative noise, it is difficult to
solve these equations directly. In the following sections, we
propose an approximation method to analyze this dynamics.
Our approach is similar to the conventional linear-noise
approximation, and describes the effects of intrinsic noise to
subleading order.

E. Leading-order approximation: Piecewise-deterministic
Markov process

In the above expansion we have retained leading and
subleading terms in �−1. To proceed, it is useful to first
consider the leading-order terms only, i.e., to study the limit
� → ∞. We obtain

∂t�(φ,0) = −∂φ(b0 − dφ)�(φ,0)

− λ+�(φ,0) + λ−�(φ,1),
(7)

∂t�(φ,1) = −∂φ(b1 − dφ)�(φ,1)

+ λ+�(φ,0) − λ−�(φ,1),

where we have written φ = lim�→∞ n/� to indicate that we
have taken the limit of infinite populations. In this limit the
Lσ are Liouville operators describing deterministic flow of
φ. The functional form of this flow at any one time is entirely
determined by the state of the environment, σ . The process φ(t)
is a piecewise deterministic Markov process [42,43,53,55], a
random process composed of deterministic motion in between
the discrete environmental transitions. The PDMP is a descrip-
tion of the system which accounts for the stochasticity of the
switching only; the demographic noise, on the other hand, is
neglected in the above truncation after the leading-order term.

The long-term behavior of the system can be determined
from inspection of the Liouville operators. In each state σ the
process tends towards a stable fixed point, φ∗

σ = bσ /d. In the
following, we assume that b0 < b1 so φ∗

0 < φ∗
1 . The dynamics

can be illustrated by the flow diagram in Fig. 2. When the
environment is in state 0 the trajectory of the PDMP moves
towards φ∗

0 , and when the environment switches the direction
is reversed towards φ∗

1 . In the long run, the PDMP will always
take values in the interval between the fixed points φ∗

0 and φ∗
1 .

The stationary distribution of the PDMP, �∗(φ,σ ), can be
found by setting the derivatives with respect to time in Eqs. (7)
to zero, followed by integration and rearrangement. Further
details are discussed in a more general setting in the next

FIG. 2. Illustration of the Liouville flow of the model described
by Eq. (7). Arrows indicate the Liouville flow in each of the two
environments, and stable fixed points are shown as filled circles.
The PDMP converges into the interval between the two fixed points
(shaded region) at long times.

section. For the linear model defined in Eqs. (1) we find

�∗(φ,0) = N (φ − φ∗
0 )

λ+
d (φ∗

1 − φ)
λ−
d

φ − φ∗
0

,

(8)

�∗(φ,1) = N (φ − φ∗
0 )

λ+
d (φ∗

1 − φ)
λ−
d

φ∗
1 − φ

,

for φ ∈ (φ∗
0 ,φ∗

1 ). The prefactor N is a normalization constant,
determined by the condition

∫ φ∗
1

φ∗
0

[�∗(φ,0) + �∗(φ,1)] dφ = 1. (9)

This result is consistent with those reported by other au-
thors [45,55,56].

F. Comparison against simulations

In Fig. 3 we illustrate the behavior of the PDMP.
Figures 3(a), 3(c), and 3(e) show individual time series
for slow, medium, and fast switching of the environment
(parameters are as in Fig. 1). Figures 3(b), 3(d), and 3(f)
depict the corresponding stationary distributions of the PDMP,
as obtained from Eqs. (8). For slow switching rates, the
marginal stationary distribution �∗(φ) = �∗(φ,0) + �∗(φ,1)
is bimodal, with singularities at the end points. In this regime,
the PDMP typically spends enough time in each environment
between switches to come close to the corresponding fixed
point. For fast switching �∗(φ) is unimodal. In this situation,
the system typically does not have sufficient time to reach the
vicinity of the fixed points. An intermediate case is shown in
Figs. 3(c) and 3(d). For this particular choice of parameters,
the resulting stationary distribution is seen to be flat between
the two fixed points, φ∗

0 and φ∗
1 .

Comparison of the stationary distributions of the PDMP
with those of the process in finite populations (Fig. 1) shows
that the PDMP approximation recovers some of the qualitative
features of the full system but not all. The transition from
a bimodal to a unimodal shape is successfully reproduced.
On the other hand, the singularities for slow switching rates
seen in the stationary state of the PDMP are not observed
in the full process. The PDMP is confined to the interval
(φ∗

0 ,φ∗
1 ), while the intrinsic noise in finite populations allows

for fluctuations on both sides of φ∗
0 and φ∗

1 . Thus the support

052119-4



INTRINSIC NOISE IN SYSTEMS WITH SWITCHING . . . PHYSICAL REVIEW E 93, 052119 (2016)

t
0 10 20 30 40 50

φ
(t

)

0

0.5

1

1.5

2
(a)

φ
0 0.5 1 1.5 2

pr
ob

ab
ili

ty
 d

en
si

ty

0

0.5

1

1.5

2

2.5

3
(b)

t
0 10 20 30 40 50

φ
(t

)

0

0.5

1

1.5

2
(c)

φ
0 0.5 1 1.5 2

pr
ob

ab
ili

ty
 d

en
si

ty

0

0.5

1

1.5

2

2.5

3
(d)

t
0 10 20 30 40 50

φ
(t

)

0

0.5

1

1.5

2
(e)

φ
0 0.5 1 1.5 2

pr
ob

ab
ili

ty
 d

en
si

ty

0

0.5

1

1.5

2

2.5

3
(f)

FIG. 3. Sample paths and stationary distribution of the PDMP for the linear model in infinite populations. Panels (a) and (b) show the regime
of slow environmental switching (λ+ = λ− = 0.1), panels (c) and (d) show intermediate environmental switching (λ+ = λ− = 1), and panels
(e) and (f) show fast environmental switching (λ+ = λ− = 10). Panels (a), (c), and (e) show individual trajectories (solid line) and the state of
the environment (shaded background). Panels (b), (d), and (f) show the stationary distribution of the PDMP, as obtained from from Eq. (8).
Comparison with Fig. 1 shows that this stationary distribution does not adequately reflect the stationary distribution of the full noisy process
in finite populations. The sample paths have been obtained by Runge-Kutta integration of Eq. (11) between randomly generated exponential
switching times. Model parameters are b0 = 1/3, b1 = 5/3, d = 1, and � = 150.

of the stationary distribution of the model with intrinsic noise
includes concentrations below φ∗

0 and above φ∗
1 .

These results stress the significance of intrinsic noise for the
dynamics of the system. In order to approximate the stationary
behavior to a better accuracy, it is necessary to include
higher-order terms in the above Kramers-Moyal expansion.
The corresponding formalism is well established for systems
without random switches of the environment, and it takes
the form of an expansion about the deterministic path of the
infinite system [26]. In our case, the leading-order behavior
(the PDMP) is a stochastic process itself due to the randomness
of the environmental switching. The subleading description
we discuss below is hence an expansion about this random
process.

G. Subleading order: Linear-noise approximation

Before we present a more detailed account of the expansion
to subleading order (Sec. III), we briefly outline the general
idea. For a fixed realization of the environmental switching

process, σ (t), we decompose the dynamics of the population
as follows:

n

�
= φ(t) + 1√

�
ξ (t). (10)

This is along the lines of the system-size expansion in systems
with time-dependent rates [26,57]. For a given path of the
environment, σ (t), the trajectory φ(t) of the resulting PDMP
is given by the solution of

φ̇(t) = bσ (t) − dφ(t), (11)

where the birth rate bσ (t) at time t is determined by the state of
the environment at that time, σ (t). The dynamics of Eq. (11) is
the equivalent of the usual rate equations for systems without
environmental switching.

To subleading order, systems of this form, but without en-
vironmental switching, are described by stochastic differential
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equations of the form

ẋ(t) = v(x) +
√

w(x)

�
η(t), (12)

where we have suppressed the obvious time dependence of x

on the right-hand side. The dependence of the amplitude w(x)
on x indicates multiplicative noise, and η(t) is Gaussian white
noise of unit amplitude, i.e., 〈η(t)η(t ′)〉 = δ(t − t ′). The term
v(x) represents deterministic drift. In a birth-death process
with fixed birth rate b and death rate d one would have v(x) =
b − dx, for example.

The equivalent of Eq. (12) for the model with environmental
switching is given by

ẋ(t) = vσ (t)(x) +
√

wσ (t)(x)

�
η(t). (13)

Equation (13) is similar to the outcome of the procedure
described in Refs. [26,57], where the system-size expansion
was carried out for systems with periodically driven rates.
The main difference is the fact that σ (t) is now a stochastic
process itself, whereas the external driving was deterministic
in Ref. [26]. In the limit � → ∞ the noise η(t) does not
contribute, and we recover the PDMP dynamics of Eq. (11).

For the case of the linear model described above we have
vσ (x) = bσ − dx and wσ (x) = bσ + dx. These are the drift
term and noise amplitude one would obtain from a standard
Kramers-Moyal expansion at fixed environmental state σ .

In the spirit of the usual linear-noise approximation (LNA)
we next write x(t) = φ(t) + ξ (t)/

√
� and obtain

φ̇(t) = vσ (t)(φ),
(14)

ξ̇ (t) = v′
σ (t)(φ)ξ (t) + √

wσ (t)(φ)η(t).

We have written v′
σ = dvσ (φ)/dφ, and we have suppressed

the time dependence of φ on the right-hand side.
From the LNA it is possible to proceed and to approxi-

mate the stationary distribution of the process, �∗(ξ,φ,σ ) =
�∗(ξ |φ,σ )�∗(φ,σ ). The distribution �∗(φ,σ ) is the station-
ary outcome of the PDMP, and it can be computed exactly, see
Eqs. (8) for the linear birth-death model. The general case is
discussed in the following section.

In the stationary regime the distribution of ξ will, in
principle, depend on the state σ of the environment and on
the variable φ. In order to proceed we now assume that the
dependence on σ can be neglected, so we write �∗(ξ |φ,σ ) ≈
�∗(ξ |φ). This is an approximation, but it turns out to work
well for all models we have tested. Making this assumption
we write

�∗(ξ,φ,σ ) ≈ �∗(ξ |φ) �∗(φ,σ ). (15)

The distribution �∗(ξ |φ) is Gaussian with mean zero, and with
a variance which depends on φ and which can be obtained
analytically as described in the next section. The resulting
picture is illustrated in Fig. 4. A given realization of the
environmental process generates a realization of the PDMP.
The state of a finite population, subject to the same path of
environmental states, will fluctuate about the PDMP trajectory,
as indicated by the shading in Fig. 4.

t

x
(t

)

0 20 40 60 80 100
0

0.5

1

1.5

2

FIG. 4. Sample path of the PDMP of the linear model [φ(t),
solid line] and environmental state σ (t) (background shading).
The dynamics in the finite system for the same realisation of the
environmental process will deviate from the PDMP. The standard
deviation of the deviation is approximated by Eq. (36) as discussed
below and shown here as shading around the PDMP trajectory.
Parameters are b0 = 1/3, b1 = 5/3, d = 1, λ+ = λ− = 1, and � =
150.

From these approximations the stationary distribution of
x = φ + �−1/2ξ then can be estimated as

�∗(x) =
∑

σ

∫
dφ dξ [�∗(ξ |φ)�∗(φ,σ )

×δ(x − φ − �−1/2ξ )]. (16)

Returning to Fig. 1, we compare the stationary distribution
of the linear model as obtained from Eq. (16) against the results
of numerical simulations. The results from the theory are
shown as solid lines, and the simulation data as histograms. We
find that the approximation reproduces the numerical results
to a good accuracy.

III. GENERAL FORMALISM

A. Definition and master equation

The linear model discussed so far was deliberately simple
and the main purpose of studying it was to develop a general
intuition. In order to extend the method beyond the linear case,
we now consider a more general model. This will introduce
several new aspects to the problem.

As before, we restrict our discussion to the case of a single
species and two environmental states. We write n for the
number of individuals in the population, and σ ∈ {0,1} for
the state of the environment. We use the notation λ+(n) for the
rate with which the environment switches from state 0 to state
1, and λ−(n) for the rate of switches in the opposite direction.
Unlike in the previous sections, we now allow for an explicit
dependence of these rates on the state of the population,
λ± = λ±(n).

We assume that there are M possible reactions in the
population, labeled m = 1, . . . ,M . Each reaction m occurs
with rate am,σ (n) dependent on the current state of the
environment and population. Any occurrence of a reaction
of type m is taken to change the number of individuals in
the population by Sm. These are the underlying stoichiometric
coefficients. The set of propensity functions, am,σ (n), together
with the stoichiometric coefficients completely define the
dynamics of the population.
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The master equation describing the time evolution of
P (n,σ ) then reads

d

dt
P (n,0) = L0P (n,0) − λ+(n)P (n,0) + λ−(n)P (n,1),

d

dt
P (n,1) = L1P (n,1) + λ+(n)P (n,0) − λ−(n)P (n,1).

(17)

The operators L0 and L1 are given by

Lσ =
M∑

m=1

(E−Sm − 1)am,σ (n). (18)

Anticipating the system-size expansion, we write the tran-
sition rates in the form am,σ (n) = �rm,σ (x), where x = n/�

and where rm,σ carries no explicit � dependence. In slight
abuse of notation we will write λ±(x) instead of λ±(�x). The
master equation can be expressed in terms of �(x,σ,t), the
probability density of finding the random processes at x,σ at
time t . The dynamics of the joint probability distribution can
be approximated by

∂t�(x,0) = L0�(x,0) − λ+(x)�(x,0) + λ−(x)�(x,1),

∂t�(x,1) = L1�(x,1) + λ+(x)�(x,0) − λ−(x)�(x,1),

(19)

where the operators L0 and L1 are given by

Lσ =
M∑

m=1

(
−Sm∂x + Sm

2

2�
∂2
x

)
rm,σ (x). (20)

As before, we have truncated the expansion of the operators in
powers of �−1 after the subleading terms. In explicit form we
have

Lσ = −∂xvσ (x) + 1

2�
∂2
xwσ (x), (21)

where we have introduced

vσ (x) =
M∑

m=1

Smrm,σ (x),

(22)

wσ (x) =
M∑

m=1

S2
mrm,σ (x).

Again, the process described by Eqs. (19) contains multiplica-
tive noise and it is difficult to solve these equations in general.
In the next section, we begin by analyzing the dynamics in the
limit of an infinite population.

B. Leading-order approximation: Piecewise-deterministic
Markov process

We first analyze the process in the limit of infinite system
size. Here we outline the main steps of the analysis and give
the central results. The details of the calculation can be found
in Appendix A.

FIG. 5. Illustration of the physical interpretation of the currents
Jσ (φ) (see text).

As before we write φ instead of x in the limit of an infinite
system, and we find the PDMP dynamics

∂t�(φ,0) = − ∂φ[v0(φ)�(φ,0)]

− λ+(φ)�(φ,0) + λ−(φ)�(φ,1),

∂t�(φ,1) = − ∂φ[v1(φ)�(φ,1)]

+ λ+(φ)�(φ,0) − λ−(φ)�(φ,1). (23)

This indicates a flow of the form

φ̇ = vσ (φ) (24)

in between switches of the environment. These switches in
turn occur with rates λ±(φ).

We now proceed by assuming that the deterministic flow in
each of the environments is towards a unique fixed point, i.e.,
that there are points φ∗

σ for σ ∈ {0,1} such that

vσ (φ∗
σ ) = 0. (25)

For the time being we assume that there is only one such fixed
point per state; for a more general case see Sec. IV C. We
assume φ∗

0 < φ∗
1 without loss of generality. After a potential

transient the PDMP will eventually be confined to the interval
(φ∗

0 ,φ∗
1 ). Our assumption above (only one fixed point in each

environmental state) implies that the vσ do not change sign
on this interval, v0(φ) < 0 and v1(φ) > 0 for φ ∈ (φ∗

0 ,φ∗
1 ):

the flow is always towards fixed point φ∗
0 in state σ = 0, and

towards φ∗
1 in state σ = 1, as also illustrated in Fig. 2.

To analyze the PDMP further, it is useful to introduce
currents

J0(φ) = v0(φ)�(φ,0)

−
∫ φ

φ∗
0

[−λ+(u)�(u,0) + λ−(u)�(u,1)]du,

J1(φ) = v1(φ)�(φ,1)

−
∫ φ

φ∗
0

[λ+(u)�(u,0) − λ−(u)�(u,1)]du. (26)

The physical interpretation of these currents is illustrated in
Fig. 5. We focus on a domain (φ∗

0 ,φ), where φ∗
0 � φ � φ∗

1 .
The first term of the right-hand side of Eqs. (26) accounts for
the probability flowing out of such a domain at location φ

due to the Liouville flow in environmental state σ . The term
containing the integral describes the net flow of probability
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out of the domain due to switching between the environmental
states. Thus, the quantity Jσ (φ + �φ) − Jσ (φ) represents the
total amount of probability leaving the interval (φ,φ + �φ)
per unit time.

This leads to equations of continuity

∂t�(φ,σ ) = −∂φJσ (φ). (27)

In the stationary state the currents are divergence free
(∂φJ ∗

σ = 0). Using the zero-current boundary conditions at
φ∗

0 and φ∗
1 , we find J ∗

σ (φ) ≡ 0 throughout. Summing the
two stationary currents, J ∗

0 (φ) + J ∗
1 (φ) = 0, we immediately

find �∗(φ,1) = −[v0(φ)/v1(φ)]�∗(φ,0), which allows one to
replace �∗(φ,1) in favor of �∗(φ,0) (or vice versa) in the
zero-current conditions. This results in two closed equations
for �∗(φ,0) and �∗(φ,1), respectively. These can then be
integrated directly, and we find

�∗(φ,0) = N
−v0(φ)

h(φ),

(28)

�∗(φ,1) = N
v1(φ)

h(φ),

where N is a normalization constant. The function h(φ) is
given by

h(φ) ≡ exp

[
−

∫ φ
(

λ+(u)

v0(u)
+ λ−(u)

v1(u)

)
du

]
. (29)

Further details of the calculation are given in Appendix A.
Later we will need the stationary conditional probability

�∗(σ |φ)—the stationary probability of having environmental
state σ given the population has state φ. As discussed above we
have v0(φ)�∗(φ,0) + v1(φ)�∗(φ,1) = 0. Writing �∗(φ,σ ) =
�∗(φ)�∗(σ |φ) and using �∗(0|φ) + �∗(1|φ) = 1 in Eq. (28)
leads to

�∗(0|φ) = v1(φ)

v1(φ) − v0(φ)
,

(30)

�∗(1|φ) = −v0(φ)

v1(φ) − v0(φ)
.

It is perhaps surprising that these conditional probabilities are
independent of the switching rates λ+ and λ−.

C. Subleading order: Linear-noise approximation

We now proceed by including contributions of intrinsic
noise to subleading order. We focus on a time interval between
switches of the environment, i.e., we assume σ is constant.
During such time intervals the environmental noise has no
effect, and the problem reduces to that of a conventional
individual-based system with a fixed environment. Following
established procedures we write n/� = φ(t) + �−1/2ξ (t).
The deterministic dynamics is given by φ̇ = vσ (φ). The
outcome of a standard LNA can be expressed as a linear
Langevin equation,

ξ̇ (t) = v′
σ (φ)ξ +

√
wσ (φ)η(t), (31)

for fluctuations about φ(t), where

wσ (φ) =
∑
m

S2
mrm,σ (φ). (32)

These relations describe the evolution of the population (within
the LNA) between switches of the environment. When a
change of the environment occurs the variable σ (t) changes at
a discrete point in time, and the next such interval of constant
σ begins.

Within the LNA the evolution of the probability to observe
state φ,ξ,σ is described by the following set of equations:

∂t�(φ,ξ,0) = −∂φ[v0(φ)�(φ,ξ,0)] − v′
0(φ) ∂ξ [ξ�(φ,ξ,0)]

+ w0(φ)

2
∂2
ξ �(φ,ξ,0) − λ+(φ)�(φ,ξ,0)

+ λ−(φ)�(φ,ξ,1),

∂t�(φ,ξ,1) = −∂φ[v1(φ)�(φ,ξ,1)] − v′
1(φ) ∂ξ [ξ�(φ,ξ,1)]

+ w1(φ)

2
∂2
ξ �(φ,ξ,1) + λ+(φ)�(φ,ξ,0)

− λ−(φ)�(φ,ξ,1). (33)

While the expressions on the right-hand side look complicated,
the different terms have a clear physical meaning. The
Liouvillian terms −∂φ[vσ (φ)�(φ,ξ,σ )] describe the deter-
ministic flow [φ̇ = vσ (φ)] between switches of the environ-
ment. The Fokker-Planck-like terms −v′

σ (φ)∂ξ [ξ�(φ,ξ,σ )] +
wσ (φ)∂2

ξ �(φ,ξ,σ )/2 capture the evolution of ξ within the
LNA of Eq. (31). Finally, the terms proportional to λ±(φ)
describe switching of the environment. Consistent with the
expansion in the system-size � we have replaced λ±(x) by
λ±(φ), i.e., any dependence of the switching rates on the state
of the population is taken to be on the state of the PDMP φ.

D. Stationary state within the linear-noise approximation

At stationarity the time derivatives on the left-hand side of
Eqs. (33) vanish. Using asterisks as before to denote stationary
distributions, and writing �∗(φ,ξ,σ ) = �∗(φ,σ )�∗(ξ |φ,σ ),
we find

0 = −�∗(φ,0) v′
0(φ) ∂ξ [ξ�(ξ |φ,0)]

+ 1
2�∗(φ,0) w0(φ) ∂2

ξ �∗(ξ |φ,0)

− ∂φ[v0(φ) �∗(φ,0) �∗(ξ |φ,0)]

−�∗(φ,1) v′
1(φ) ∂ξ [ξ�(ξ |φ,1)]

+ 1
2�∗(φ,1) w1(φ) ∂2

ξ �∗(ξ |φ,1)

− ∂φ[v1(φ) �∗(φ,1) �∗(ξ |φ,1)] (34)

from summing the two equations (33) at stationarity.
At this point we introduce a further approximation. We

assume �∗(ξ |φ,0) ≈ �∗(ξ |φ,1) and simply write �∗(ξ |φ)
for either of these. This will be justified below. Making this
assumption leads to

0 = −(�∗(0|φ)v′
0(φ) + �∗(1|φ)v′

1(φ))
∂

∂ξ
ξ�∗(ξ |φ)

+ 1

2
(�∗(0|φ)w0(φ) + �∗(1|φ)w1(φ))

∂2

∂ξ 2
�∗(ξ |φ), (35)

where we have used the relation v0(φ)�∗(φ,0) +
v1(φ)�∗(φ,1) = 0, valid at stationarity, to show that the terms
containing derivatives with respect to φ cancel out.
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FIG. 6. The variance of ξ , conditioned on the state φ of the PDMP
and the state of the environment (see text for details). Results are
shown for the dimerization process of Sec. IV A. Solid lines are s2

0 (φ)
and s2

1 (φ) obtained from simulations (see text for definitions). The
dashed line shows the approximation of Eq. (37). Parameters used
are b0 = 0.667, b1 = 4.048, d = 2, λ+ = λ− = 1, and � = 150.

Equation (35) resembles a stationary Fokker-Planck equa-
tion. The drift and diffusion coefficients are obtained from the
v′

σ and wσ , weighted by the likelihood to find the environment
in each of its states when the PDMP is at φ.

Solving the stationary equation (35) is standard [3]; we
find a Gaussian distribution, �∗(ξ |φ), with zero mean and
with variance

s2(φ) = −1

2

�∗(0|φ)w0(φ) + �∗(1|φ)w1(φ)

�∗(0|φ)v′
0(φ) + �∗(1|φ)v′

1(φ)
. (36)

Using Eq. (30), this can be simplified to give

s2(φ) = 1

2

w0(φ)v1(φ) − w1(φ)v0(φ)

v0(φ)v′
1(φ) − v1(φ)v′

0(φ)
. (37)

We conclude this section with a brief comment on the ap-
proximation �∗(ξ |φ,σ ) ≈ �∗(ξ |φ). In the fast-switching limit
the approximation is plausible, the system switches between
environmental states too fast for the variable ξ to equilibrate
to a distribution specific to the environmental state. For this
case, the approximation reproduces the result of Ref. [37].
In the limit of slow switching, on the other hand, the system
spends most of its time near the fixed points φ∗

0 and φ∗
1 . Our

approach then also recovers appropriate distributions of ξ . For
example, when φ ≈ φ∗

0 , we have v0(φ = φ∗
0 ) = 0 and Eq. (37)

hence reduces to s2(φ∗
0 ) = −[w0(φ∗

0 )/(2v′
0(φ∗

0 ))]. This is the
stationary variance of the process ξ̇ = −v′

0(φ∗
0 )ξ + √

w0(φ∗
0 )η.

A similar argument applies when φ ≈ φ∗
1 . Outside the limits

of fast and slow switching, the quality of the approximation
can be verified numerically. In Fig. 6 we illustrate this for a
model with nonlinear dynamics (discussed in more detail in
the next section). To test the validity of the above assumption
we have implemented the following measurement protocol:
We first generate a combined realisation of the environmental
process and the PDMP, i.e., a realization of the process defined
by Eqs. (23). Subsequently, we generate a realization of the
birth-death dynamics in a finite population for the same path
of the environment. In the stationary state we then measure the
variance of ξ conditioned on the state φ of the PDMP and on
the environmental state σ . We denote this variance by s2

σ (φ).
This is then averaged over multiple realizations and compared
against the approximation of Eq. (37). The data in Fig. 6 show
that the approximation works well, with only slight deviations

in the region away from the two fixed points φ∗
0 and φ∗

1 . For the
linear model, numerical results and the theoretical prediction
are virtually indistinguishable.

IV. FURTHER EXAMPLES

A. Nonlinear reactions rates

In order to demonstrate the generality of our approach, we
now proceed to a model system with nonlinear reaction rates.
The system is identical to the one described in Eq. (2), except
that the last reaction (removal of individuals) is replaced by

2A d/�−−→ ∅. (38)

The above notation indicates that this last reaction occurs with
rate dn(n − 1)/(2�), where n is the number of individuals in
the system. The reaction can be interpreted as a dimerization
process, in which two particles of type A form a complex
which is chemically inert and hence effectively removed. In
addition to the switches between G0 and G1, this system is
described by two reactions, with stoichiometric coefficients
and reaction rates

S1 = +1, r1,σ = bσ ,

S2 = −2, r2,σ = d

2
x2. (39)

We have written x = n/� as before. Using the notation of
the preceding sections, we have the following drift and the
diffusion terms

vσ (x) = bσ − x2d, and wσ (x) = bσ + 2x2d. (40)

In the limit � → ∞, we obtain a PDMP with fixed points
φ∗

σ = √
bσ /d for σ = 0,1. As before we assume b0 < b1. The

stationary distribution of the PDMP is found from Eq. (28),

�∗(φ,0) = N
φ2 − φ∗

0
2

(
φ − φ∗

0

φ∗
0 + φ

) λ+√
4b0d

(
φ∗

1 − φ

φ∗
1 + φ

) λ−√
4b1d

,

�∗(φ,1) = N
φ∗

1
2 − φ2

(
φ − φ∗

0

φ∗
0 + φ

) λ+√
4b0d

(
φ∗

1 − φ

φ∗
1 + φ

) λ−√
4b1d

, (41)

for φ ∈ (φ∗
0 ,φ∗

1 ), and where N is the usual normalization
constant.

From Eq. (37) finally we find s2(φ) = 3φ/4, i.e.,

�∗(ξ |φ) =
√

2

3πφ
exp

(
− 2

3φ
ξ 2

)
. (42)

The stationary distribution �∗(x) is then obtained by nu-
merically evaluating Eq. (16). Results are compared against
simulation in Fig. 7, and we find convincing agreement
between theoretical predictions and simulations. This confirms
the validity of the assumptions and approximations made
during the course of the analytical calculation.

B. System-dependent environmental transition rates

We now turn to another variation of the original linear model
[Eqs. (2)]. For the dynamics within the population we use the
same reactions and rates as in Eqs. (2), but we consider the
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FIG. 7. Stationary distribution for the nonlinear model of
Sec. IV A. The solid line is the theoretical prediction, and the
histogram is data obtained from simulations using the Gillespie
algorithm. Parameters are b0 = 0.667, b1 = 4.048, d = 2, λ+ =
λ− = 1, and � = 150.

case in which the rates with which the environment switches
between states depends on the state of the population, i.e.,

G0
λ+(n)−−→ G1,

(43)
G1

λ−(n)−−→ G0,

where we choose the linear form λ±(n) = α± + β±(n/�). The
coefficients α± and β± are constants, chosen such that λ±
remain non-negative.

The drift and diffusion terms of the dynamics within the
population are

vσ (x) = bσ − xd, and wσ (x) = bσ + xd, (44)

as before. The stationary distribution of the PDMP in the limit
of infinite populations is obtained from Eqs. (28) as

�∗(φ,0) = N e
β++β−

d
φ (φ − φ∗

0 )κ+(φ∗
1 − φ)κ−

φ − φ∗
0

,

(45)

�∗(φ,1) = N e
β++β−

d
φ (φ − φ∗

0 )κ+(φ∗
1 − φ)κ−

φ∗
1 − φ

,

where the exponents κ± are given by

κ± = α±
d

+ β±b0

d2
. (46)

The dynamics within the population is the same as in the linear
model above, so evaluating Eq. (37) again leads to s2(φ) = φ.
The theoretical estimate of the stationary distribution �∗(x),
finally, is again found from numerical integration of Eq. (16).

Figure 8 shows a sample path of the dynamics and the
stationary distribution for the choice λ+(x) = λ−(x) = x (i.e.,
α± = 0 and β± = 1). In this case, transitions between states
are more likely at higher concentrations of the system. Again,
we find good agreement between the predicted distribution
and the simulation results. It is important to note that the
parameters we used in the figure are not special in any way:
We have tested other choices of the parameter, and we find an
agreement between simulations and theory of a similar quality.

C. Multiple fixed points

In the final example, we consider more complicated
dynamics within the population such that there are multiple
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FIG. 8. Model in which rates of environmental switching depends
on the state of the population. Panel (a) shows a typical time course, as
generated by the Gillespie algorithm. Panel (b) depicts the stationary
distribution; the histogram is from simulations and the solid line
represents the approximation from our theory. Model parameters are
α± = 0,β± = 1,b0 = 1/3,b1 = 5/3,d = 1, and � = 150.

fixed points of the flows vσ (x). The switching between the two
environmental states is taken to occur with constant rates λ±.
Specifically, the population dynamics is now modelled by the
following reactions:

Gσ

�c1,σ−−→ Gσ + A,

Gσ + A c2,σ−→ Gσ ,
(47)

Gσ + 2A c3,σ /�−−−→ Gσ + 3A,

Gσ + 3A c4,σ /�2

−−−−→ Gσ + 2A,

with constant parameters ci,σ > 0. The corresponding stoi-
chiometric coefficients for the four reactions are

S1 = S3 = +1, S2 = S4 = −1, (48)

and the propensities rm,σ (x) read

r1,σ (x) = c1,σ , r2,σ (x) = c2,σ x,

r3,σ (x) = c3,σ

2
x2, r4,σ (x) = c4,σ

6
x3. (49)

Additional details of the model and the numerical values of
the parameters we used for our analysis can be found in
Appendix B.

Again, we first consider the PDMP, i.e., the limit � → ∞.
For the parameters chosen for our analysis one finds three
fixed points of the dynamics φ̇ = v0(φ), at φ∗ ≈ 0.20,0.90, and
1.6. We label these φ(1)∗,φ(3)∗, and φ(5)∗. These fixed points
are linearly stable, unstable, and stable, respectively. In the
environmental state σ = 1 we have fixed points φ∗ ≈ 0.4,1.1,
and 1.8, labeled φ(2)∗,φ(4)∗,and φ(6)∗(again stable, unstable,
and stable, respectively). This arrangement of fixed points is
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FIG. 9. Illustration of the Liouville flow in the two environmental
states σ = 0,1 for the model in Sec. IV C. Stable fixed points are
shown as filled circles, and unstable fixed points as open circles. The
shaded areas represent the two stable dynamic modes described in
the text.

illustrated in Fig. 9. The dynamics of the PDMP depends on
the initial condition. If started between the fixed points φ(1)∗
and φ(2)∗, then the system will be confined between these two
values and follow a dynamics similar to that of the system in
Sec. IV A. Similarly, if the initial condition is between the two
fixed points φ(5)∗ and φ(6)∗, then the PDMP will operate in the
interval between these two points. We will refer to these as the
two “stable modes” of the PDMP dynamics. For other initial
conditions, the PDMP will eventually reach one of these two
stable modes as well, and which one this is will depend on the
starting point and on the exact path the environment takes.

If the system is finite, then the dynamics are subject
to intrinsic noise. Two representative trajectories are shown
Fig. 10. Depending on initial conditions, the system either
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FIG. 10. Representative realizations and stationary distributions
for the model with described in Sec. IV C. Panels (a) and (b) represent
one dynamic mode and panels (c) and (d) represent the other. More
precisely, panels (a) and (b) show the outcome when the initial
condition is to the left of φ(3)∗; panels (c) and (d) show a situation
in which the dynamics is started to the right of φ(4)∗. The histograms
in panels (b) and (d) are from Gillespie simulations, and the solid
lines are from the analytical approximation. Model parameters are
λ+ = λ− = 0.2 and � = 1000, remaining parameters as described in
Appendix B.

remains close to the interval between φ(1)∗ and φ(2)∗ or near
the interval between φ(5)∗ and φ(6)∗. Intrinsic noise will allow
for excursions outside these intervals, similar to what was
observed in Sec. IV A. The finite system can traverse the region
between φ(2)∗ and φ(5)∗, at least in principle, and move from
one of the dynamic modes to the other. This is similar to
escaping from a basin of attraction in systems with constant
environment. We generally expect that the rate with which this
happens is exponentially suppressed in the noise strength. We
will assume that such events are sufficiently rare so they can
be ignored for the purposes of our analysis.

The general approach we have developed can then be
applied to the system in either of the two dynamic modes.
Due to the complexity of the flow fields vσ (x), the relevant
equations have to be evaluated numerically. In Fig. 10 we
show the resulting predictions for the stationary distribution
in either mode. As in the previous examples, comparison with
data from numerical simulations shows very good agreement.

V. CONCLUSION

In summary, we have constructed a systematic approach
with which to investigate the effects of demographic noise in
systems subject to sudden random switches of reaction rates.
We have focused on relatively simple birth-death processes of
one single species and in which birth and death rates depend
on both the state of the population and on the state of an
external environment. The states of the environment follow a
telegraph process, with transition rates which may depend on
the state of the population. Previously existing approaches
either disregard intrinsic fluctuations and only account for
environmental noise or they focus on cases in which there
is a clear separation of time scales between the population
dynamics and the dynamics of the environment. The former
approach in particular leads to the well-established picture of
so-called piecewise deterministic Markov processes. Our work
systematically improves on this view; we take into account
demographic fluctuations to leading order and carry out a
system-size expansion and linear-noise approximation about
the PDMP dynamics.

Using the linear-noise approximation, and retaining the
discreteness of the environmental process, we then approx-
imate the resulting stationary distribution of the population
dynamics. We have tested the resulting theory on a number
of model systems, both with linear and nonlinear reaction
rates, situations in which environmental switching depends
on the state of the population, and covering systems with
single dynamic modes and cases where there are multiple
attractors. In all cases we have tested, the approximation is in
good agreement with results from simulations. In particular,
no separation of time scales is required.

The technique we provide makes our understanding of
processes involving both intrinsic and extrinsic noise more
complete. While the existing PDMP description has been
shown to be successful in many instances, it disregards
intrinsic noise entirely. We are now in a position to describe
the effects of demographic noise in systems with switching
environments in the spirit of the van Kampen expansion. This
allows us to investigate models subject to combinations of
intrinsic and extrinsic noise and, in particular, systems in which
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some degrees of freedom can be treated within a linear-noise
approximation, while other variables remain fundamentally
discrete. Such systems can be of relevance, for example, in the
context of genetic switches, bacterial populations subject to
varying external conditions, or to predator-prey dynamics. In
order to make the method more applicable, several extensions
can be considered in future work. This includes the case of
multiple environmental states, systems with more than one
species, or, indeed, environmental dynamics beyond simple
telegraph processes. Work along these lines is currently in
progress.
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APPENDIX A: THE STATIONARY DISTRIBUTION
OF THE PDMP

In this section we briefly discuss the calculation of the
stationary distribution of the PDMP. Following from Eq. (26),
and writing ∂φJ ∗

σ (φ) ≡ 0 in the stationary state, we have
J ∗

σ (φ) ≡ 0 throughout, using zero-current conditions at the
boundaries. This leads to

J ∗
0 (φ) = v0(φ)�∗(φ,0)

−
∫ φ

φ∗
0

[−λ+(u)�∗(u,0) + λ−(u)�∗(u,1)] du = 0,

J ∗
1 (φ) = v1(φ)�∗(φ,1)

−
∫ φ

φ∗
0

[λ+(u)�∗(u,0) − λ−(u)�∗(u,1)] du = 0.

(A1)

Summing the two stationary currents, J ∗
0 (φ) + J ∗

1 (φ) = 0, we
immediately find v0(φ)�∗(φ,0) + v1(φ)�∗(φ,1) = 0 for all
φ, i.e., �∗(φ,1) = −[v0(φ)/v1(φ)]�∗(φ,0).

Inserting this into the first equation of (A1) gives

v0(φ)�∗(φ,0)

+
∫ φ

φ∗
0

[
λ+(u)�∗(u,0) + λ−(u)

v0(φ)

v1(φ)
�∗(u,0)

]
du = 0.

(A2)

Differentiating with respect to φ one obtains

ρ ′
0(φ) +

[
λ+(φ)

v0(φ)
+ λ−(φ)

v1(φ)

]
ρ0(φ) = 0, (A3)

where we have introduced ρ0(φ) ≡ v0(φ)�∗(φ,0), and where
ρ ′

0 indicates a derivative with respect to φ. An analogous
derivation shows that ρ1(φ) ≡ v1(φ)�∗(φ,1) fulfills the same
relation [we note that the expression in the square brackets in
Eq. (A3) is symmetric with respect to simultaneous exchanges
0 ↔ 1 and λ+ ↔ λ−].

Equation (A3) and its analog for ρ1(φ) can directly be
integrated and we find

�∗(φ,0) = N0

v0(φ)
h(φ), �∗(φ,1) = N1

v1(φ)
h(φ), (A4)

where

h(φ) = exp

[
−

∫ φ

du

(
λ+(u)

v0(u)
+

∫
λ−(u)

v1(u)

)]
, (A5)

and where N0 and N1 are normalization constants. Using
again the relation v0(φ)�∗(φ,0) + v1(φ)�∗(φ,1) = 0, derived
above, we conclude N0 = −N1 ≡ −N , and so we have

�∗(φ,0) = N
−v0(φ)

h(φ), �∗(φ,1) = N
v1(φ)

h(φ). (A6)

Recalling that v0 < 0 and v1 > 0 throughout the domain of
the PDMP, N is a positive constant, to be determined from the
normalization condition∫ φ∗

1

φ∗
0

[�∗(φ,0) + �∗(φ,1)]dφ = 1. (A7)

APPENDIX B: FURTHER DETAILS OF THE MODEL
WITH MULTIPLE FIXED POINTS

For the model described in Sec. IV C the functions vσ (x)
and wσ (x) as defined in Eq. (22) are given by

vσ (x) = c1,σ − c2,σ x + c3,σ x2 − c3,σ x4,
(B1)

wσ (x) = c1,σ + c2,σ x + c3,σ x2 + c3,σ x4.

The parameters chosen for the analysis in Sec. IV C are

c1,0 = 0.11, c1,1 = 0.31,

c2,0 = 0.76, c2,1 = 1.24,

c3,0 = 2.14, c3,1 = 2.60,

c4,0 = 2.40, c4,1 = 2.40. (B2)

APPENDIX C: ACCURACY OF OUR APPROACH

The accuracy of our approach can be characterized by
computing the Kullback-Leibler divergence [58] between the
true stationary distribution and our approximation. Figure 11

system size Ω
8 16 32 64 128 256 512 1024

10-8

10-6

10-4

10-2

slow switching
intermediate switching
fast switching

FIG. 11. The Kullback-Leibler divergence between the true sta-
tionary distribution of the system and our approximation for the
linear model. Each line shows a different parameter regime from
Fig. 1. The true stationary distribution is determined by fourth-order
Runge-Kutta integration of the master equation.
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shows how the Kullback-Leibler divergence changes with
system size for the linear model. Each line represents one
of the parameter regimes displayed in Fig. 1. Birth rates, death
rates, and switching rates have been chosen such that � is the

average population of the system. The divergence decreases
as the system size is increased, with relatively small system
sizes having appreciably small divergences. Similar results are
observed for the nonlinear and feedback models.
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