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We address characterization of many-body superradiant systems and establish a fundamental connection
between quantum criticality and the possibility of locally estimating the coupling constant, i.e., extracting
its value by probing only a portion of the whole system. In particular, we consider Dicke-like superradiant
systems made of an ensemble of two-level atoms interacting with a single-mode radiation field at zero effective
temperature, and address estimation of the coupling by measurements performed only on radiation. At first, we
obtain analytically the quantum Fisher information (QFI) and show that optimal estimation of the coupling may be
achieved by tuning the frequency of the radiation field to drive the system toward criticality. The scaling behavior
of the QFI at the critical point is obtained explicitly upon exploiting the symplectic formalism for Gaussian states.
We then analyze the performances of feasible detection schemes performed only on the radiation subsystem,
namely homodyne detection and photon counting, and show that the corresponding Fisher informations (FIs)
approach the global QFI in the critical region. We thus conclude that criticality is a twofold resource. On the one
hand, global QFI diverges at the critical point, i.e., the coupling may be estimated with the arbitrary precision.
On the other hand, the FIs of feasible local measurements (which are generally smaller than the QFI out of the
critical region), show the same scaling of the global QFI; i.e., optimal estimation of coupling may be achieved
by locally probing the system, despite its strongly interacting nature.
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I. INTRODUCTION

Quantum phase transitions (QPTs) occur at zero temper-
ature and demarcate two statistically distinguishable ground
states corresponding to different quantum phases of the system
[1]. In the proximity of the critical point, small variations
of a parameter driving the QPT cause abrupt changes in the
ground state of the system [2]. Criticality is, thus, a resource
for precision measurements [3], since driving the system to the
critical region makes it extremely sensitive to perturbations,
either affecting an internal parameter such as its coupling
constant, or due to fluctuations of environmental parameters,
e.g., temperature fluctuations.

It is often the case that those parameters are not directly
measurable. In these cases, the determination of their values
should be pursued exploiting indirect observations and the
technique of parameter estimation. In these situations, the
maximum information extractable from an indirect estimation
of the parameters is the so-called Fisher information (FI),
which itself determines the best precision of the estimation
strategy via the Cramer-Rao theorem [4]. Upon optimizing
over all the possible quantum measurements one obtains the
quantum Fisher information (QFI), which depends only on the
family of states (density operators) describing the ground state
of the considered system [5,6] as a function of the parameter
of interest. In turn, the QFI sets the ultimate quantum bound
to precision for any inference strategy aimed at estimating a
given parameter.
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In the recent years, the connection between quantum
criticality and parameter estimation has been addressed from
different perspectives [7–13], showing that the QFI is indeed
(substantially) enhanced in correspondence of the critical point
[3]. The fundamental interpretation of this relationship lies
in the geometrical theory of quantum estimation, for which
Hilbert distances between states are translated into modifica-
tions of the physical parameters [7–9]. Criticality as a resource
for quantum information purposes has been investigated in
several critical systems [10–13], including quantum discrimi-
nation tasks in weak-signal detection applications [14], and
extensions to out-of-equilibrium QPTs [15]. Nonetheless,
finding an optimal observable which also corresponds to a
feasible detection scheme is usually challenging, especially
for strongly interacting systems where the entangled nature
of the ground state usually leads to an inseparable optimal
observable.

In this paper, we consider the superradiant QPT occurring
in the Dicke model, which describes the strong interaction
of a single-mode electromagnetic field and an ensemble of
two-level atoms [16]. The radiation mode in the superradiant
phase acquires macroscopic occupation as a consequence of
cooperative excitation of the atoms in the strong coupling
regime. The Dicke QPT has been extensively studied in the past
years considering also generalizations of the original work of
Dicke [17–19], or focusing on the quantum-chaotic properties
of the system [20–22]. Recent theoretical studies concerning
entanglement and squeezing of the Dicke QPT have been
carried on [23], also in relation to the QFI of radiation and
atomic subsystems separately [24]. Some implementations in
cavity-QED [25] and circuit-QED [26] systems, together with
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computing applications via multimodal disordered couplings
[27], have been proposed. Eventually, recent experimen-
tal realizations of the Dicke QPT involving Bose-Einstein
condensates in optical cavities [28], cavity-assisted Raman
transitions with Rb87 atoms [29], superconducting transmon
qubits in microwave cavity [30], or NV centers in diamond
coupled to superconducting microwave cavities [31] have been
performed. We point out that we will not consider the A2 term
in the system Hamiltonian [32–35], which may be present
for very high atoms-radiation couplings [36]. The interesting
problem concerning the estimation of this second-order term
will be addressed elsewhere.

Motivated by the renewed experimental and theoretical
interests in the Dicke QPT, we address the characterization
of its coupling constant and analyze in details whether optimal
estimation is possible using only feasible local measurements,
i.e., whether the ultimate precision allowed by quantum
mechanics may be achieved by probing only a portion of the
whole system.

The paper is structured as follows. In Sec. II, we briefly
review the Dicke model at zero temperature and find the
Gaussian ground states for the two phases. In Sec. III we
evaluate the QFI as a function of the radiation-atoms coupling
parameter and discuss its properties. Eventually, in Sec. IV
we present our main results concerning the analysis of
the FI associated to two locally feasible observables, ho-
modyne detection, and photon counting. We will show that
these measurements allow to achieve optimal estimation of
the coupling parameter by probing only the radiation part of
the system. The notation used for the Gaussian formalism
is described in Appendices A and B, where we recall the
properties of Gaussian states and symplectic transformations,
together with some elements of quantum estimation theory
(QET) in the Gaussian continuous-variable formalism.

II. DICKE QUANTUM PHASE TRANSITION

The Dicke model [16] describes the interaction between
a dense collection of N two-level atoms (spin objects) with
transition frequency ω0, assumed to be equal for all the spins,
and a single radiation mode (bosonic field) of frequency ω,
which is characterized in terms of annihilation and creation
operators, â1 and â

†
1, respectively. The coupling between the

two quantum systems is suitably described within the dipole
approximation, where each atom couples to the electric field
of radiation with a coupling strength λ:

Ĥ(1,2) = ω0Ĵz + ωâ
†
1â1 + λ√

N
(â†

1 + â1)(Ĵ+ + Ĵ−). (1)

Overall, the atomic subsystem can be described as a pseu-
dospin of length N/2 by the collective spin operators Ĵz =
1
2

∑N
i=1 σ̂ (i)

z and Ĵ± = ∑N
i=1 σ̂

(i)
± , where {σ̂ (i)

z ,σ̂
(i)
± } is the set

of Pauli matrices that completely characterize single two-level
systems.

The diagonalization of Hamiltonian Eq. (1) is performed
employing the Holstein-Primakoff (H-P) representation of the
atomic spin operators [37,38], namely Ĵ+ = â

†
2

√
N − â

†
2â2,

Ĵ− =
√

N − â
†
2â2 â2, and Ĵz = â

†
2â2 − N

2 , where â2 and â
†
2

are bosonic fields satisfying [â2,â
†
2] = 1. As will become

soon clearer, the bosonic fields {â1,â2} are allowed to have
macroscopic occupations in such a way that â1 → â1 − α

√
N

and â2 → â2 + β
√

N with {α,β} ∈ R. Now, we consider the
thermodynamic limit, for which the ratio N/V is constant as
N,V → ∞, being N the number of atoms and V the corre-
sponding occupied volume, and expand the H-P representation
keeping only the terms proportional to

√
N . Applying stability

considerations, for which linear terms proportional to
√

N

must vanish [38], we obtain the expression for the displacing
parameters

α = ± λ

ω

√
1 − k2

(2)

β = ±
√

1 − k

2
,

where we introduced the dimensionless critical parameter

k ≡
{

1 for λ < λc

λ2
c

λ2 for λ > λc

(3)

and the critical coupling strength λc ≡ √
ω ω0/2. As it is

now clear, the macroscopic occupation of the two subsystems
individuates the phase transition between a normal phase for
λ < λc and a superradiant phase for λ > λc. The Hamiltonian
of this system can be cast in diagonal form (see Ref. [21]), by
introducing a new couple of bosonic modes {b̂−,b̂+}, which
satisfy the commutation relations [b̂−,b̂

†
−] = [b̂+,b̂

†
+] = 1, and

describe two independent harmonic oscillators,

Ĥ(−,+) = ε−b̂
†
−b̂− + ε+b̂

†
+b̂+ + 1

2

(
ε− + ε+ − ω − ω0

k

)

− ω0(1 + k2)

2k

N

2
, (4)

where the eigenfrequencies are given by

2ε2
± = ω2 + ω2

0

k2
±

√[
ω2

0

k2
− ω2

]2

+ 16λ2 ω ω0 k. (5)

The diagonalization in Ref. [21] can be obtained by performing
the symplectic transformation (see Appendix A) F = F3 ◦
F2 ◦ F1:

F1 = Diag

(
1√
ω

,
√

ω,
1√
ω̃

,
√

ω̃

)
,

F2 =
(

cos θ I2 − sin θ I2

sin θ I2 cos θ I2

)
, (6)

F3 = Diag

(√
ε−,

1√
ε−

,
√

ε+,
1√
ε+

)
.

Symplectic matrix F1 corresponds to a local squeezing Ŝ
(1)
loc =

Ŝ[− log(
√

ω)] ⊗ Ŝ[− log(
√

ω̃)] applied to the quadratures of
the atomic and photonic subsystems, with ω̃ = ω0(1 + k)/2k.
Then the rotation Û (θ ) = exp{−iθ (x̂1p̂2 − x̂2p̂1)} is asso-
ciated to the symplectic matrix F2 (I2 is a 2 × 2 identity
matrix) and allows us to eliminate the interaction term
in the Hamiltonian upon the choice of the angle 2θ =
tan−1 [4λ

√
ω ω0 k k2/(ω2

0 − k2 ω2)]. Eventually, a second lo-
cal squeezing Ŝ

(2)
loc = Ŝ[log(

√
ε−)] ⊗ Ŝ[− log(

√
ε+)], related
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to the symplectic transformation F3, completes the diago-
nalization. The ground state of the diagonalized Hamiltonian
Ĥ(−,+) is the vacuum state |ψ〉 ≡ |0〉− ⊗ |0〉+, with CM σψ =
I4/2. Accounting for the displacement D̂12 ≡ D̂1(α

√
N ) ⊗

D̂2(−β
√

N ) responsible for the macroscopic occupation of
the original modes {â1,â2} in the superradiant phase, the
form of the Gaussian ground state |
〉 is straightforwardly
obtained by means of the transformation |
〉 = D̂12ÛF |ψ〉,
where ÛF ≡ Ŝ

(1)
loc Û (θ ) Ŝ

(2)
loc is the unitary evolution of the

modes associated to the symplectic transformation F . The
corresponding CM σ ≡ σ
 and first-moment vector 〈 �R〉 are
derived using Eqs. (A7):

σ = FσψFT =

⎛
⎜⎜⎝

σ11 0 σ13 0
0 σ22 0 σ24

σ31 0 σ33 0
0 σ42 0 σ44

⎞
⎟⎟⎠, (7)

〈 �R〉 = (α
√

2N,0,−β
√

2N,0)T , (8)

where

σ11 = ω

2

(
cos2 θ

ε−
+ sin2 θ

ε+

)
,

σ22 = 1

2ω
(ε− cos2 θ + ε+ sin2 θ ),

σ33 = ω̃

2

(
cos2 θ

ε+
+ sin2 θ

ε−

)
,

(9)

σ44 = 1

2ω̃
(ε+ cos2 θ + ε− sin2 θ ),

σ13 = σ31 =
√

ω ω̃ sin 2θ

4

(
1

ε+
− 1

ε−

)
,

σ24 = σ42 = − sin 2θ

4
√

ω ω̃
(ε− − ε+).

The ground states |
〉 describing the two phases are now
completely characterized as Gaussian states by their Wigner
function Eq. (A3), and the corresponding CM (7) and
first-moment vector Eq. (8) are now expressed in terms
of the physical parameters {λ,ω,ω0,N}. We notice that the
dependence on the size N of the atomic subsystem is contained
only in the first-moment vector Eq. (8).

In both phases the ground state is a pure Gaussian state
(μ = 1), with d± = 1/2, since it has been obtained by a
symplectic transformation of the vacuum state |ψ〉. When
the coupling λ between the two subsystems gets stronger,
the two become increasingly entangled, as witnessed by the
logarithmic negativity Eq. (A10), which quantifies in a mono-
tonic way the violation of ppt-criterion for the separability
of a bipartite state. As it is shown in Fig. 1, the atomic
and radiation subsystems get increasingly entangled as their
coupling approaches the critical value λc. For a detailed
treatment on finite-size corrections to entanglement measures
in several collective models see Refs. [39,40]. The already
established result that entanglement enhances the precision of
a measurement [41,42] will be confirmed in the following,
where we will adopt the QET approach to the considered
critical system.

�

FIG. 1. Plot of the logarithmic negativity EN (λ) (blue solid curve)
and of the lowest symplectic eigenvalue d̃−(λ) (red dashed curve)
of the partially transposed CM. The dashed gray line at d̃− = 0.5
represents the threshold of separability, under which the state is
entangled. Parameters: ω = ω0 = 1 and λc = 0.5 (gray vertical line),
in units of ω0.

III. QUANTUM ESTIMATION
AT THE SUPERRADIANT QPT

Once the ground states in the two phases are known, it is
possible to study the behavior of the QFI, as a function of the
coupling parameter λ driving the QPT and the tunable radiation
frequency ω, which sets the critical point λc. We point out that
in our model λ and ω are considered independent on each
other, for the sake of simplicity, but that in some experimental
realizations (see, e.g., Ref. [28]) they may be related to the
tunable parameters of an external pumping.

With reference to Appendix B, it is possible to analytically
evaluate the QFI Eq. (B5) in the two phases, but we report
here only the limiting behaviors in proximity of the critical
value λc. In particular, the leading term in the series expansion
of the QFI approaching the critical parameter from both the
two phases, is H (λ) ∼ [2

√
2(λ − λc)]−2, whereas the main

limiting cases are displayed in Table I. At the critical point
the QFI for the whole radiation-atoms system diverges with
a second-order singularity, thus highlighting the possibility to
estimate the parameter λ (in the ideal thermodynamic limit)
with infinite precision. By tuning λc with ω, it is possible to
obtain the highest precision for every value of the coupling
parameter λ, as the behavior of the QFI at λc is left unvaried
(see Fig. 2). We point out that the second term in Eq. (B5)
is nonzero in the superradiant phase, in particular the QFI
behaves in the thermodynamic limit as a linear increasing
function of N , with finite-size corrections of the order N−1/2,
for every value of the coupling λ. Nonetheless, at the critical
point λc the dominant contribution to H (λ) is ruled by the
coupling parameter (see Table I).

TABLE I. Limiting behaviors of the QFI in the normal and
superradiant phases at λ → λ±

c , λ → 0, and λ → ∞.

Normal phase Superradiant phase

λ → λc
1

8(λ−λc )2 + O
[

1
|λ−λc |

]
1

8(λ−λc )2 + O
[

1
|λ−λc |

]
λ → 0 4

(ω+ω0)2 + O[λ2] –

λ → ∞ – 4N

ω2 + O[λ−4 ]
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� � � �

FIG. 2. Plot of the QFI as a function of λ, where all the quantities
are computed in units of ω0 and N = 100. Resonance condition: ω0 =
ω = 1 (solid blue curve) with λc = 0.5. Off-resonance condition:
ω = 0.25 (dashed orange curve) with λc = 0.25.

Now we compute the SLD operator (see Appendix B) in the
two phases and analyze the asymptotic behaviors, with respect
to λ, at the critical point. In the normal phase the second term
of Eq. (B6) is null, since the amplitudes of the displacements
Eq. (2) are zero. In both phases ν = 0 and the main term of
the SLD has the same dependence |λ − λc|−3/2, namely,

�R T (−σ̇ ) �R ∼
4
√

ω ω0

8
√

2
√

ω2 + ω2
0

1

|λ − λc|3/2
(x̂ ′

1 − x̂ ′
2)2, (10)

where �R′ = F1 �R is the vector of quadratures transformed
according to the local squeezing employed in the Hamiltonian
diagonalization Eq. (6). In the superradiant phase the linear
term of the SLD, dependent also on the number of atoms N ,
is constant very close to the critical point, namely,

�RT �ζ ∼
√

32N

ω3ω2
0

(
ω2 + ω2

0

)(
ω2

0 p̂′
1 − ω2 p̂′

2

)
, (11)

in such a way that, ultimately, the SLD diverges at λc

as in Eq. (10), but still more slowly than the QFI (see
Table I for comparison). Since the SLD is associated to the
optimal POVM saturating the quantum Cramér-Rao bound
Eq. (B3), we note that Eq. (10) contains a combination of
position quadratures relative to both the atomic and radiation
subsystems, confirming the highly entangled nature of the two
(see Fig. 1).

In the next section we will show that it is still possible to
optimally estimate the parameter λ around the critical point,
by means of locally feasible measurements.

IV. OPTIMAL LOCAL MEASUREMENTS

The main results of this work are examined in depth
in this section and concern the possibility to probe one of
the two subsystems (radiation mode or atomic ensemble)
with local and handy measurements, in order to retrieve the
optimal FI. In particular, we address the two most known and
employed optical techniques for measuring and characterizing
a single-mode radiation, namely homodyne detection and
photon counting.

A. Homodyne detection

Since all the information about the radiation mode is
encoded in its Wigner function, it is possible to reconstruct
the corresponding Gaussian state ̂ using the homodyne
tomography technique, i.e., repeatedly measuring the field
mode quadratures according to the set of observables,

x̂(φ) = âe−iφ + â†eiφ

√
2

≡ Û †(φ)x̂ Û (φ), (12)

where Û (φ) ≡ e−iφ â†â is a phase-shift operator. The proba-
bility distribution of the possible outcomes of a quadrature-
measurement px(φ) = 〈x|Û (φ)̂ Û †(φ)|x〉, corresponds to the
marginal distribution,

px(φ) =
∫
R

dp W [̂](x cos φ − p sin φ,x sin φ + p cos φ),

(13)
where the Wigner function W [̂](x,p) of the reduced state
of the radiation mode (see Appendix A) ̂ = Tr2[|
〉〈
|] is
Gaussian with second and first moments given by

σ =
(

σ11 0
0 σ22

)
, (14)

〈 �R〉 = (α
√

2N,0)T . (15)

In Fig. 3 we show the Wigner function associated to the
radiation subsystem, together with the marginal distributions
corresponding to homodyne measurements of the position
x̂(0) and momentum x̂(π/2). From the sequence of frames
at different values of λ, the QPT is evident, where the field
mode essentially undergoes a strong squeezing around λc and
then a displacement for λ > λc.

We now evaluate the FI associated to the homodyne mea-
surement probing the Gaussian ground state of the radiation
mode, as a function of the parameter λ driving the QPT.

FIG. 3. Wigner function W [̂](x,p) of the radiation mode state
at different values of λ = 0.3 (a), λ = 0.499 (b), λ = 0.6 (c), and
λ = 1.5 (d). Marginal distributions, corresponding to the probability
for the position and momentum quadratures, respectively, px(0) and
px(π/2), are also shown. The values of the chosen parameters are
ω0 = ω = 1 and λc = 0.5 (in units of ω0), in the superradiant phase
N = 100.
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TABLE II. Limiting behaviors of the FI for homodyne-like detection of both radiation Fx̂(φ)(λ) and atomic Fŷ(φ)(λ) subsystems (with respect
to QFI), in the normal and superradiant phases at λ → λ±

c , λ → 0, and λ → ∞.

Normal phase Superradiant phase

λ → 0 λ → λ−
c λ → λ+

c λ → ∞

Fx̂(φ)(λ)/H (λ) 2[ω+(ω+ω0) cos(2φ)]2

ω2(ω+ω0)2 λ2 + O[λ3] 1 + O[
√|λ − λc|] 1 + O[

√|λ − λc|] cos2 φ + O[λ−4]

Fŷ(φ)(λ)/H (λ) 2[ω0+(ω+ω0) cos(2φ)]2

ω2
0(ω+ω0)2 λ2 + O[λ3] 1 + O[

√|λ − λc|] 1 + O[
√|λ − λc|] O[λ−6]

Since the probability distribution Eq. (13) has Gaussian form
with mean value 〈x̂(φ)〉 = cos φ〈x̂(0)〉 and variance σ (φ) =
cos2 φ σ11 + sin2 φ σ22, it is straightforward to derive a general
expression for the FI Eq. (B2) valid for both the normal and
superradiant phases,

Fx̂(φ)(λ) = 2σ (φ)〈x̂(φ)〉2 + σ̇ 2(φ)

2σ 2(φ)
. (16)

The scaling behaviors of the FI, compared to the QFI, are
listed in Table II for both the normal and superradiant phases. It
is remarkable that a measurement only on a part of the system,
namely the radiation mode subsystem, provides the optimal
value of the FI in proximity of the critical point. Homodyne
detection results to be an optimal local measurement, easily
feasible with standard optical techniques, able to provide the
best performances in parameter estimation and to capture the
quantum criticality. In Fig. 4 we show that for different values
of the angle of the measured quadrature x̂(φ), at the critical
point λ → λ±

c FI diverges with the very same scaling behavior
of QFI, saturating the quantum Cramér-Rao bound Eq. (B3).
The only exception, which does not invalidate the homodyne
measurement, is that exactly at φ = π/2 the FI is no longer
optimal at λc, even though its diverging character (see the insets
in Fig. 4) represents a high-precision measurement according
to the classical Cramér-Rao bound Eq. (B1). Besides, we
point out that the FI, in the superradiant phase and in the
thermodynamic limit, scales as a linear function of N , with
finite-size corrections of the order N−1. Thus, the ratio between
QFI and FI plotted in Fig. 4 is essentially independent on N ,
for every value of the coupling λ.

Analogously, a homodyne-like detection of the atomic
subspace, corresponding to measure the generic component
Ĵ (φ) ≡ Ĵx cos φ + Ĵy sin φ of the collective atomic spin in the
{x,y} plane, results to be optimal at the critical coupling λc.
The only differences are: (i) in the limit λ → 0, the atomic and
radiation frequencies, ω0 and ω, are interchanged and (ii) in
the limit λ → ∞, the FI goes to zero (see Table II).

Interestingly, the electromagnetic field quadratures appear
in the limiting expression for the SLD Eq. (10), thus confirming
the optimal character of the chosen homodyne-type detection
employed to probe just one of the two subsystems.

B. Photon counting

Another typical observable used to probe the electromag-
netic field is the photon number operator

N̂1 ≡ â
†
1â1 =

∞∑
n=0

n|n〉〈n|,
∞∑

n=0

np(n) = Tr[̂ N̂1], (17)

where p(n) = 〈n|̂|n〉 is the probability to detect a photon in
the Fock state |n〉. Photon counters capable of discriminating
among the number of incoming photons are commonly em-
ployed in quantum optical experiments [28,43,44]. The partial
trace of a Gaussian bipartite state, as mentioned in Appendix A,
is a single-mode Gaussian state that can be cast in the general
form of a DSTS ̂ = D̂(γ )Ŝ(r)ν̂th(n̄)Ŝ†(r)D̂†(γ ). The analytic
and general expression for the photon number probabilities
[45], applied to the state of the radiation subsystem with
CM and first-moment vector given by Eq. (14) and Eq. (15),

� ��

� �� � � �

� �

� ��

� �� � � �

� �

FIG. 4. Plot of the ratio between FI for homodyne detection
and QFI, as a function of λ. The insets show the behavior of
the FI (solid curves) and the QFI (dashed curve), both diverging
at the critical parameter λc. The arrows indicate the increasing
values of the quadrature angle φ = 0, π/3, π/2 (solid curves).
Upper panel: resonance condition with ω0 = ω = 1 and λc = 0.5.
Lower panel: off-resonance condition with ω0 = 1, ω = 0.25, and
λc = 0.25. In both cases the set of parameters is in units of ω0 and
N = 100.
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FIG. 5. Logarithmic plot of photon number probability distri-
butions Eq. (18) of the radiation ground state in the normal phase
(a), with ω0 = ω = 1 and λ = 0.3,0.49. Photon number probability
distributions Eq. (18) of the radiation ground state in the superradiant
phase (b), with ω0 = ω = 1, N = 100, and λ = 0.55,0.7. The mean
values of the distributions, Eq. (20), are specified with dashed vertical
lines.

respectively, reads

p(n) = R00(−1)n2−2n(Ã + |B̃|)n

×
n∑

k=0

H2k(0)H2n−2k(i C̃[Ã + |B̃|]− 1
2 )

k!(n − k)!

[
Ã − |B̃|
Ã + |B̃|

]k

,

(18)

where Hm(x) are Hermite polynomials. All the quantities
appearing in Eq. (18) depend only on first- and second-
moments as follows:

R00 = 2 exp
{− 〈x̂1〉2

1+2σ11

}
√

(1 + 2σ11)(1 + 2σ22)
,

Ã = 4σ11σ22 − 1

(1 + 2σ11)(1 + 2σ22)
,

B̃ = 2(σ22 − σ11)

(1 + 2σ11)(1 + 2σ22)
,

C̃ =
√

2 〈x̂1〉
1 + 2σ11

.

(19)

In Fig. 5 we plot the probability distributions for the
photon number characterizing the ground states of the two
phases. In the normal phase, the reduced ground state for
the radiation subsystem is a squeezed thermal state with
typical photon number distribution peaked in n = 0, whereas
in the superradiant phase it acquires macroscopic occupation
due to the nonzero displacement amplitude Eq. (2). The
general expression of the mean photon number of a generic

FIG. 6. Plot of the mean energy of the radiation mode subsystem
(dot-dashed curve) as a function of the coupling parameter λ. Three
contributions to 〈N̂1〉 are showed: mean thermal photons n̄ (solid
curve), mean squeezed photons ns (dashed curve), and mean coherent
energy |α|2N (dotted curve).

single-mode Gaussian state in the DSTS form is

〈N̂1〉 = ns + n̄(1 + 2ns) + |γ |2. (20)

It is possible to identify an intensive contribution to 〈N̂1〉 given
by the mean number of thermal photons n̄ = √

σ11σ22 − 1/2
and the fraction of squeezed photons ns = sinh2 r , with r =
Log( 4

√
σ11/σ22). The extensive contribution is provided by

the amplitude of displacement γ = α
√

N , depending on the
number of atoms. As plotted in Fig. 6, it is evident how, in
proximity of the phase transition, the mean photon number
dramatically increases due to a strong degree of squeezing
and a high thermal component. Only in the superradiant
phase the extensive contribution |α|2N dominates far away
of the critical parameter, due to an increasing coherent state
component [see also Fig. 3(d)]. We point out that even in
the thermodynamic limit, although in the normal phase the
extensive contribution is not present, in the proximity of the
critical point a nonnegligible fraction of squeezed thermal
photons should be measured by a photodetector. Specific
finite-size corrections to some observables in the superradiant
QPT can be found in Ref. [46].

�

�

FIG. 7. Plot of the ratio between FI for a photon-count measure-
ment and QFI, as a function of λ. The inset shows a magnification
around the critical parameter λc, showing in a clearer way that the
observable N̂1 is optimal. The values of the parameters (in units of ω0)
are ω0 = ω = 1, λc = 0.5, and N = 100 in the superradiant phase.
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The FI information associated to the observable Eq. (17) is
given by Eq. (B2) expressed in discrete form,

FN̂1
(λ) =

∞∑
n=0

[∂λp(n)]2

p(n)
. (21)

In Fig. 7 we show the behavior of the FI associated to a
photon-count measurement compared to the QFI. Even though
numerical simulations necessarily imply a cutoff value of the
dimensionality of the Fock space in evaluating the series in
Eq. (21), making the numerical calculations awkward around
λc, it is evident that the observable N̂1 tends to be optimal at
the critical coupling. We can, thus, strengthen our main result,
according to which optimal parameter estimation around the
region of criticality can be achieved even by probing only a
part of the composite system.

V. CONCLUSIONS

We have analyzed the superradiant QPT occurring in
the Dicke model in terms of Gaussian ground states with
the help of the symplectic formalism. In this framework,
we have addressed the problem of estimating the coupling
parameter, investigating whether and to which extent criticality
is a resource to enhance precision. In particular, we have
obtained analytic expressions and limiting behaviors for the
QFI, showing explicitly its divergence at critical point. Upon
tuning the radiation frequency we may also tune the critical
region and, in turn, achieve optimal estimation for any value
of the radiation-atoms coupling.

Besides, we studied two feasible measurements to be
performed only onto a part of the whole bipartite system,
homodyne-like detection and photon counting. The remark-
able result is that by probing just one of the two subsystems,
namely the radiation mode or the atomic ensemble, it is
possible to achieve the optimal estimation imposed by the
quantum Cramér-Rao bound. Notice that this is a relevant
feature of the system, in view of its strongly interacting
nature and of the high degree of entanglement of the two
subsystems at the critical point. The possibility of probing
the system accessing only the radiation part is of course
a remarkable feature for practical applications. We also
mention that the feasibility of these measurements may involve
ancillary probing fields, aimed at extracting information about
the entangled system [35,47].

Motivated by relevant and fruitful experimental interests,
recently arisen in connection to the realization of exotic matter
phases, we believe that a quantum estimation approach, as the
one outlined in this work, can be profitably employed in quan-
tum critical systems. The gain is twofold, since (i) criticality
is a resource for the estimation of unaccessible Hamiltonian
parameters and (ii) the search for optimal observable providing
high-precision measurements allows a fine-tuning detection
of the QPT itself. The analysis may be also extended and
applied to the finite temperature case, to systems at thermal
equilibrium, and to general models including the controversial
A2 term. Work along these lines is in progress and results will
be reported elsewhere.
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APPENDIX A: GAUSSIAN STATES
AND SYMPLECTIC TRANSFORMATIONS

A system composed by M bosonic modes is described
by quantized fields âm satisfying the commutation relation
[âm,â

†
l ] = δm,l . An equivalent description is provided, through

the Cartesian decomposition of field modes, in terms of
position- and momentum-like operators x̂m = (âm + â

†
m)/

√
2

and p̂m = i(â†
m − âm)/

√
2. Introducing the vector of ordered

quadratures �R = (x̂1,p̂1, . . . ,x̂M,p̂M )T and the symplectic
matrix

� =
M⊕

m=1

ωm, ωm =
(

0 1
−1 0

)
, (A1)

the commutation relations become [Ri,Rj ] = i�ij . The
state ̂ of a system of M bosonic modes can be de-
scribed in the phase space by means of the characteristic
function, defined as χ [̂](�α) ≡ Tr[̂D̂(�α)], where D̂(�α) =⊗M

m=1 exp{αmâ
†
m − α∗

mâm} is the displacement operator and
�α = {α1, . . . ,αM}, with complex coefficients αm = (α(r)

m +
i α(i)

m )/
√

2 and {α(r)
m ,α(i)

m } ∈ R. It is responsible for rigid
translations of states in the phase space, allowing us to express
any coherent state as a displaced vacuum state |�α〉 = D̂(�α)|0〉.
Equivalently, in the cartesian representation, the displace-
ment operator can be written in the compact form D̂( ��) =
exp{−i ��T � �R}, with �� = {α(r)

1 ,α
(i)
1 , . . . ,α

(r)
M ,α

(i)
M }, acting on

the vector of quadratures as D̂†( ��) �R D̂( ��) = �R + ��.
A density operator ̂ describing the state of a system of

M bosonic modes, is called Gaussian when its characteristic
function χ [̂]( ��) ≡ Tr[̂D̂( ��)] is Gaussian in the cartesian
coordinates �� and reads

χ [̂]( ��) = exp
{− 1

2
��T �σ�T �� − i ��T �〈 �R〉}, (A2)

or, equivalently, when the associated Wigner function has the
Gaussian form

W [̂]( �X) = exp
{− 1

2 ( �X − 〈 �R〉)T σ−1( �X − 〈 �R〉)}
πM

√
Det[σ ]

, (A3)

the two being related by the Fourier transform

W [̂]( �X) = 1

(2π )2M

∫
d2M �� exp{i ��T � �X}χ[

̂
]
( ��). (A4)

A Gaussian state is completely determined by the first-
moments vector 〈 �R 〉 and the second moments encoded in the
covariance matrix (CM) σ , of elements

σij = 1
2 〈RiRj + RjRi〉 − 〈Ri〉〈Rj 〉, (A5)

which allows to write the Heisenberg uncertainty relation
as σ + i

2� � 0. The purity μ = Tr[̂2] of a Gaussian state
is expressed in terms of the CM by the relation μ =
(2M

√
Det[σ ] )−1.
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A property of Gaussian states, which will reveal to be
useful in the following calculations, is that the reduced density
matrix, obtained by means of the partial trace operation
over the degrees of freedom of a subsystem, keeps its
Gaussian character [51]. For instance, exploiting the Glauber
representation of a density operator of a bipartite state, with
cartesian coordinates �� = ( ��a1 ,

��a2 ),

̂a1a2 = 1

(2π )2

∫
R4

d4 �� χ [̂a1a2 ]( ��)D̂†( ��), (A6)

together with Tr[D̂( ��a1 )] = (2π )δ(2)( ��a1 ), then the reduced
density operator ̂a1 is a Gaussian state with an associated
characteristic function χ [̂a1a2 ]( ��a1 ,0) = Tr[̂a1D̂( ��a1 )].

To become more familiar with these concepts, we list here
some examples of Gaussian states. A single-mode system
in an equilibrium with a thermal environment is described
by the density operator ν̂th(n̄) = ∑∞

k=0 n̄k(1 + n̄)−(1+k)|k〉〈k|
expressed on the Fock basis {|k〉}∞0 . The corresponding
covariance matrix is σth = (1 + n̄)/2, with n̄ the number of
average thermal photons. Other examples include the classes of
coherent states and squeezed states, for which the uncertainty
relation σ + i

2� � 0 is saturated with 〈�x̂2〉〈�p̂2〉 = 1/4.
All coherent states have 〈�x̂2〉 = 〈�p̂2〉 = 1/2, whereas
squeezed states possess a covariance matrix of the kind
σsq = 1

2 Diag(e2r ,e−2r ), where 〈�x̂2〉 �= 〈�p̂2〉 and r ∈ R is a
real squeezing parameter. A generic squeezed state is obtained
from the vacuum by applying the unitary operator Ŝ(ξ ) =
exp{(ξ (â†)2 − ξ ∗â2)/2}, with complex squeezing parameter
ξ = r eiψ . The most general single-mode Gaussian state is a
displaced squeezed thermal state (DSTS) described by the
density operator ̂ = D̂(γ )Ŝ(r)ν̂th(n̄)Ŝ†(r)D̂†(γ ). For two-
mode systems such a general form does not exist, but a
relevant subclass of bipartite Gaussian states is given by the
squeezed thermal states ̂a1a2 = Ŝ2(ξ )ν̂th(n̄1) ⊗ ν̂th(n̄2)Ŝ†

2(ξ ),
where Ŝ2(ξ ) = exp{ξ â

†
1â

†
2 − ξ ∗â1â2} is the two-mode squeez-

ing operator.
An important property of Gaussian states is related to

transformations induced by quadratic Hamiltonians. Gaussian
states preserve their Gaussian character under symplectic
transformations of coordinates �R → F �R + �d , where �d is
a vector of real numbers, leaving unchanged the Hamilton
equations of motion and fulfilling the symplectic condition
F�FT = �. Thus, the first-moment vector and the CM of a
Gaussian state follow the transformation rules

〈 �R〉 → F 〈 �R〉 + �d, σ → FσFT . (A7)

Moreover, symplectic transformations originate from Hamil-
tonians at most bilinear in the field modes (quadratic) and
the diagonalization process of these Hamiltonians goes under
the name of symplectic diagonalization, which transforms the
coordinates by preserving canonical commutation relations.
Symplectic transformations possess the property of unitary
determinant Det[F ] = 1. As an example, consider a thermal
state ν̂th(n̄) evolving under the single-mode real squeezer Ŝ(r).
The associated symplectic matrix is F = Diag(er ,e−r ) and,
according to Eq. (A7), the CM transforms as σ = 1

2 (1 +
2n̄)Diag(e2r ,e−2r ), which is the CM of a squeezed thermal
state.

In the light of the properties of symplectic transformations
and writing the CM of Gaussian bipartite states in the most
general way as σ = ( A C

CT B
), it is possible to identify four

symplectic invariants given by I1 = Det[A], I2 = Det[B],
I3 = Det[C], and I4 = Det[σ ]. The symplectic eigenvalues
of a CM can be expressed in terms of these invariants as

d± =
√

I1 + I2 + 2I3 ±
√

(I1 + I2 + 2I3)2 − 4I4

2
, (A8)

from which we can straightforwardly rewrite the uncertainty
relation as d− � 1/2. Pure Gaussian states have I4 = 1/16 and
I1 + I2 + 2I3 = 1/2. The separability of the two subsystems is
formalized in terms of the criterion of positivity under partial
transpose (ppt) [52], which can be written in terms of the
symplectic invariants as d̃− � 1/2, where

d̃± =
√

I1 + I2 − 2I3 ±
√

(I1 + I2 − 2I3)2 − 4I4

2
(A9)

are the symplectic eigenvalues of the CM of the partially
transposed density operator describing a bipartite Gaussian
state. A measure of entanglement is, thus, provided by the
logarithmic negativity [53],

EN (σ ) = max{0,− ln 2d̃−}, (A10)

which quantifies monotonically the amount of violation of the
ppt-criterion.

For more details on Gaussian states the reader may follow
Refs. [48–51].

APPENDIX B: LOCAL QET

Whenever a parameter of a physical system is not directly
accessible by an observable, it is always possible to infer
its average value by means of classical estimation theory
inspecting the set of data {x} of an indirect measurement. Let
us suppose that an observable X̂ is measured on the considered
physical system described by a parameter-dependent density
operator ̂λ. A set of data {x1, . . . ,xm}, corresponding to
the possible outcomes of X̂ , is then collected according
to the distribution p(x|λ) = Tr[̂λX̂ ] provided by the Born
rule, which describes the conditional probability to obtain an
outcome x given the value of the parameter λ. The value
of the parameter λ is then inferred from the statistics of an
estimator λ̄ = λ̄(x1, . . . ,xm), evaluating its average value E[λ̄]
and variance Varλ = E[λ̄2] − E[λ̄]2 (valid for any unbiased
estimator E[λ̄] = λ). From classical estimation theory, optimal
estimators saturate the Cramér-Rao bound

Varλ � 1

mFX̂ (λ)
, (B1)

where the FI FX̂ (λ) is the maximum information extractable
from a measurement of the observable X̂ and reads

FX̂ (λ) =
∫
R

dx p(x|λ) {∂λ[ln p(x|λ)]}2. (B2)
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The ultimate limit to the precision in an estimation process is
given the quantum Cramér-Rao bound

Varλ � 1

mH (λ)
, (B3)

where the QFI H (λ) does not depend on measurements
but only on the probe state ̂λ. The QFI is the result of
a maximization over all the possible observables on the
physical system and it is such that H (λ) � FX̂ (λ). The QFI
is analytically computable as H (λ) = Tr[̂λL̂2

λ], i.e., in terms
of the hermitean operator L̂λ called symmetric logarithmic
derivative (SLD), implicitly defined as

∂λ̂λ ≡ L̂λ̂λ + ̂λL̂λ

2
. (B4)

The SLD operator represents the optimal positive-operator
valued measurement (POVM) saturating the Cramér-Rao
bound Eq. (B3).

Criticality at a QPT is a resource for quantum estimation
as a small change in the parameter λ yields a drastic change

in the ground state at the boundary of the critical parameter,
thus allowing the QFI to diverge. It is, thus, desirable to find
an optimal observable maximizing the FI to the values of the
QFI in order to achieve the best precision in the parameter
estimation.

In the context of Gaussian states it is possible to derive
analytical expressions for the QFI and the SLD operator
[54], which depend on the physical parameters characterizing
the state of the system. Exploiting the notions outlined in
Appendix A and redefining the partial derivation as ∂λ(f ) ≡ ḟ ,
the QFI and SLD for a generic Gaussian state read

H (λ) = Tr[�T σ̇��] + 〈 �̇R 〉T σ−1〈 �̇R〉, (B5)

Lλ = �R T � �R + �R T �ζ − ν, (B6)

where ν = Tr[�T σ ��] is related to the property of the SLD
Eq. (B4) to have zero-mean value Tr[̂λL̂λ] = 0. For pure
Gaussian states all the quantities in Eqs. (B5) and (B6) are

easy to compute and read � = −σ̇ and �ζ = �T σ−1〈 �̇R〉.
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